• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 36
  • 34
  • 34
  • 8
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 350
  • 123
  • 123
  • 38
  • 34
  • 33
  • 30
  • 27
  • 26
  • 25
  • 24
  • 22
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Estudo comparativo da ação biomecânica de alças ortodônticas confeccionadas em fios retangulares\" / Comparative study of biomechanical action of orthodontic loops made with rectangular wires

Cecilio, Eliane 10 November 2006 (has links)
No tratamento das maloclusões muitas vezes se impõe a necessidade de extrações dentárias para cumprir as metas do tratamento ortodôntico em busca da oclusão normal. Um dos recursos para o fechamento de espaços após exodontias é a utilização de arcos de retração com alças. Atualmente existe, no mercado, uma grande disponibilidade de arcos pré-fabricados, fornecidos por diversos fabricantes, que apresentam variações na forma e número de alças, espessura dos fios e ligas metálicas diferentes. O conhecimento das propriedades mecânicas e das forças liberadas por estes arcos é de extrema importância para que se obtenha uma resposta biológica adequada durante a movimentação dentária. O presente estudo procurou avaliar, experimentalmente, as forças liberadas por alguns tipos mais utilizados de arcos com alças produzidos com fios de secção retangular com variações de geometria (espessura, número e forma das alças), liga metálica e fabricante, impondo-lhes diferentes ativações. Buscou-se ainda determinar a quantidade de ativação onde ocorre o limite de proporcionalidade e, finalmente, fazer comparações entre os arcos com o intuito de fornecer ao ortodontista subsídios para a escolha do arco adequado. Para tal foram utilizados 19 tipos diferentes de arcos submetidos a testes de tração. Foram registradas as forças continuamente até uma deformação das alças de 4 mm. As comparações foram realizadas por meio de testes estatísticos isolando-se apenas uma característica de variação permitindo uma melhor compreensão do fator preponderante na alteração da força. Os resultados revelaram variações importantes nas forças a cada 0,5 mm de ativação, sendo de forma geral, ativações de 0,5 e 1,0 mm as que liberam forças mais adequadas. Os limites de proporcionalidade ocorreram na sua maioria acima de 1,5 mm de ativação até 2,5 mm, podendo em arcos mais flexíveis ocorrer acima de 4,0 mm. As comparações estatísticas demonstraram diferenças significativas entre todos os grupos avaliados, revelando que todas as variações (geometria, espessura, material e fabricante) exercem influência sobre a força gerada, sendo que a liga metálica parece ser preponderante. / In malocclusion treatments, dental extractions become necessary, in some cases, in order to achieve orthodontic goals of normal occlusion. One of the devices employed to close spaces after dental extraction is the use of retraction arches with loops. Nowadays, there is a wide range of pre-manufactured arches in the market, which present variations in shape, number of loops, thickness of the wire and metallic alloys. It is extremely important to understand mechanical properties as well as the forces delivered by these arches in order to achieve proper biological response during tooth movement. The present study tried to evaluate, experimentally, forces delivered by some of the most frequently employed arches made of rectangular wires with different geometrical characteristics (thickness, number and shape of loops), metallic alloys and made by different manufacturers, when submitted to different levels of activation. It was tried to determine the activation level at proportional limit and compare these values for different arches, in order to provide the orthodontists with accurate data which may help them to choose the proper arches. Nineteen different types of arches were submitted to tension tests. Forces were continuously measured up to 4 mm level of loop deformation. Statistical tests were employed to make comparisons, with only one type of variation for each test, which allowed a better comprehension of the main factor in force change. Results revealed important variations in forces at 0.5 mm intervals, and generally, 0.5 mm and 1.0 mm levels of activation delivered the most proper forces. Proportional limit occurred, mostly, over 1.5 mm and up to 2.5 mm levels of activation, except for more flexible arches, when it occurred above 4.0 mm. Statistical comparisons showed significant differences between all groups studied, demonstrating that all variations (geometry, thickness, material and manufacturer) can influence the delivered force. In spite of this, metallic alloys seemed to be the most important factor determining force deliverance variation.
262

Investigating the large N limit of SU(N) Yang-Mills gauge theories on the lattice

García Vera, Miguel Francisco 02 August 2017 (has links)
In dieser Arbeit praesentieren wir Resultate der topologischen Suszeptibilitaet “chi” und untersuchen die Faktorisierung der reinen SU(N) Yang-Mills Eichtheorie im 't Hooft'schen Grenzwert grosser N. Ein entscheidender Teil der Berechnung von chi in der Gittereichtheorie ist die Abschaetzung des topologischen Ladungsdichtekorrelators, die durch ein schlechtes Signal-Rausch- Verhaeltnis beeintraechtigt ist. Um dieses Problem abzuschwaechen, fuehren wir einen neuen, auf einem mehrstufigen Vorgehen beruhenden Algorithmus ein, um die Korrelationsfunktion von Observablen zu berechnen, die mit dem Yang-Mills Gradientenfluss geglaettet wurden. Angewandt auf unsere Observablen, erhalten wir Ergebnisse, deren Fehlerskalierung besser ist, als die von herkoemmlichen Monte-Carlo Simulationen. Wir bestimmen die topologische Suszeptibilitaet in der reinen Yang-Mills Eichtheorie fuer Eichgruppen mit N = 4,5,6 und drei verschiedenen Gitterabstaenden. Um das Einfrieren der Topologie zu umgehen, wenden wir offene Randbedingungen an. Zusaetzlich wenden wir die korrekte Definition der topologischen Ladungsdichte durch den Gradientenfluss an. Unser Endresultat im des Grenzfalls von grossen N repraesentiert eine neue Qualitaet in der Verifikation der Witten-Veneziano Formel. Schliesslich benutzen wir die Gitterformulierung, um die Erwartungswertfaktorisierung des Produkts eichinvarianter Operatoren im Grenzwert grosser N zu verifizieren. Wir arbeiten mit durch den Yang-Mills Grandientenfluss geglaetteten Wilsonschleifen und Simulationen bis zur Eichgruppe SU(8). Die Extrapolationen zu grossen N sind in Ueberstimmung mit der Faktorisierung sowohl fuer endlichen Gitterabstand als auch in Kontinnumslimes. Unsere Daten erlauben uns nicht nur die Verifizierung der Faktorisierung, sondern auch einen hochpraezisen Test des 1/N Skalierungsverhaltens. Hier konnten wir das quadratische Skalierungsverhalten in 1/N finden, welches von 't Hooft vorhergesagt wurde. / In this thesis we present results for the topological susceptibility “chi”, and investigate the property of factorization in the 't Hooft large N limit of SU(N) pure Yang-Mills gauge theory. A key component in the lattice gauge theory computation of chi is the estimation of the topological charge density correlator, which is affected by a severe signal to noise problem. To alleviate this problem, we introduce a novel algorithm that uses a multilevel type approach to compute the correlation function of observables smoothed with the Yang-Mills gradient flow. When applied to our observables, the results show an scaling of the error which is better than the one of standard Monte-Carlo simulations. We compute the topological susceptibility in the pure Yang-Mills gauge theory for the gauge groups with N = 4, 5, 6 and three different lattice spacings. In order to deal with the freezing of topology, we use open boundary conditions. In addition, we employ the theoretically sound definition of the topological charge density through the gradient flow. Our final result in the limit N to infinity, represents a new quality in the verification of the Witten-Veneziano formula. Lastly, we use the lattice formulation to verify the factorization of the expectation value of the product of gauge invariant operators in the large N limit. We work with Wilson loops smoothed with the Yang-Mills gradient flow and simulations up to the gauge group SU(8). The large N extrapolations at finite lattice spacing and in the continuum are compatible with factorization. Our data allow us not only to verify factorization, but also to test the 1/N scaling up to very high precision, where we find it to agree very well with a quadratic series in 1/N as predicted originally by 't Hooft for the case of the pure Yang-Mills gauge theory.
263

Evidence for Impulsive Heating of Active Region Coronal Loops

Reep, Jeffrey 24 July 2013 (has links)
We present observational and numerical evidence supporting the theory of impulsive heating of the solar corona. We have run numerical simulations solving the hydrodynamic equations for plasma confined to a magnetic flux tube, for the two distinct cases of steady and impulsive heating. We find that steady heating cannot explain the observed amount of low-temperature plasma in active regions on the sun. The results for impulsive heating closely match those of the observations. The ratio of heating time to cooling time predominantly determines the observed temperature distribution of the plasma. We have also identified an observational bias in calculating intensities of spectral lines in previous studies, which causes an under-estimation of low-temperature plasma. We predict Doppler shifts in the observed line emission that are in agreement with observations, and which may serve as a diagnostic of the strength of heating. We conclude that impulsive heating of active region coronal loops is more likely than steady heating.
264

Oscillation Control in CMOS Phase-Locked Loops

Terlemez, Bortecene 22 November 2004 (has links)
Recent advances in voltage-controlled oscillator (VCO) design and the trend of CMOS processing indicate that the oscillator control is quickly becoming one of the forefront problems in high-frequency and low-phase-noise phase-locked loop (PLL) design. This control centric study explores the limitations and challenges in high-performance analog charge-pump PLLs when they are extended to multiple gigahertz applications. Several problems with performance enhancement and precise oscillator control using analog circuits in low-voltage submicron CMOS processes, coupled with the fact that analog (or semi-digital) oscillators having various advantages over their digitally controlled counterparts, prompted the proposal of the digitally-controlled phase-locked loop. This research, then, investigates a class of otherwise analog PLLs that use a digital control path for driving a current-controlled oscillator. For this purpose, a novel method for control digitization is described where trains of pulses code the phase/frequency comparison information rather than the duration of the pulses: Pulse-Stream Coded Phase-Locked Loop (psc-PLL). This work addresses issues significant to the design of future PLLs through a comparative study of the proposed digital control path topology and improved cutting-edge charge-pump PLLs.
265

Design of CMOS integrated phase-locked loops for multi-gigabits serial data links

Cheng, Shanfeng 25 April 2007 (has links)
High-speed serial data links are quickly gaining in popularity and replacing the conventional parallel data links in recent years when the data rate of communication exceeds one gigabits per second. Compared with parallel data links, serial data links are able to achieve higher data rate and longer transfer distance. This dissertation is focused on the design of CMOS integrated phase-locked loops (PLLs) and relevant building blocks used in multi-gigabits serial data link transceivers. Firstly, binary phase-locked loops (BPLLs, i.e., PLLs based on binary phase detectors) are modeled and analyzed. The steady-state behavior of BPLLs is derived with combined discrete-time and continuous-time analysis. The jitter performance characteristics of BPLLs are analyzed. Secondly, a 10 Gbps clock and data recovery (CDR) chip for SONET OC- 192, the mainstream standard for optical serial data links, is presented. The CDR is based on a novel referenceless dual-loop half-rate architecture. It includes a binary phase-locked loop based on a quad-level phase detector and a linear frequency-locked loop based on a linear frequency detector. The proposed architecture enables the CDR to achieve large locking range and small jitter generation at the same time. The prototype is implemented in 0.18 μm CMOS technology and consumes 250 mW under 1.8 V supply. The jitter generation is 0.5 ps-rms and 4.8 ps-pp. The jitter peaking and jitter tolerance performance exceeds the specifications defined by SONET OC-192 standard. Thirdly, a fully-differential divide-by-eight injection-locked frequency divider with low power dissipation is presented. The frequency divider consists of a four-stage ring of CML (current mode logic) latches. It has a maximum operating frequency of 18 GHz. The ratio of locking range over center frequency is up to 50%. The prototype chip is implemented in 0.18 μm CMOS technology and consumes 3.6 mW under 1.8 V supply. Lastly, the design and optimization techniques of fully differential charge pumps are discussed. Techniques are proposed to minimize the nonidealities associated with a fully differential charge pump, including differential mismatch, output current variation, low-speed glitches and high-speed glitches. The performance improvement brought by the techniques is verified with simulations of schematics designed in 0.35 μm CMOS technology.
266

Design of integrated frequency synthesizers and clock-data recovery for 60 GHz wireless communications

Barale, Francesco 26 August 2010 (has links)
In this dissertation, the development of the first 60 GHz-standard compatible fully integrated 4-channel phase-locked loop (PLL) frequency synthesizer has been presented. The frequency synthesizer features third-order single loop architecture with completely integrated passive loop filter that does not require any additional external passive component. Two possible realizations of fully integrated clock and data recovery (CDR) circuits suitable for 60 GHz-standard compliant base band signal processing have been presented for the first time as well. The two CDRs have been optimized for either high data rate (3.456 Gb/s) or very low power consumption (5 mW) and they both work with a single 1 V supply. The frequency synthesizer is intended to generate a variable LO frequency in a fixed-IF heterodyne transceiver architecture. In such configuration the channel selection is implemented by changing the LO frequency by the required frequency step. This method avoids quadrature 50 GHz up/down-conversion thereby lowering the LO mixer design complexity and simplifying the LO distribution network. The measurement results show the PLL locking correctly on each of the four channels while consuming 60 mW from a 1 V power supply. The worst case phase noise is measured to be -80.1 dBc/Hz at 1 MHz offset from the highest frequency carrier (56.16 GHz). The output spectrum shows a reference spur attenuation of -32 dBc. The high data rate CDR features a maximum operating data rate in excess of 3.456 Gb/s while consuming 30 mW of power. The low power CDR consumes only 5 mW and operates at a maximum data rate of 1.728 Gb/s. Over a 1.5 m 60 GHz wireless link, both CDRs allow 95% reduction of the pulse shaping generated input peak-to-peak jitter from 450 ps down to 50 ps.
267

Spill Code Minimization And Buffer And Code Size Aware Instruction Scheduling Techniques

Nagarakatte, Santosh G 08 1900 (has links)
Instruction scheduling and Software pipelining are important compilation techniques which reorder instructions in a program to exploit instruction level parallelism. They are essential for enhancing instruction level parallelism in architectures such as very Long Instruction Word and tiled processors. This thesis addresses two important problems in the context of these instruction reordering techniques. The first problem is for general purpose applications and architectures, while the second is for media and graphics applications for tiled and multi-core architectures. The first problem deals with software pipelining which is an instruction scheduling technique that overlaps instructions from multiple iterations. Software pipelining increases the register pressure and hence it may be required to introduce spill instructions. In this thesis, we model the problem of register allocation with optimal spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. By minimizing the amount of spill code produced, the formulation ensures that the initiation interval (II) between successive iterations of the loop is not increased unnecessarily. Experimental results show that our formulation performs better than the existing heuristics by preventing an increase in the II and also generating less spill code on average among loops extracted from Perfect Club and SPEC benchmarks. The second major contribution of the thesis deals with the code size aware scheduling of stream programs. Large scale synchronous dataflow graphs (SDF’s) and StreamIt have emerged as powerful programming models for high performance streaming applications. In these models, a program is represented as a dataflow graph where each node represents an autonomous filter and the edges represent the channels through which the nodes communicate. In constructing static schedules for programs in these models, it is important to optimize the execution time buffer requirements of the data channel and the space required to store the encoded schedule. Earlier approaches have either given priority to one of the requirements or proposed ad-hoc methods for generating schedules with good trade-offs. In this thesis, we propose a genetic algorithm framework based on non-dominated sorting for generating serial schedules which have good trade-off between code size and buffer requirement. We extend the framework to generate software pipelined schedules for tiled architectures. From our experiments, we observe that the genetic algorithm framework generates schedules with good trade-off and performs better than the earlier approaches.
268

Managing academic and personal life in graduate studies : an interactive qualitative analysis of graduate student persistence and transformation

Winston, Rachel Anne 17 November 2011 (has links)
This study examines the impact of academic and personal life on graduate student persistence and transformation. Of particular interest are the relationships, emotions, and life management skills required throughout the graduate experience and how socialization, emotional intelligence, and advising aid students through their academic program. With an average of seven to eight years required to complete a doctoral program, life happens. Students enter and leave relationships, children are born, family members have emergencies, health issues arise, and emotional growth takes place. Therefore, students transform not only academically, but in many ways. These are intertwined as evidenced by the data-derived system representation. The importance of understanding the interconnected links in graduate experience spans academic, social, economic, and societal spheres. Each year hundreds of thousands of students enter graduate school. However, for doctoral students, there is an enormous gap between acceptance and completion. After seven years, approximately 50 percent complete their program and after ten years the rate climbs to only 57 percent (Council of Graduate Schools, 2010). This study offers a systemic representation and a four-stage model of graduate student development, incorporating student-identified factors: Faculty Impact, Life Management, Relationships, Playing the Game, Growth/Transformation, Emotions, and Reward/Purpose. Stage I: Orientation and Socialization Stage II: Adjustment and Transition Stage III: Navigation and Transformation Stage IV: Completion and Advancement The results, presented as a systems-based model, along with analysis, may be used to support faculty, advisors, and administrators in creating better advising, orientation, evaluation, and support systems. Departmental policies may be improved to identify at-risk students, provide mentorship opportunities, or obtain continual feedback to understand the underlying factors that may stop students from progressing. This research might also help identify students during the application/admission process. The methodological framework used to create the system produced in this study is Interactive Qualitative Analysis (Northcutt & McCoy, 2004), a methodology that provides the quantitative rigor of algorithmically generated data analysis, combined with the qualitative descriptiveness of interviews, in order to provide insights into the drivers of graduate school persistence. This methodology uses a systematic, protocol-driven research procedure to construct a unified, descriptive diagram to illustrate the phenomenon. / text
269

Epitaxy of crystalline oxides for functional materials integration on silicon

Niu, Gang 20 October 2010 (has links) (PDF)
Oxides form a class of material which covers almost all the spectra of functionalities : dielectricity, semiconductivity, metallicity superconductivity, non-linear optics, acoustics, piezoelectricity, ferroelectricity, ferromagnetism...In this thesis, crystalline oxides have beenintegrated on the workhorse of the semiconductor industry, the silicon, by Molecular Beam Epitaxy (MBE).The first great interest of the epitaxial growth of crystalline oxides on silicon consists in the application of "high-k" dielectric for future sub-22nm CMOS technology. Gadoliniumoxide was explored in detail as a promising candidate of the alternative of SiO2. The pseudomorphic epitaxial growth of Gd2O3 on Si (111) was realized by identifying the optimal growth conditions. The Gd2O3 films show good dielectric properties and particularly an EOTof 0.73nm with a leakage current consistent with the requirements of ITRS for the sub-22nmnodes. In addition, the dielectric behavior of Gd2O3 thin films was further improved by performing PDA treatments. The second research interest on crystalline oxide/Si platform results from its potential application for the "More than Moore" and "Heterogeneous integration" technologies. TheSrTiO3/Si (001) was intensively studied as a paradigm of the integration of oxides on semiconductors. The crystallinity, interface and surface qualities and relaxation process of the STO films on silicon grown at the optimal conditions were investigated and analyzed. Several optimized growth processes were carried out and compared. Finally a "substrate-like" STO thin film was obtained on the silicon substrate with good crystallinity and atomic flat surface. Based on the Gd2O3/Si and SrTiO3/Si templates, diverse functionalities were integrated on the silicon substrate, such as ferro-(piezo-)electricity (BaTiO3, PZT and PMN-PT),ferromagnetism (LSMO) and optoelectronics (Ge). These functional materials epitaxially grown on Si can be widely used for storage memories, lasers and solar cells, etc.
270

Context management and self-adaptivity for situation-aware smart software systems

Villegas Machado, Norha Milena 25 February 2013 (has links)
Our society is increasingly demanding situation-aware smarter software (SASS) systems, whose goals change over time and depend on context situations. A system with such properties must sense their dynamic environment and respond to changes quickly, accurately, and reliably, that is, to be context-aware and self-adaptive. The problem addressed in this dissertation is the dynamic management of context information, with the goal of improving the relevance of SASS systems' context-aware capabilities with respect to changes in their requirements and execution environment. Therefore, this dissertation focuses on the investigation of dynamic context management and self-adaptivity to: (i) improve context-awareness and exploit context information to enhance quality of user experience in SASS systems, and (ii) improve the dynamic capabilities of self-adaptivity in SASS systems. Context-awareness and self-adaptivity pose signi cant challenges for the engineering of SASS systems. Regarding context-awareness, the rst challenge addressed in this dissertation is the impossibility of fully specifying environmental entities and the corresponding monitoring requirements at design-time. The second challenge arises from the continuous evolution of monitoring requirements due to changes in the system caused by self-adaptation. As a result, context monitoring strategies must be modeled and managed in such a way that they support the addition and deletion of context types and monitoring conditions at runtime. For this, the user must be integrated into the dynamic context management process. Concerning self-adaptivity, the third challenge is to control the dynamicity of adaptation goals, adaptation mechanisms, and monitoring infrastructures, and the way they a ect each other in the adaptation process. This is to preserve the eff ectiveness of context monitoring requirements and thus self-adaptation. The fourth challenge, related also to self-adaptivity,concerns the assessment of adaptation mechanisms at runtime to prevent undesirable system states as a result of self-adaptation. Given these challenges, to improve context-awareness we made three contributions. First, we proposed the personal context sphere concept to empower users to control the life cycle of personal context information in user-centric SASS systems. Second, we proposed the SmarterContext ontology to model context information and its monitoring requirements supporting changes in these models at runtime. Third, we proposed an effi cient context processing engine to discover implicit contextual facts from context information speci fied in changing context models. To improve self-adaptivity we made three contributions. First, we proposed a framework for the identi cation of adaptation properties and goals, which is useful to evaluate self-adaptivity and to derive monitoring requirements mapped to adaptation goals. Second, we proposed a reference model for designing highly dynamic self-adaptive systems, for which the continuous pertinence between monitoring mechanisms and both changing system goals and context situations is a major concern. Third, we proposed a model with explicit validation and veri cation (V&V) tasks for self-adaptive software, where dynamic context monitoring plays a major role. The seventh contribution of this dissertation, the implementation of Smarter-Context infrastructure, addresses both context-awareness and self-adaptivity. To evaluate our contributions, qualitatively and quantitatively, we conducted several comprehensive literature reviews, a case study on user-centric situation-aware online shopping, and a case study on dynamic governance of service-oriented applications. / Graduate

Page generated in 0.1721 seconds