• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 190
  • 42
  • Tagged with
  • 655
  • 248
  • 215
  • 130
  • 106
  • 83
  • 82
  • 78
  • 72
  • 70
  • 69
  • 68
  • 66
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Approximation et estimation de densité pour des équations d'évolution stochastique / No English title available

Aboura, Omar 19 December 2013 (has links)
Dans la première partie de cette thèse, nous obtenons l’existence d’une densité et des estimées gaussiennes pour la solution d’une équation différentielle stochastique rétrograde. C’est une application du calcul de Malliavin et plus particulièrement d’une formule d’I. Nourdin et de F. Viens. La deuxième partie de cette thèse est consacrée à la simulation d’une équation aux dérivées partielles stochastique par une méthode probabiliste qui repose sur la représentation de l’équation aux dérivées partielles stochastique en terme d’équation différentielle doublement stochastique rétrograde, introduite par E. Pardoux et S. Peng. On étend dans ce cadre les idées de F. Zhang et E. Gobet et al. sur la simulation d’une équation différentielle stochastique rétrograde. Dans la dernière partie, nous étudions l’erreur faible du schéma d’Euler implicite pour les processus de diffusion et l’équation de la chaleur stochastique. Dans le premier cas, nous étendons les résultats de D. Talay et L. Tubaro. Dans le second cas, nous étendons les travaux de A. Debussche. / No English summary available.
62

Quelques contributions à l'analyse numérique d'équations stochastiques

Kopec, Marie 25 June 2014 (has links) (PDF)
Ce travail présente quelques résultats concernant le comportement en temps fini et en temps long de méthodes numériques pour des équations stochastiques. On s'intéresse d'abord aux équations différentielles stochastiques de Langevin et de Langevin amorti. On montre un résultat concernant l'analyse d'erreur faible rétrograde de ses équations par des schémas numériques implicites. En particulier, on montre que l'erreur entre le générateur associé au schéma numérique et la solution d'une équation de Kolmogorov modifiée est d'ordre élevé par rapport au pas de discrétisation. On montre aussi que la dynamique associée au schéma numérique est exponentiellement mélangeante. Dans un deuxième temps, on étudie le comportement en temps long d'une discrétisation en temps et en espace d'une EDPS semi-linéaire avec un bruit blanc additif, qui possède une unique mesure invariante . On considère une discrétisation en temps par un schéma d'Euler et en espace par une méthode des éléments finis. On montre que la moyenne, par rapport aux lois invariantes (qui n'est pas forcément unique) associées à l'approximation, par des fonctions tests suffisamment régulières est proche de la quantité correspondante pour . Plus précisément, on étudie la vitesse de convergence par rapport aux différents paramètres de discrétisation. Enfin, on s'intéresse à une EDPS semi-linéaire avec un bruit blanc additif dont le terme non-linéaire est un polynôme. On étudie la convergence au sens faible d'une approximation en temps par un schéma de splitting implicite.
63

Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes / New efficient 2D and 3D modeling algorithms to compute travel times, take-off angles and amplitudes

Belayouni, Nidhal 25 April 2013 (has links)
Les temps de trajet, amplitudes et angles à la source des ondes sismiques sont utilisés dans de nombreuses applications telles que la migration, la tomographie, l'estimation de la sensibilité de détection et la localisation des microséismes. Dans le contexte de la microsismicité, il est nécessaire de calculer en quasi temps réel ces attributs avec précision. Nous avons développé ici un ensemble d'algorithmes rapides et précis en 3D pour des modèles à fort contraste de vitesse.Nous présentons une nouvelle méthode pour calculer les temps de trajet, les amplitudes et les angles à la source des ondes correspondant aux premières arrivées. Plus précisément, nous résolvons l'équation Eikonal, l'équation de transport et l'équation des angles en nous basant sur une approche par différences finies pour des modèles de vitesse en 3D. Nous proposons une nouvelle méthode hybride qui bénéficie des avantages respectifs de plusieurs approches existantes de résolution de l'équation Eikonal. En particulier, les approches classiques proposent généralement de résoudre directement les équations et font l'approximation localement d'une onde plane. Cette approximation n'est pas bien adaptée au voisinage de la source car la courbure du front d'onde est importante. Des erreurs de temps de trajet sont alors générées près de la position de la source, puis propagées à travers tout le modèle de vitesse. Ceci empêche de calculer correctement les amplitudes et les angles à la source puisqu'ils reposent sur les gradients des temps. Nous surmontons cette difficulté en introduisant les opérateurs sphériques ; plus précisément nous reformulons les temps de trajet, amplitudes et angles à la source par la méthode des perturbations.Nous validons nos nouvelles méthodes pour différents modèles à fort contraste de vitesse en 2D et 3D et montrons notre contribution par rapport aux approches existantes. Nos résultats sont similaires à ceux calculés en utilisant la modélisation de la forme d'onde totale alors qu'ils sont bien moins coûteux en temps de calcul. Ces résultats ouvrent donc de nouvelles perspectives pour de nombreuses applications telles que la migration, l'estimation de la sensibilité de détection et l'inversion des mécanismes au foyer. / Traveltimes, amplitudes and take-off angles of seismic waves are used in many applications such as migration, tomography, detection sensitivity estimation and microseism location. In the microseismicty context it is necessary to compute in near real time accurately these attributes. Here we developed a set of fast and accurate algorithms in 3D for highly contrasted velocity models.We present a new accurate method for computing first arrival traveltimes, amplitudes and take-off angles; more precisely we solve the Eikonal, transport and take-off angle equations based on a finite difference approach for 3D velocity models. We propose a new hybrid method that benefits from the advantages of several existing Eikonal solvers. Common approaches that solve directly these equations assume that we are locally propagating a plane wave. This approximation is not well adapted in the neighborhood of the source since the wavefront curvature is important. Travel times errors are generated near the source position and then propagated through the whole velocity model. This prevents from properly calculating the amplitudes and the take-off angles since they rely on the travel time gradients that are not accurate. We overcome this difficulty by introducing spherical operators. Indeed we reformulate the traveltimes, amplitudes and take-off angles with the perturbation method.We validate our new methods on various highly contrasted velocity models in 2D and 3D and show our contribution compared to other existing approaches. Our results are similar to those computed using full waveform modeling while they are obtained in a much shorter CPU time. These results open thus new perspectives for several applications such as migration, detection sensitivity estimation and focal mechanism inversion.
64

Analyse harmonique et équation de Schrödinger associées au laplacien de Dunkl trigonométrique

Ayadi, Fatma 19 December 2011 (has links) (PDF)
l'équation de Schrödinger associée au laplacien de Dunkl trigonométrique unidimensionnel . Cette étude commence par des estimations optimales du noyau de la chaleur et de Schrödinger. A l'aide de ces résultats, ainsi que les outils d'analyse harmonique dévellopée dans le chapitre 2, on montre des éstimées de type Strichartz qui permettent de trouver des conditions d'admissibilité pour des équations de Schrödinger semi-linéaires.
65

Equation de Khokhlov-Zabolotskaya-Kuznetsov. Analyse Mathématique, Validation de l'approximation et Méthode de Contrôle

Rozanova-Pierrat, Anna 06 July 2006 (has links) (PDF)
Ce travail se compose de deux parties. Dans la première, nous considérons l'équation de Khokhlov-Zabolotskaya-Kuznetsov (KZK) $(u_t - u u_x -\beta u_{xx})_x -\gamma \Delta_y u =0$ dans les espaces de Sobolev des fonctions p\ériodiques sur $x$ de valeur moyenne nulle. La déivation de l'\équation KZK à partir des équations de Navier-Stokes isentropiques non linéaires et de l'approximation de leurs solutions (pour les cas visqueux et non visqueux), les résultats de l'existence, de l'unicité, de la stabilité et du blow-up de la solution de KZK sont obtenus ainsi qu'un résultat sur l'existence d'une solution régulière du syst\éme de Navier-Stokes dans le demi espace avec conditions aux limites péiodiques en temps et de valeur moyenne nulle. Dans la deuxième partie, nous prouvons la contrôabilitélocale des moments de deux systèmes décrits par une équation non-linéaire d'evolution dans un espace de Banach et par une équation non-linéaire de la chaleur quand le contrôle est un multiplicateur du membre de droite. Pour les deux systémes avec une surdétermination intégrale nous obtenons des conditions suffisantes sur la taille du voisinage duquel nous pouvons prendre la fonction de la condition de surdétermination de sorte que le problème inverse ait une solution unique. Nous prouvons également le résultat de contrôlabilité pour l'équation KZK linéarisée.
66

Quelques problèmes d'inspiration physique en théorie des probabilités

Peyre, Rémi 12 November 2010 (has links) (PDF)
Cette thèse présente quatre travaux de recherche mêlant probabilités et analyse, ayant en commun de s'appuyer sur l'intuition physique, tant dans la position des problèmes que dans leur résolution : 1. On borne les probabilités de transition des chaînes de Markov réversibles discrètes, améliorant la borne de Carne grâce à une démonstration alternative. 2. On démontre la convergence vers la limite de champ moyen dans une approche uniforme et non asymptotique pour un modèle de Boltzmann spatialement homogène. 3. On étudie le coefficient de rho-mélange entre deux tribus, montrant en particulier comment cette quantité peut être tensorisée dans un cadre général, ce qui implique des résultats de décorrélation entre groupes infinis de spins en physique statistique. 4. On s'intéresse, pour une équation de McKean-Vlasov, à la stabilité de l'équilibre homogène en fonction de la température, minorant notamment l'énergie d'activation.
67

Diagnostic des défauts de réseaux électriques filaires par la réflectométrie / Fault diagnosis of wired electric networks by reflectometry

Oumri, Mohamed 16 May 2014 (has links)
Cette thèse s’intéresse au diagnostic de défauts de réseaux électriques filaires à l'aide de la réflectométrie. Pour concevoir des algorithmes de diagnostic, nous avons étudié le problème direct (simulations numériques des réseaux électriques) et le problème inverse (détermination de certaines propriétés d’un réseau à partir des mesures de réflectométrie). Concernant le problème direct, nous avons développé une méthode de calcul du coefficient de réflexion d’un réseau sous forme d’arbre qui est basée sur la résolution successive d’équations différentielles de Riccati. Nous avons également généralisé l’équation de BLT pour des réseaux électriques composés de branches non uniformes et automatisé la méthode de sa résolution. La thèse a apporté deux nouveaux résultats concernant le problème inverse. Le premier résultat porte sur l’estimation des longueurs et des coefficients de pertes des branches d'un réseau électrique sous forme d’étoiles via une méthode itérative. Le deuxième porte sur l’identification, au moins partiellement, des matrices d’admittance des branches d’un réseau électrique modélisé par l’équation de BLT. Les méthodologies et les formalismes proposés dans la thèse sont validés soit par des simulations numériques, soit par des mesures réelles. / This thesis focuses on fault diagnosis of wired electric networks using reflectometry. To develop diagnostic algorithms, we studied the direct problem (numerical simulations of electrical networks) and the inverse problem (determination of certain properties of a network from reflectometry measurements). For the direct problem, we developed a method for the computation of reflection coefficients. This method is based on the successive solving for a Riccati differential equation. We also generalized the BLT equation for the nonuniform electric networks and automated the resolution of this method. The thesis has made two new results concerning the inverse problem. The first result concerns the estimation of lengths and loss coefficients of the branches of a star network via an iterative method. The second focuses on the identification, at least partially, of the branches admittance matrices of a electric network modeled by the equation of BLT. The methodologies and formalisms proposed in this thesis are validated either by numerical simulations or by real measurements.
68

Conditions aux limites absorbantes enrichies pour l'équation des ondes acoustiques et l'équation d'Helmholtz / Enriched absorbing boundary conditions for the acoustic wave equation and the Helmholtz equation

Duprat, Véronique 06 December 2011 (has links)
Mes travaux de thèse portent sur la construction de conditions aux limites absorbantes (CLAs) pour des problèmes de propagation d'ondes posés dans des milieux limités par des surfaces régulières. Ces conditions sont nouvelles car elles prennent en compte non seulement les ondes proagatives (comme la plupart des CLAs existantes) mais aussi les ondes évanescentes et rampantes. Elles sont donc plus performantes que les conditions existantes. De plus, elles sont facilement implémentables dans un schéma d'éléments finis de type Galerkine Discontinu (DG) et ne modifie pas la condition de stabilité de Courant-Friedrichs-Lewy (CFL). Ces CLAs ont été implémentées dans un code simulant la propagation des ondes acoustiques ainsi que dans un code simulant la propagation des ondes en régime harmonique. Les comparaisons réalisées entre les nouvelles conditions et celles qui sont les plus utilisées dans la littérature montrent que prendre en compte les ondes évanescentes et les ondes rampantes permet de diminuer les réflexions issues de la frontière artificielle et donc de rapprocher la frontière artificielle du bord de l'obstacle. On limite ainsi les coûts de calcul, ce qui est un des avantages de mes travaux. De plus, compte tenu du fait que les nouvelles CLAs sont écrites pour des frontières quelconques, elles permettent de mieux adapter le domaine de calcul à la forme de l'obstacle et permettent ainsi de diminuer encore plus les coûts de calcul numérique. / In my PhD, I have worked on the construction of absorbing boundary conditions (ABCs) designed for wave propagation problems set in domains bounded by regular surfaces. These conditions are new since they take into account not only propagating waves (as most of the existing ABCs) but also evanescent and creeping waves. Therefore, they outperform the existing ABCs. Moreover, they can be easily implemented in a discontinuous Galerkin finite element scheme and they do not change the Courant-Friedrichs-Lewy stability condition. These ABCs have been implemented in two codes that respectively simulate the propagation of acoustic waves and harmonic waves. The comparisons performed between these ABCs and the ABCs mostly used in the litterature show that when we take into account evanescent and creeping waves, we reduce the reflections coming from the artificial boundary. Therefore, thanks to these new ABCs, the artificial boundary can get closer to the obstacle. Consequently, we reduce the computational costs which is one of the advantages of my work. Moreover, since these new ABCs are written for any kind of boundary, we can adapt the shape of the computational domain and thus we can reduce again the computational costs.
69

Kolmogorov Operators in Spaces of Continuous Functions and Equations for Measures

Manca, Luigi 17 March 2008 (has links) (PDF)
La thèse est consacrée à étudier les relations entre les Équations aux Derivées Partielles Stochastiques et l'operateur de Kolmogorov associé dans des espaces de fonctions continues.<br />Dans la première partie, la théorie de la convergence faibles des fonctions est mis au point afin de donner des résultats généraux sur les semi-groupes des Markov et leur générateur.<br />Dans la deuxième partie, des modèles de semi-groups de Markov associés à des équations aux dérivées partielles stochastiques sont étudiés. En particulier, Ornstein-Uhlenbeck, réaction-diffusion et équations de Burgers ont été envisagées. Pour chaque cas, le semi-groupe de transition et son générateur infinitésimal ont été étudiées dans un espace de fonctions continues.<br />Les résultats principaux montrent que l'ensemble des fonctions exponentielles fournit un Core pour l'opérateur de Kolmogorov. En conséquence, on prouve l'unicité de l'équation de Kolmogorov de mesures (autrement dit de Fokker-Planck).
70

Contributions à l'étude de l'équation de Schrödinger : problème inverse en domaine borné et contrôle optimal bilinéaire d'une équation de Hartree-Fock

Baudouin, Lucie 09 November 2004 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques propriétés de l'équation d'évolution de Schrödinger. Dans un premier temps, on s'intéresse à un problème inverse concernant cette équation posée en domaine borné, avec potentiel, lequel dépend uniquement de la variable d'espace, et donnée de Dirichlet sur le bord. On démontre, à l'aide d'une inégalité de Carleman, que le problème inverse de la détermination du potentiel à partir de la mesure du flux de la solution à travers une partie du bord est un problème bien posé. Dans un deuxième temps, il est question de l'équation de Schrödinger considérée dans $\mathbb R^3$ avec un potentiel coulombien, localement singulier, et un potentiel électrique non borné, tous deux dépendant des variables d'espace et de temps. On montre successivement l'existence d'une unique solution régulière pour l'équation linéaire et pour l'équation avec non-linéarité de Hartree. Ce sont des étapes préliminaires à l'étude d'un système couplant à travers le potentiel coulombien, cette équation de Hartree-Fock et une équation issue de la dynamique newtonienne. Les résultats obtenus ici sont indispensables à l'étude finale des problèmes de contrôle optimal bilinéaire posés à partir de ces différentes équation, le contrôle de la solution étant effectué par le potentiel électrique. On démontre l'existence d'un contrôle optimal et on donne la condition d'optimalité correspondante dans les cas appropriés\vspace(0,5cm)

Page generated in 0.0927 seconds