• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 19
  • 12
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 118
  • 84
  • 45
  • 25
  • 20
  • 20
  • 18
  • 16
  • 15
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Croissance par épitaxie par jets moléculaires et caractérisation optique d'hétérostructures de nanofils GaN/AlGaN émettant dans l'ultraviolet / Molecular beam epitaxy growth and optical characterization of GaN/AlGaN nanowire heterostructures emitting in the ultraviolet

Belloeil, Matthias 12 May 2017 (has links)
Dans des conditions de croissance spécifiques, des sections nanofilaires d’AlGaN peuvent croître en épitaxie sur des bases nanofilaires de GaN. De telles croissances, effectuées par épitaxie par jets moléculaires dans le cadre dans le cas présent, permettent la caractérisation ultérieure de petits volumes d’AlGaN exempt de défauts étendus communément observés dans les couches planaires. Cette absence de défauts rend ces fils prometteurs pour les dispositifs optoélectroniques émettant dans l’ultraviolet. Cependant, la réalisation de tels composants nécessite de mieux comprendre les propriétés fondamentales des fils.La question des inhomogénéités d’alliage à l’échelle nanométrique reste notamment à éclaircir. Afin d’y voir plus clair, ces dernières ont été dans un premier temps étudiées dans cette thèse. Pour nos expériences, des nanofils d’AlGaN non-intentionnellement dopés (NID) ont été crûs dans des conditions variées afin d’ajuster potentiellement les fluctuations de composition de l’alliage et ainsi sonder éventuellement des centres de localisation de porteurs de taille et composition différentes. Il a premièrement été observé au moyen de méthodes de caractérisation structurale que la longueur des sections plus riches Al qui nucléent préférentiellement au sommet des fils de GaN peut être ajustée en variant les paramètres cinétiques de croissance, mettant en lumière un mécanisme de croissance gouverné par la cinétique. Des études optiques ont ensuite démontré que les fluctuations de composition induisent de la localisation et présentent un comportement de type boîte quantique. Ce dernier a été observé quel que soit les conditions de croissance explorées dans ce travail. Il est ensuite démontré que les régions plus riches Ga spontanément formés durant la synthèse de l’AlGaN partagent des propriétés µ-optiques similaires sur une plage de longueur d’onde d’émission donnée, pour toutes les conditions de croissance utilisées dans cette étude. De telles régions, émettrices de photons uniques, sont présentes à très petite échelle, puisque elles ont été également mises en évidence dans des nanodisques quantiques d’AlGaN très fins.En outre, le dopage des nanofils d’AlGaN, surtout de type p, est loin d’être totalement compris. En particulier, En particulier, le problème de l’incorporation ainsi que de l’activation optique et électrique dans les fils demeure nébuleux. Cette question a été étudiée pour des jonctions pn nanofilaires d’AlGaN dopées avec des atomes Mg et Si. Premièrement, des signatures propres à l’incorporation des dopants dans les nanofils ont été mises en exergue au travers de techniques de caractérisation structurale, avant que des jonctions pn AlGaN soient mises en évidence électriquement. De plus, des analyses optiques ont mis en lumière des dopants de type n et p optiquement actifs. Néanmoins, les dopants Mg ne sont que partiellement actifs électriquement en raison de la passivation par l’hydrogène mise en évidence par l’observation de complexes Mg-H. Pour résoudre ce problème, des recuits post-croissance ont été effectués. En parallèle, des jonctions pn nanofilaires d’AlN ont été préliminairement examinées et présentent des caractéristiques morphologiques intéressantes. En effet, des creux profonds ont été observés dans les fils et associés au dopage Mg effectué à basse température de croissance. La morphologie des fils peut être ajustée en jouant sur les paramètres cinétiques de croissance et sur l’effet surfactant des atomes Mg. En augmentant la température, les creux disparaissent tandis que la forme du sommet des fils, usuellement hexagonale, change pour devenir « étoilée », mettant en exergue des conditions de croissance très éloignées de l’équilibre thermodynamique. L’activation électrique des dopants n’a pas été observée jusqu’à présent dans ces jonctions pn d’AlN. / Using specific growth conditions, AlGaN nanowire (NW) sections can be grown in epitaxy on top of GaN NW templates. Such NW growth, performed by plasma-assisted molecular beam epitaxy in the present case, allows the subsequent characterization of very small volume of material free of extended defects commonly observed in planar structures. This absence of defects makes these NWs very promising for optoelectronic devices operating in the ultraviolet. However, achieving such devices requires a better understanding of the NW fundamental properties.The issue of alloy inhomogeneity at nanoscale has notably remained obscure so far. In order to make it clearer, the latter has been first investigated in the present work, especially through optical characterization. For our experiments, non-intentionally doped (NID) AlGaN NWs have been grown in various conditions in order to potentially tune the compositional fluctuations within the AlGaN alloy and therefore possibly probe for carrier localization centers of different size and Al composition. It has been firstly observed through structural characterization that the length of Al-rich sections preferentially nucleating on top of GaN NWs can be tuned by varying the growth kinetical parameters, emphasizing a growth mechanism governed by kinetics. Optical studies have then evidenced that compositional fluctuations induce carrier localization and exhibit a quantum dot-like behavior. The latter has been observed whatever the growth conditions explored in this work. Our results are consistent with the spontaneous formation during growth of tiny Ga-richer regions shown to share similar micro-optical features over a given emission wavelength range for all investigated growth conditions. Such regions exhibiting the single-photon emission character are present at very small scale, as signs of their existence have been also evidenced in thin NID AlGaN quantum disks.In addition, doping in Al(Ga)N NW, especially p-type, is far from being fully comprehended. In particular, the issue of dopant incorporation as well as optical and electrical activation in such NWs remains unclear. The latter has been examined in Al(Ga)N NW pn junctions doped with Mg and Si atoms. First, signatures specific to dopant incorporation in NWs have been highlighted through structural characterization, before evidencing AlGaN pn junctions electrically. Moreover, optical analysis have exhibited optically active both dopant types. Nonetheless, Mg dopants are but partially active electrically due to passivation by hydrogen emphasized by the observation of Mg-H complexes. To cope with the latter issue, post-growth annealing experiments have been attempted. Concomitantly, AlN NW pn junctions have been also preliminarily investigated and present interesting morphological features. Indeed, deep hollows have been observed in NWs and associated with Mg doping carried out at low growth temperature. The NW morphology can be tuned by varying growth kinetical parameters and by using the surfactant effect of Mg atoms. When increasing growth temperature, these hollows disappear, while the NW top shape has been observed to switch from hexagonal to star-like, emphasizing growth conditions very far from thermodynamical equilibrium. Electrical activation of dopants has not been evidenced so far in AlN NW pn junctions.
42

Nanofils de GaN/AlGaN pour les composants quantiques / GaN/AlGaN nanowires for quantum devices

Ajay, Akhil 25 September 2018 (has links)
Ce travail se concentre sur l'ingénierie Intersubband (ISB) des nanofils où nous avons conçu des hétérostructures de GaN / (Al, Ga) N intégrées dans un nanofil GaN pour le rendre optiquement actif dans la région spectrale infrarouge (IR), en utilisant un faisceau moléculaire assisté par plasma épitaxie comme méthode de synthèse. Les transitions ISB se réfèrent aux transitions d'énergie entre les niveaux confinés quantiques dans la bande de conduction de la nanostructure.Un contrôle précis des niveaux élevés de dopage est crucial pour les dispositifs ISB. Par conséquent, nous explorons Ge comme un dopant alternatif pour GaN et AlGaN, pour remplacer le Si couramment utilisé. Nous avons cultivé des couches minces de GaN dopé Ge avec des concentrations de porteurs atteignant 6,7 × 1020 cm-3 à 300 K, bien au-delà de la densité de Mott, et nous avons obtenu des couches minces conductrices AlxGa1-xN dopées Ge avec une fraction molaire Al jusqu'à x = 0,64. Dans le cas de GaN, la présence de Ge n'affecte pas la cinétique de croissance ou les propriétés structurales des échantillons. Cependant, dans des échantillons AlxGa1-xN dopés par Ge avec x> 0,4, la formation de grappes riches en Ge a été observée, avec une baisse de la concentration du porteur.Ensuite, nous avons réalisé une étude comparative du dopage Si vs Ge dans des hétérostructures GaN / AlN pour des dispositifs ISB dans la gamme IR à courte longueur d'onde. Nous considérons les architectures planaire et nanofils avec des niveaux de dopage et des dimensions de puits identiques. Sur la base de cette étude, nous pouvons conclure que les deux Si et Ge sont des dopants appropriés pour la fabrication d'hétérostructures GaN / AlN pour l'étude des phénomènes optoélectroniques ISB, à la fois dans les hétérostructures planaires et nanofils. Dans cette étude, nous rapportons la première observation de l'absorption d'ISB dans des puits quantiques GaN / AlN dopés au Ge et dans des hétérostructures de nanofils GaN / AlN dopés au Si. Dans le cas des nanofils, nous avons obtenu une largeur de ligne d'absorption ISB record de l'ordre de 200 meV. Cependant, cette valeur est encore plus grande que celle observée dans les structures planaires, en raison des inhomogénéités associées au processus de croissance auto-assemblé.En essayant de réduire les inhomogénéités tout en gardant les avantages de la géométrie des nanofils, nous présentons également une analyse systématique de l'absorption de l'ISB dans les micro et nanopillars résultant d'un traitement top-down des hétérostructures planaires GaN / AlN. Nous montrons que lorsque l'espacement du réseau de piliers est comparable aux longueurs d'onde sondées, les résonances des cristaux photoniques dominent les spectres d'absorption. Cependant, lorsque ces résonances sont à des longueurs d'onde beaucoup plus courtes que l'absorption ISB, l'absorption est clairement observée, sans aucune dégradation de son amplitude ou de sa largeur de raie.Nous explorons également la possibilité d'étendre cette technologie de nanofils à des longueurs d'onde plus longues, pour les absorber dans la région IR à mi-longueur d'onde. En utilisant des hétérostructures de nanofils GaN / AlN, nous avons fait varier la largeur du puits GaN de 1,5 à 5,7 nm, ce qui a conduit à un décalage rouge de l'absorption ISB de 1,4 à 3,4 μm. Remplaçant les barrières AlN par Al0.4Ga0.6N, le composé ternaire représente une réduction de la polarisation, ce qui conduit à un nouveau décalage rouge des transitions ISB à 4,5-6,4 um.L'observation de l'absorption de l'ISB dans des ensembles de nanofils nous a motivés pour le développement d'un photodétecteur infrarouge à puits quantiques à base de nanofils. La première démonstration d'un tel dispositif, incorporant une hétérostructure de nanofils GaN / AlN qui absorbe à 1,55 μm, est présentée dans ce manuscrit. / Due to its novel properties nanowires have emerged as promising building blocks for various advanced device applications. This work focuses on Intersubband (ISB) engineering of nanowires where we custom design GaN/(Al,Ga)N heterostructures to be inserted in a GaN nanowire to render it optically active in the infrared (IR) spectral region. ISB transitions refer to energy transitions between quantum confined levels in the conduction band of the nanostructure. All the structures analised in this thesis were synthesized by plasma-assisted molecular beam epitaxy.Precise control of high doping levels is crucial for ISB devices. Therefore, we explored Ge as an alternative dopant for GaN and AlGaN, to replace commonly-used Si. We grew Ge-doped GaN thin films with carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, well beyond the Mott density, and we obtained conductive Ge-doped AlxGa1-xN thin films with an Al mole fraction up to x = 0.66. In the case of GaN, the presence of Ge does not affect the growth kinetics or structural properties of the samples. However, in Ge doped AlxGa1-xN samples with x > 0.4 the formation of Ge rich clusters was observed, together with a drop in the carrier concentration.Then, we performed a comparative study of Si vs. Ge doping in GaN/AlN heterostructures for ISB devices in the short-wavelength IR range. We considered both planar and nanowire architectures with identical doping levels and well dimensions. Based on this study, we concluded that both Si and Ge are suitable dopants for the fabrication of GaN/AlN heterostructures for the study of ISB optoelectronic phenomena, both in planar and nanowire heterostructures. Within this study, we reported the first observation of ISB absorption in Ge-doped GaN/AlN quantum wells and in Si-doped GaN/AlN nanowire heterostructures. In the case of nanowires, we obtained a record ISB absorption linewidth in the order of 200 meV. However, this value is still larger than that observed in planar structures, due to the inhomogeneities associated to the self-assembled growth process.Trying to reduce the inhomogeneities while keeping the advantages of the nanowire geometry, we also presented a systematic analysis of ISB absorption in micro- and nanopillars resulting from top-down processing GaN/AlN planar heterostructures. We showed that, when the spacing of the pillar array is comparable to the probed wavelengths, photonic crystal resonances dominate the absorption spectra. However, when these resonances are at much shorter wavelengths than the ISB absorption, the absorption is clearly observed, without any degradation of its magnitude or linewidth.We also explore the possibility to extend this nanowire technology towards longer wavelengths, to absorb in the mid-wavelength IR region. Using GaN/AlN nanowire heterostructures, we varied the GaN well width from 1.5 to 5.7 nm, which led to a red shift of the ISB absorption from 1.4 to 3.4 µm. Replacing the AlN barriers by Al0.4Ga0.6N, the reduction of polarization led to a further red shift of the ISB transitions to 4.5-6.4 µm.The observation of ISB absorption in nanowire ensembles motivated us for the development of a nanowire-based quantum well infrared photodetector (NW-QWIP). The first demonstration of such a device, incorporating a GaN/AlN nanowire heterostructure that absorbs at 1.55 µm, is presented in this manuscript.
43

Étude de composés semiconducteurs III-N à forte teneur en indium : application à l'optimisation des hétérostructures pour transistors à effet de champ piézo-électriques (HEMT) / Study of In-rich InX Al1-X N semiconductor compounds : growth and Optimization of In-containing Heterostructures for High Electron Mobility Transistors (HEMTs)

Gamarra, Piero 15 January 2013 (has links)
Cette thèse est une contribution à l'étude de composés semiconducteurs InX Al1-X N à forte teneur en Indium. Ces composés présentent des propriétés très intéressantes pour des applications dans le domaine de l'amplification des hyperfréquences. L'objectif principal de la thèse est de définir des hétéro-structures de type AlGaInN / GaN, pour transistors à Effet de Champ Piézoélectrique (HEMT), épitaxiées sur substrats de saphir, silicium, et SiC, optimisées en vue de l'amplification hyperfréquence. Dans la première partie, nous étudions la croissance épitaxiale de couches minces du composé binaire GaN, en phase vapeur, à partir de précurseurs organométalliques (MOVPE), dans des conditions optimisées pour obtenir des couches fortement résistives. La deuxième partie est consacrée à l'étude de structures HEMT AlGaN/GaN sur SiC et sur silicium. Sur SiC, nous montrons la forte influence des propriétés du substrat sur les propriétés électriques des structures HEMT. Nous avons étudié une structure nouvelle incluant une fine couche de AlN entre les couches AlGaN et GaN et évalué les performances de transistors HEMT AlGaN/GaN et AlGaN/AlN/GaN sur SiC et sur Silicium (111). La partie suivante est consacrée à la croissance de composés ternaires InAlN. Nous avons étudié l'influence de la température de croissance et du rapport V/III sur les propriétés structurales de InAlN. Les conditions optimales ont été utilisées pour la réalisation de structures HEMT InAlN/AlN/GaN. Nous démontrons l'influence considérable de la couche AlN sur les propriétés électriques de ces structures. Enfin, nous discutons les performances obtenues sur des transistors à effet de champ InAlN/AlN/GaN sur SiC / This work reports on the metal-organic vapor phase epitaxy and on the characterisation of III-N GaInAlN heterostructures for High Electron Mobility Transistors. In a first part, the heteroepitaxy of semiinsulating GaN layers on sapphire, SiC and silicon is presented as the basis for the subsequent growth of III-N HEMT structures. The influence of suitable nucleation layers on the properties of GaN is presented and discussed. A second part deals with AlGaN/GaN HEMT structures grown on SiC and on Si (111) wafers. The influence of SiC substrate properties on the electrical performances of AlGaN/GaN HEMT is presented. A novel structure, including a thin AlN interlayer between the GaN buffer layer and the AlGaN barrier layer has also been introduced. The section is completed by device results obtained on selected heterostructures. A study of the impact of selected growth parameter (i.e. growth temperature, V/III ratio) on the structural and surface properties of InAlN layers is then presented. The optimized conditions have been used for the growth InAlN/AlN/GaN HEMT structures which have been thoroughly characterized. The electrical properties of the structures were found to be strongly dependent on the growth conditions of the AlN interlayer (e.g. deposition time, V/III ratio). Finally, state of the art device results obtained with InAlN/AlN/GaN heterostructures are presented
44

Reliability assessment of GaN HEMTs on Si substrate with ultra-short gate dedicated to power applications at frequency above 40 GHz / Evaluation de la fiabilité des HEMTs GaN sur substrat silicium à grille ultra-courte dédiés aux applications de puissance à f > 40 GHz

Lakhdhar, Hadhemi 20 December 2017 (has links)
Ce travail de thèse se concentre sur l'évaluation de la fiabilité des transistors à haute mobilité électronique (HEMT) AlGaN / GaN à grille ultra-courte sur substrat silicium dédiés aux applications de puissance à une fréquence supérieure à 40GHz. Il a été réalisé au sein des laboratoires IMS Bordeaux et IEMN Lille.Ce travail compare initialement les HEMT AlGaN / GaN réalisés par croissance MOCVD avec ceux obtenus par croissance MBE. En particulier, l'analyse électrique statique a permis d'étudier l'influence de la géométrie des dispositifs sur les performances des composants.Des tests de vieillissement accéléré ont été effectués pour évaluer la robustesse des transistors HEMTs en AlGaN/GaN à grille ultra-courte sur Si. Une méthodologie basée sur une séquence d'essais de vieillissement a été définie pour établir le diagnostic in-situ d’une dégradation statique et permanente et d’une dégradation qui se traduit par un transitoire de courant de drain au cours du chaque palier de la séquence de vieillissement. La valeur de la tension critique de dégradation à partir de laquelle le courant de drain commence à diminuer de façon significative dépend des conditions de polarisation du vieillissement, de la distance grille-drain et de la longueur de grille. De plus, l’aire de sécurité de fonctionnement de cette technologie a été déterminée. / This Ph.D. work focuses on the reliability assessment of ultra-short gate AlGaN/GaN high electron mobility transistor (HEMT) on silicon substrate dedicated to power applications at frequency above 40GHz. It was carried out within IMS Bordeaux and IEMN Lille laboratories.This work initially compares AlGaN/GaN HEMTs grown by MOCVD with those grown using MBE, through electrical characterization.In particular, the device geometry impact on the device performances has been studies by static electrical characterization.Step-stress experiments are performed to investigate reliability assessment of ultra-short gate AlGaN/GaN high electron mobility transistor (HEMT) on Si substrate. A methodology based on a sequence of step stress tests has been defined for in-situ diagnosis of a permanent degradation and of a degradation which is identified by a drain current transient occurring during each step of the ageing sequence . The same stress conditions were applied on HEMTs with different geometries. It is found no evolution of the drain current during non stressful steps. The value of the critical degradation voltage beyond which the stress drain current starts to decrease significantly is also found dependent on the stress bias conditions, the gate-drain distance and the gate length. Moreover, the safe operating area of this technology has been determined.
45

Untersuchungen zu Vanadium-basierten ohmschen Kontakten in AlGaN/GaN-MISHFETs

Schmid, Alexander 03 August 2020 (has links)
Bauelemente auf Basis von AlGaN/GaN-Heterostrukturen bieten vielversprechende Eigenschaften für Hochfrequenz- und leistungselektronische Anwendungen. Dazu zählen die hohe Elektronenmobilität im zweidimensionalen Elektronengas (2DEG) und eine hervorragende Durchbruchsfeldstärke. Die effiziente ohmsche Kontaktierung der Source- und Drain-Gebiete von Hetero-Feldeffekttransistoren mit Gate-Dielektrikum (MISHFETs) stellt jedoch eine Herausforderung dar. In dieser Arbeit werden unterschiedliche Kontaktstapel auf Basis von Ti/Al/Ni/Au und V/Al/Ni/Au hinsichtlich ihrer Eignung als ohmsche Kontaktierung verglichen. Mit Hilfe von elektrischen und mikrostrukturellen Methoden werden die Vorgänge bei der Ausbildung des elektrischen Kontakts untersucht. Während der etablierte Ti-haltige Kontaktstapel einen Hochtemperaturschritt bei mindestens 800°C benötig, um einen hinreichend guten Kontaktwiderstand zu erzielen, lässt sich mit der V-basierten Metallisierung eine Reduzierung der notwendigen Temperatur um bis zu 150 K erreichen. Die so optimierten Kontakte werden als Source- und Drain-Metallisierung für MISHFETs genutzt. Es wird gezeigt, dass die Reduzierung der Formierungstemperatur bei V-haltigen Kontakten einen positiven Effekt auf die Eigenschaften der Bauelemente hat. So wird die Schädigung des 2DEGs minimiert und es können Transistoren mit geringerem Leckstrom und höherem An/Aus-Verhältnis des Drain-Stroms hergestellt werden.
46

Investigation and Characterization of AlGaN/GaN Device Structures and the Effects of Material Defects and Processing on Device Performance

Jessen, Gregg Huascar 20 December 2002 (has links)
No description available.
47

DC, MICROWAVE, AND NOISE PROPERTIES OF GAN BASED HETEROJUNCTION FIELD EFFECT TRANSISTORS AND THEIR RELIABILITY ISSUES

Zhu, Congyong 13 September 2013 (has links)
AlGaN/GaN and InAlN/GaN-based heterojunction field effect transistors (HFETs) have demonstrated great high power and high frequency performance. Although AlGaN/GaN HFETs are commercially available, there still remain issues regarding long-term reliability, particularly degradation and ultimately device failure due to the gate-drain region where the electric field peaks. One of the proposed degradation mechanisms is the inverse-piezoelectric effect that results from the vertical electric field and increases the tensile strain. Other proposed mechanisms include hot-electron-induced trap generation, impurity diffusion, surface oxidation, and hot-electron/phonon effects. To investigate the degradation mechanism and its impact on DC, microwave, and noise performance, comprehensive stress experiments were conducted in both un-passivated and passivated AlGaN/GaN HFETs. It was found that degradation of AlGaN/GaN HFETs under reverse-gate-bias stress is dominated by inverse-piezoelectric effect and/or hot-electron injection due to gate leakage. Degradation under on-state-high-field stress is dominated by hot-electron/phonon effects, especially at high drain bias. Both effects are induced by the high electric field present during stress, where the inverse-piezoelectric effect only relates to the vertical electric field and the hot-electron effect relates to the total electric field. InAlN/GaN-based HFETs are expected to have even better performance as power amplifiers due to the large 2DEG density at the InAlN/GaN interface and better lattice-matching. Electrical stress experiments were therefore conducted on InAlN/GaN HFETs with indium compositions ranging from 15.7% to 20.0%. Devices with indium composition of 18.5% were found to give the best compromise between reliability and device performance. For indium compositions of 15.7% and 17.5%, the HFET devices degraded very fast (25 h) under on-state-high-field stress, while the HFET devices with 20.0% indium composition showed very small drain. It was also demonstrated that hot-electron/phonon effects are the major degradation mechanism for InAlN/GaN HFETs due to a large 2DEG density under on-state operations, whereas the inverse-piezoelectric effect is very small due to the small strain for the near lattice-matched InAlN barrier. Compared to lattice-matched InAlN/GaN HFETs, AlGaN/GaN HFETs have much larger strain in the barrier and about half of the drain current level; however, the hot electron/hot phonon effects are still important, especially at high drain bias.
48

Surface photovoltage transients for p-type AlGaN

Phumisithikul, Karen L 01 January 2015 (has links)
There is an understanding of surface photovoltage (SPV) behavior for GaN, yet little is known about the SPV behavior for AlGaN. In this work, a Kelvin probe was used to measure the SPV for p-type AlGaN. Very slow SPV transients were found in AlGaN, which could not be explained with a simple thermionic model. A possible explanation of this behavior is the segregation of impurities to the surface, which causes significant reduction of the depletion region width (down to 2 nm), with carrier tunneling and hopping becoming the dominant mechanisms responsible for the SPV transients. To verify this assumption, the near-surface defective region (about 40 nm) has been removed through the ICP-RIE process. After the etching, the SPV transients became fast and increased in magnitude by about 0.6 eV. By using the thermionic model, band bending was estimated to be -1 eV.
49

Fabrication et caractérisation de dispositifs de type HEMT de la filière GaN pour des applications de puissance hyperfréquence / Fabrication and characterization of GaN-based HEMTs for high frequency power applications

Altuntas, Philippe 01 December 2015 (has links)
Les transistors à haute mobilité électronique (HEMTs) à base de nitrure de gallium constituent une filière prometteuse pour l’amplification de puissance hyperfréquence pour les applications en bande millimétrique. Les propriétés remarquables du GaN, tels que le champ de claquage , la vitesse de saturation et la densité des électrons élevés sont à l’origine des performances exceptionnelles obtenues avec les dispositifs à base de GaN. Les travaux de thèse ont été réalisés au sein du groupe Composants et Dispositifs Micro-ondes de Puissance à l’IEMN. Ce travail relate la fabrication et la caractérisation de dispositifs de type HEMT de la filière GaN pour des applications de puissance hyperfréquence. La première partie de ce travail expose les phénomènes physiques mis en jeu dans les hétérostructures à base de GaN. La suite porte sur l’optimisation des procédés technologiques ayant comme point de mire la montée en fréquence ainsi qu’en puissance hyperfréquence. Un travail a été mené en vue de la réduction de la longueur du pied de grille permettant d’atteindre des longueurs minimales de l’ordre de 60nm. De plus, des analyses sont effectuées afin d’étudier les principales limitations inhérentes aux composants HEMTs. Le dernier chapitre présente l’ensemble des caractérisations en régimes statique et hyperfréquence sur des structures HEMTs fabriquées dans le cadre de ce travail. Il en ressort notamment un résultat en terme de densité de puissance à 40GHz, à ce jour à l’état de l’art, relatif à un HEMT de topologie 2x50x0.075µm2. Celui-ci ayant permis d’obtenir une densité de puissance de 2.7W/mm associée à un gain linéaire de 6.5dB et un rendement en puissance ajoutée de 12.5%. / Gallium Nitride (GaN) based High Electron Mobility Transistors (HEMTs) have emerged as the best candidate for high temperature, high voltage and high power operation in millimeter-wave range. The unique combination of high breakdown field, high electron velocity, and large sheet electron densities of III-N material permits outstanding performance. The work was performed within IEMN laboratory in Microwave Power Devices group. It relates the fabrication and the characterization of GaN HEMT devices for microwave power applications. The first part exposes the physical and electrical properties of gallium nitride as well as a review concerning the state of the art in terms of output power density related to GaN HEMTs. The second chapter deals with the technological processes with a particular attention on the process optimization regarding the ohmic contact and the T-gate technology. Despite outstanding properties, the HEMT performance remains inherently limited by physical and electrical parasitic phenomena. Thus, the third chapter presents the whole studies performed in other to understand these limitation effects (losses, traps, thermal effect). In the last chapter DC, RF, pulsed and large signal measurements are reported for HEMTs based on different heterostructures. In particular, the capability of AlGaN/GaN transistors on Si(111) substrate grown by MBE is demonstrated for high frequency microwave power applications at 40GHz with a continuous wave output power density of 2.7W/mm associated with a power added efficiency of 12.5% and a linear gain of 6.5dB corresponding to the highest saturated power density ever reported on Si(111) substrate to date.
50

Ion-beam processes in group-III nitrides

Kucheyev, Sergei Olegovich, kucheyev1@llnl.gov January 2002 (has links)
Group-III-nitride semiconductors (GaN, InGaN, and AlGaN) are important for the fabrication of a range of optoelectronic devices (such as blue-green light emitting diodes, laser diodes, and UV detectors) as well as devices for high-temperature/high-power electronics. In the fabrication of these devices, ion bombardment represents a very attractive technological tool. However, a successful application of ion implantation depends on an understanding of the effects of radiation damage. Hence, this thesis explores a number of fundamental aspects of radiation effects in wurtzite III-nitrides. Emphasis is given to an understanding of (i) the evolution of defect structures in III-nitrides during ion irradiation and (ii) the influence of ion bombardment on structural, mechanical, optical, and electrical properties of these materials. ¶ Structural characteristics of GaN bombarded with keV ions are studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). Results show that strong dynamic annealing leads to a complex dependence of the damage buildup on ion species with preferential surface disordering. Such preferential surface disordering is due to the formation of surface amorphous layers, attributed to the trapping of mobile point defects by the GaN surface. Planar defects are formed for a wide range of implant conditions during bombardment. For some irradiation regimes, bulk disorder saturates below the amorphization level, and, with increasing ion dose, amorphization proceeds layer-by-layer only from the GaN surface. In the case of light ions, chemical effects of implanted species can strongly affect damage buildup. For heavier ions, an increase in the density of collision cascades strongly increases the level of stable implantation-produced lattice disorder. Physical mechanisms of surface and bulk amorphization and various defect interaction processes in GaN are discussed. ¶ Structural studies by RBS/C, TEM, and atomic force microscopy (AFM) reveal anomalous swelling of implanted regions as a result of the formation of a porous structure of amorphous GaN. Results suggest that such a porous structure consists of N$_{2}$ gas bubbles embedded into a highly N-deficient amorphous GaN matrix. The evolution of the porous structure appears to be a result of stoichiometric imbalance, where N- and Ga-rich regions are produced by ion bombardment. Prior to amorphization, ion bombardment does not produce a porous structure due to efficient dynamic annealing in the crystalline phase. ¶ The influence of In and Al content on the accumulation of structural damage in InGaN and AlGaN under heavy-ion bombardment is studied by RBS/C and TEM. Results show that an increase in In concentration strongly suppresses dynamic annealing processes, while an increase in Al content dramatically enhances dynamic annealing. Lattice amorphization in AlN is not observed even for very large doses of keV heavy ions at -196 C. In contrast to the case of GaN, no preferential surface disordering is observed in InGaN, AlGaN, and AlN. Similar implantation-produced defect structures are revealed by TEM in GaN, InGaN, AlGaN, and AlN. ¶ The deformation behavior of GaN modified by ion bombardment is studied by spherical nanoindentation. Results show that implantation disorder significantly changes the mechanical properties of GaN. In particular, amorphous GaN exhibits plastic deformation even for very low loads with dramatically reduced values of hardness and Young's modulus compared to the values of as-grown GaN. Moreover, implantation-produced defects in crystalline GaN suppress the plastic component of deformation. ¶ The influence of ion-beam-produced lattice defects as well as a range of implanted species on the luminescence properties of GaN is studied by cathodoluminescence (CL). Results indicate that intrinsic lattice defects mainly act as nonradiative recombination centers and do not give rise to yellow luminescence (YL). Even relatively low dose keV light-ion bombardment results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer, due to a reduction in the extent of light absorption within the implanted layer. Experimental data also shows that H, C, and O are involved in the formation of YL. The chemical origin of YL is discussed based on experimental data. ¶ Finally, the evolution of sheet resistance of GaN epilayers irradiated with MeV light ions is studied {\it in-situ}. Results show that the threshold dose of electrical isolation linearly depends on the original free electron concentration and is inversely proportional to the number of atomic displacements produced by the ion beam. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 C. Results also show that both implantation temperature and ion beam flux can affect the process of electrical isolation. This behavior is consistent with significant dynamic annealing, which suggests a scenario where the centers responsible for electrical isolation are defect clusters and/or antisite-related defects. A qualitative model is proposed to explain temperature and flux effects. ¶ The work presented in this thesis has resulted in the identification and understanding of a number of both fundamental and technologically important ion-beam processes in III-nitrides. Most of the phenomena investigated are related to the nature and effects of implantation damage, such as lattice amorphization, formation of planar defects, preferential surface disordering, porosity, decomposition, and quenching of CL. These effects are often technologically undesirable, and the work of this thesis has indicated, in some cases, how such effects can be minimized or controlled. However, the thesis has also investigated one example where irradiation-produced defects can be successfully applied for a technological benefit, namely for electrical isolation of GaN-based devices. Finally, results of this thesis will clearly stimulate further research both to probe some of the mechanisms for unusual ion-induced effects and also to develop processes to avoid or repair unwanted lattice damage produced by ion bombardment.

Page generated in 0.0311 seconds