561 |
N-acetilcisteína previne a piora da memória espacial induzida por ácido glutárico e lipopolissacarídio em ratos jovens / N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pupsRodrigues, Fernanda Silva 10 March 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Glutaric aciduria type I (GA-I) is an inborn error of metabolism (EIM) characterized biochemically by accumulation of glutaric acid (GA). The clinical manifestations are mainly neurological and develop during childhood. Among these changes, there are the seizures and cognitive deficits, which may be precipitated by infectious processes. Although growing evidence supports that inflammation and oxidative damage are both involved in learning impairment, it is not known whether inflammatory and oxidative stress markers facilitate GA-induced memory impairment. From this, the main objective of this study was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test on Barnes maze. To evaluate antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. Furthermore, we also evaluated wheter N-acetylcysteine (NAC) could improve these behavioral, biochemical or structural changes induced by GA and LPS administration. For this, the rat pups were injected with GA (5umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). In order to mimic a severe infection state, LPS (2 mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life.Oxidative stress biomarkers, antioxidant activity and hippocampal volume were assessed. In this study, GA caused spatial learning deficit in the Barnes maze, and that LPS potentiated the memory impairment induced by GA in rat pups. In addition, GA and LPS increased proinflammatory cytokine levels (TNF- and IL-1), and the co-administration of these compounds potentiated the increase of IL-1 levels but not TNF- levels in the hippocampus of this animals. Although GA and LPS administration increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+,K+-ATPase activity (total and subunit α1), GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. N-acetylcysteine protected against impairment of spatial learning and increase of cytokines levels induced by GA and LPS. The NAC also protected against deleterious effects induced by GA and LPS, as characterized by inhibition of Na+,K+-ATPase activity (total and subunit α1)and increase of TBARS content, as well as the reduction of antioxidant defenses(non protein thiols and glutathione content, superoxide dismutase and catalase activities).These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Pharmacological protection with NAC during encephalopatic crises could be considered as an adjuvant therapy to prevent hippocampal dysfunction and the progression of disease in children with GA-I. / A acidemia glutrárica do tipo I (AG-I) é um erro inato do metabolismo (EIM) caracterizada bioquimicamente pelo pelo acúmulo de ácido glutárico (AG). As manifestações clínicas são predominantemente neurológicas, e desenvolvem-se principalmente na infância. Entre essas alterações, as quais são precipitadas por processos infecciosos, pode-se citar o déficit cognitivo. Embora estudos recentes sugerem que a inflamação e o estresse oxidativo estão envolvidos no déficit cognitivo, não se sabe se os marcadores inflamatórios e oxidativos facilitam o prejuízo de memória após a administração de AG. A partir disso, o objetivo desta dissertação foi investigar o desempenho de ratos jovens injetados cronicamente com AG e lipopolissacarídeo (LPS) no teste de memória espacial no labirinto de Barnes. Além disso, foi avaliado os níveis das defesas antioxidantes, níveis de citocinas, atividade da enzima Na+, K+-ATPase e volume hipocampal. Como a N-acetilcisteína (NAC) possui propriedades antioxidantes e antiinflamatórias, foi testado se esse composto poderia melhorar as alterações comportamentais, bioquímicas e estruturais induzidas pela administração de AG e LPS. Para isso, os ratos jovens foram injetados com AG (5 μmol/g do peso corporal-1; subcutaneamente; duas vezes por dia; do 5º ao 28º dia de vida), e foram suplementados com NAC (150 mg/kg/dia; por gavagem; pelo mesmo período). A fim de mimetizar um estado infeccioso, LPS (2 mg/Kg: E. coli 055 B5) ou veículo (salina 0.9%) foi injetado intraperitonealmente uma vez por dia, do 25º ao 28º dia de vida. Nesse estudo, AG causou déficit de aprenizagem espacial no labirinto de Barnes, e o LPS potencializou esse prejuízo de memória induzido pelo AG nos ratos jovens. Em adição, a administração de AG e LPS aumentou os níveis de citocinas pró-inflamatórias (TNF- and IL-1), e a associação desses compostos potencializou o aumento dos níveis de IL-1, mas não de TNF-α no hipocampo dos animais. Embora a associação de AG e LPS tenha causado o aumento o conteúdo TBARS (espécies reativas ao ácido tiobarbitúrico), a redução das defesas antioxidantes e inibição da atividade da Na+,K+-ATPase (total e subunidade α1), a associação de AG e LPS não teve efeito aditivo nos marcadores de estresse oxidativo e na atividade da bomba de Na+ e K+. O volume hipocampal não foi alterado após a administração do AG e LPS. A N-acetilcisteína protegeu contra o prejuízo de aprendizagem espacial e aumento de citocinas inflamatórias induzido pelo AG e LPS. A NAC também protegeu contra os efeitos deletérios induzidos pelo AG e LPS, caracterizado pela inibição da atividade da Na+,K+-ATPase (total e subunidade α1) e aumento do conteúdo de TBARS, bem como a redução das defesas antioxidantes (tiós não-proteicos, conteúdo de glutationa, avitidade da superóxido dismutase e catalase). Esses resultados sugerem que marcadores inflamatórios e oxidativos podem estar envolvidos, em parte, na neuropatologia da AG-I neste modelo. Dessa forma, a proteção farmacológica com a NAC durante crises encefalopáticas pode ser considerada como uma terapia adjuvante para prevenir a disfunção hipocampal e a progressão da doença em crianças com AG-I.
|
562 |
Synthesis And Study Of Microstructure Evolution In Nanoparticles Of Immiscible Alloys By Laser Ablation Under Liquid MediumMalviya, Kirtiman Deo 07 1900 (has links) (PDF)
The present thesis deals with synthesis of free alloy nanoparticles in immiscible alloy systems by the process of laser ablation under a liquid. In this process the alloy target is submerged in a liquid and the plume formed by the laser beam interaction with the target is confined in the liquid. The nanoparticles formed inside this plume and get quenched by the surrounding liquid yielding suspension of nanoparticles in the liquid. By the addition of suitable surfactants, these nanoparticles can be protected from other reactions and their size can be controlled by preventing further growth.
We have selected immiscible alloys for the present study. These alloys tend to phase separate in melt as well as in solid depending on the value of the positive heat of mixing. We have used two binary alloys for the present study. These are alloys in Ag-Cu system and Fe-Cu system. In both these systems, there are reports of formation of extended solid solution due to kinetic factors during nonequilibrium processing like rapid solidification and mechanical alloying. In the present thesis we report synthesis of alloy nanoparticles of different compositions and sizes in these two systems and explore the nature of the phases that form in the small (nano) particles and their evolutionary pathways leading to the final microstructure. Microscopic techniques, especially transmission electron microscope, were used for characterization of these nanoparticles. The phase evolution was further studied using in situ microscopic techniques.
After introducing the thesis in the Chapter 1, we describe briefly the relevant literatures in Chapter 2. The experimental details, in particular the experimental set up for laser ablation with targets under liquid are described in chapter 3. This chapter also includes the
experimental details of the characterization. Transmission electron microscopy was used as primary characterization tool in the present study.
The Chapter 4 presents the result of our study of alloy nanoparticles in Fe-Cu system. This system exhibits a submerged liquid miscibility gap. Although we have studied alloy targets of different compositions, the results of alloy nanoparticles obtained from targets with compositions Cu-40at.%Fe and Cu-60at.%Fe were primarily presented in this chapter. The nanoparticles that were synthesized had a size range of approximately 40nm to more than 100 nm. These particles have spherical morphology. The measurements of local compositions of different locations in the particle indicate the presence of a layer of Fe3O4 oxide at the spherical surface. This layer is devoid of copper. Most of the copper exist in the core of the particle. Fe rich spherical particles of much smaller size (~15 nm) are found to be embedded in the copper rich core. The copper formed solid solution with Fe and a copper concentration gradient exists in the particle below oxide layer due to oxidation of Fe.
In contrast the nanoparticles obtained from alloy target with composition Fe-40at.% Cu have a spherical morphology. These have a composite structure with a Fe core in addition to Fe3O4 oxide layer at the surface. We have attempted to explain the phase evolution taking into account under cooling of the melt condensate that forms in the plume and their subsequent solidification through submerged miscibility gap.
The chapters 5-7 deals with alloys of Ag-Cu system. In Chapter 5, we have carried out a detailed study of morphological evolution of the nanoparticles of Ag-Cu system. After optimizing the ablation parameters using pure Ag and Cu targets, we have synthesized alloy nanoparticles using different target compositions over the entire range of compositions with sizes having a mode of 25 nm.
The evolution of the two phase structure is shown to be composition dependent with particles near equiatomic composition exhibit solid solution with uniformly distributed segregations of composition (Cu & Ag rich) while copper rich alloys exhibit a core shell structure with outer layer being Ag rich. The isothermal experiments again reveal emergence of core-shell morphology at intermediate time for particles with equiatomic composition.
In order to compare the results of Ag-Cu nanoparticles with particles produced by other techniques we have synthesized Ag-Cu nanoparticles of near equiatomic composition by chemical route using nitrate salts and NaBH4 as reducing agent. PVP was used as capping agent. The results are presented in chapter 6. Depending on time of reaction, it is possible to synthesis free alloy particles from 2-3 nm to a network of chains. The nanoparticles contain Ag rich and Ag deficient region with Ag tends to segregate near surface. We have also presented mechanism for the formation of chain structure with prolonged reaction.
The thermodynamic basis of phase formation in the immiscible system and evolution of phases under nonequilibrium situation have been discussed in chapter 7. This also includes a model to estimate size dependent surface energy. The analysis presented allows a discussion of possible pathways for phase evolution observed in the present work. The thesis ends with a final chapter that discussed the critical issues remains to be addressed and possible future work.
|
563 |
Development of a Software Tool for Mid-Spatial Frequency AnalysisEriksson, Albert January 2021 (has links)
The manufacturing of optical components, such as lenses or mirrors, consists of numeroussteps that are essential to the performance of the fnished optical system, such as the specifcation ofthe optical surface. For a longer period, the main focus has been in identifying and restricting thenegative effects of the low and high spatial frequency content of the surface. However, as technologyand optical equipment has become more advanced, the effects of the mid-spatial frequencies havebeen studied more, and continue to be a topic of research. As of now, there is still a need for methodsthat accurately predict and analyse the regime of mid-spatial frequencies, such that they can becontrolled during the specifcation phase, successfully limiting the need of post-processing steps.This work introduces a software tool, specifcally designed to approach this problem, which wasto be developed in Python as a contribution to the existing Optical Scripting Library at OHB. Byspecifying an optical component in terms of a Power Spectral Density function, together with thecontributions from different spatial frequency domains and the application of a ripple patterns, thissoftware tool can generate pseudo-random optical surfaces, which maintains the input specifcations.Furthermore, a Dynamic Link Library fle was developed, sharing the same functionality as thePython implementation, allowing for simulations using Zemax OpticStudio. Using the software tool,it was found that the relative error between input and output measurements were approximately0.78%, in terms of the Power Spectral Density Function. In addition, the result of analysing one of thetwo test cases indicate that the software tool is effective in predicting the infuence of mid-spatialfrequency errors, fulflling a previously measured predicition. The second test case proved that thesoftware tool can be used for mimicing surfaces of real measurements, holding the same specifcations.
|
564 |
Spurensuche in DöbelnSchilling, Judith, Conrad, Stephan, Spitzner, Sophie 29 July 2019 (has links)
No description available.
|
565 |
Zachytávání a komprese videa na vestavěných zařízeních / Video Capture and Compression on Embedded DevicesDušek, Oto January 2020 (has links)
Industrial cameras are often used in conjunction with the application of machine learning. However, these cameras produce large bitrate and it needs to be reduced when processing video further away from the camera. This thesis tries to solve the problem by design of system suitable for grabbing video from industrial cameras, its compression and distribution to machine learning application. The thesis describes technologies applicable to the development of the multimedia application. For example frameworks FFmpeg and GStreamer were used implementation of the system.
|
566 |
Metal/Organic/Inorganic Semiconductor Heterostructures Characterized by Vibrational SpectroscopiesSalvan, Georgeta 14 July 2003 (has links)
Im Rahmen dieser Arbeit werden zwei Perylen-Derivate als Zwischenschichten in Ag/organischen Schichten/GaAs(100)-Heterostrukturen eingesetzt, um den Einfluss von unterschiedlichen chemischen Endgruppen auf die chemischen und strukturellen Eigenschaften beider Grenzflächen, sowie auf die Morphologie, Struktur und Kristallinität von organischen Schichten zu charakterisieren. Die molekularen Schichten von 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-Perylentetracarbonsäure Diimid (DiMe-PTCDI) werden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf S-passivierten GaAs(100):2x1-Substraten hergestellt. Weiterhin wird der Einfluss des Substrats untersucht, indem PTCDA-Wachstum auf H-passiviertem Si(100):1x1 durchgeführt wird. Als Hauptcharakterisierungsmethode wird die Ramanspektroskopie eingesetzt. Diese ist eine nicht-destruktive Methode, die auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die komplementäre Infrarotspektroskopie sowie die Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Röntgenbeugung (XRD) werden zur Ergänzung des Verständnisses der Heterostruktureigenschaften verwendet. Die Empfindlichkeit von Raman- und Infrarot-Spektroskopien auf die chemisch unterschiedlichen Endgruppen wird durch experimentelle Untersuchungen an PTCDA- und DiMe-PTCDI-Kristallen, beziehungsweise dicken Schichten und mit Hilfe theoretischer Berechnungen nachgewiesen. So wird zum ersten Mal eine vollständige Zuordnung der Schwingunsfrequenzen zu den internen Schwingungsmoden von DiMe-PTCDI vorgeschlagen. Im niedrigen Frequenzbereich der Ramanspektren werden die externen molekularen Schwingungsmoden, oder molekularen Phononen, die eine Signatur der Kristallinität darstellen, beobachtet. Die Phononen von DiMe-PTCDI werden in dieser Arbeit zum ersten Mal in einem Ramanexperiment beobachtet. Mittels resonanter Ramanspektroskopie wird die Detektion von C-H-Deformationsmoden und C-C-Streckmoden sogar im Sub-Monolagenbereich molekularer Bedeckung auf Halbleiteroberflächen möglich. Anhand dieser Ramanspektren konnte die Art der Wechselwirkung zwischen Molekülen und passivierten Oberflächen näher charakterisiert werden. Zusätzliche Information bringen die GaAs LO- und Plasmon-gekoppelten LO- Phononen, deren Intensitätsverhältnis im Ramanspektrum die Bandverbiegung im GaAs-Substrat widerspiegelt. Die Kristallinität der hergestellten organischen Schichten mit Dicken größer als 2 nm wird durch Beobachtung der molekularen Phononen nachgewiesen. Als allgemeine Tendenz konnte bewiesen werden, dass mit steigender Substrattemperatur während des Wachstums größere Kristalldomänen entstehen. Weiterhin wird eine Methode vorgeschlagen, um den Anteil von zwei PTCDA- Kristallphasen mit ähnlichen Gitterparametern anhand der Raman- beziehungsweise XRD-Spektren zu bestimmen. Durch ihre sehr gute Ordnung können die DiMe-PTCDI- Schichten als Modellsystem dienen, um eine Methode zu entwickeln, die die Molekülorientierung im Bezug zum Substrat aus polarisationsabhängigen Raman- und Infrarotmessungen bestimmt. Bei der Metall-Bedampfung wird die Empfindlichkeit der Ramanstreuung an internen molekularen Schwingungsmoden von PTCDA und DiMe-PTCDI-Schichten durch oberflächenverstärkte Ramanstreuung (SERS) erhöht. Anhand der unterschiedlichen Signalverstärkungsmechanismen werden Informationen über die Ag/Molekül- Wechselwirkung und die Morphologie der Ag-Schichten abgeleitet.
|
567 |
Optical Characterisation of DNA Bases on Silicon SurfacesSilaghi, Simona Dorina 17 June 2005 (has links)
Im Rahmen dieser Arbeit werden DNA-Basen-Moleküle (Thymin, Cytosin, Adenin und Guanin) auf H-passivierten Si(111)-Substraten mittels theoretischer Berechnungen und optischen Spektroskopien charakterisiert. Für ein einzelnes DNA-Basen-Molekül wurden quantenchemische Berechnungen von Elektronenübergängen und vibronischen Moden durchgeführt. Zusätzlich wurden die vibronischen Eigenschaften von Metall(Ag,In)/Cytosin-Komplexen sowie die Adsorption von einzelnen Cytosin-Molekülen auf H:Si(111)-Oberflächen studiert.
Die biomolekularen Schichten von DNA-Basen wurden durch organische Molekularstrahldeposition (OMBD) im Ultrahochvakuum auf flachen und vicinalen H:Si(111)-Oberflächen hergestellt. Die Morphologie, Struktur und Kristallinität von DNA-Basen-Schichten wurden mittels Rasterkraftmikroskopie (AFM), Röntgenbeugung (XRD) und Röntgenreflektometrie (XRR) charakterisiert. Die Vibrationseigenschaften von biomolekularen Schichten wurden experimentell durch Infrarotspektrokopie untersucht. Metall(Ag,In)/Cytosin/H:Si(111)-Heterostrukturen wurden mittels oberflächenverstärkter Ramanstreuung (SERS) charakterisiert. In dieser Arbeit wurden erstmals die optischen Konstanten und die dielektrischen Funktionen von dicken DNA-Basen-Schichten auf ebenen H:Si(111)-Oberflächen mittels spektroskopischer Ellipsometrie (SE) bestimmt. Ebenfalls zum ersten Mal wurden dünne biomolekulare Schichten auf vicinalen H:Si(111)-Oberflächen durch Reflektionsanisotropiespektroskopie (RAS) charakterisiert.
|
568 |
Baumeister der neuen Gesellschaft: Chemiker und chemische Industrie im DEFA-SpielfilmFraunholz, Uwe January 2006 (has links)
No description available.
|
569 |
Die Implantation des VW-Motors in den DDR-Automobilbau: Ein Bericht zur Innovationsgeschichte der DDRKirchberg, Peter January 2003 (has links)
No description available.
|
570 |
Yolk-Shell Nanostructures Prepared via Block Copolymer Self-Assembly for Catalytic ApplicationsShajkumar, Aruni 19 January 2018 (has links)
Yolk-shell nanostructures/yolk-shell nanoparticles are defined as a hybrid structure, a mixture of core/shell and hollow particles, where a core particle is encapsulated inside the hollow shell and may move freely inside the shell. Of the various classifications of yolk-shell nanostructures, a structure with an inorganic core and inorganic shell (inorganic/inorganic) has been studied widely due to their unique optical, magnetic, electrical, mechanical, and catalytic properties. In the work presented here, among the different inorganic/inorganic yolk-shell nanostructures noble metal@silica yolk-shell nanostructures has been chosen as the topic of interest. Silica shell possesses many advantages such as chemical inertness, tunable pore sizes, diverse surface morphologies, increasing suspension stability, no reduction in LSPR properties of noble metal nanoparticles when used as a coating for such particles. Noble metal nanoparticles such as AgNPs and AuNPs, on the other hand, possess unique structural, optical, catalytic, and quantum properties. Hence yolk-shell nanostructures with a combination of Ag or Au core and a silica shell (Ag@SiO2 and Au@SiO2) would open to endless possibilities.
In this study, four areas were mainly explored: mechanism of silica shell formation over a given template, the synthetic modifications of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, their application as a potential catalyst, and devising of a flow type catalytic reactor. Despite the growing number of contributions on the topic of yolk-shell nanostructures, particularly Au@SiO2 and Ag@SiO2 yolk-shell nanostructures, a potential for improvement lies in all four aforementioned areas.
As an initial study, the effect of different processing conditions as well as the mechanism of silica shell formation over reactive block copolymer templates was investigated. An asymmetric PS-b-P4VP block copolymer was chosen as a structure directing component to deposit silica shell. In order to deposit silica shell, PS-b-P4VP micelles with a collapsed PS core and a swollen P4VP corona was prepared via a solvent exchange method. The growth of silica shell over the PS-b-P4VP micelles (reactive template) was done using in-situ DLS and TEM. The experimental data obtained revealed the 4 distinct stages involved in the silica shell formation over the reactive BCP micellar template starting from the accumulation of silica precursor around the P4VP corona followed by a reactive template mediated hydrolysis-condensation reaction of the silica precursor which eventually lead to the shell densification and shell growth around the micelles. An understanding of the mechanism of silica shell formation over reactive templates provides a direct way to encapsulate various active species such as metal nanoparticles and quantum dots and paves the way for the template mediated synthesis of hybrid nanostructures such as yolk-shell nanoparticles. These studies also serve as a platform to fine-tune the properties of such hybrid nanostructures by varying the reaction parameters during silica shell deposition and reaction time.
The next part of the work focused mainly on the synthesis, process optimisation and characterization of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, and their potential use as a nanocatalyst. A well-known soft template mediated synthesis of the yolk-shell nanostructure was adopted for the present work. For this PS-b-P4VP micelle was used as a dual template for both encapsulation of nanoparticle and the deposition of silica shell. The nanoparticles were entrapped selectively to the BCP micellar core and silica deposition was done by reacting the nanoparticle-loaded micelles with an acidic silica sol which lead to the formation of Ag@PS-b-P4VP@SiO2 or Au@PS-b-P4VP@SiO2 particles with respect to the nanoparticle used. In the case of Ag@PS-b-P4VP particles, upon silica deposition, a partial dissolution of AgNPs was observed whereas AuNPs were stable against dissolution. Hence yolk-shell nanostructures with AuNPs were studied further. As-prepared Au@PS-b-P4VP@SiO2 particles were then subjected to pyrolysis to remove the BCP template. The resulting yolk-shell nanostructures comprised of an AuNP core and a hollow mesoporous silica shell. Upon removal of the BCP template, the Au@SiO2 particles fused together and formed large aggregates. The catalytic properties of Au@SiO2 yolk-shell nanoparticles were explored using a model reaction of reduction of 4-nitrophenol and proved to have good catalytic activity and efficient recyclability. It was observed that catalytic efficiency was hindered by the particle aggregates formed after pyrolysis by creating an inhomogeneity in the system and inaccessibility of the catalytic surface for the reactants. Hence synthetic modifications were needed to overcome such drawbacks.
Next part of the work deals with the synthetic modification of Au@SiO2 yolk-shell nanoparticles done by embedding them in a porous silica structure (PSS). Such structural morphology was attained by gelating the excess silica precursor while synthesising the Au@PS-b-P4VP@SiO2 particles. The pyrolytic removal of block copolymer results in the formation of Au@SiO2@PSS catalyst and the porous nature of both the shell and the silica structure provides an easy access for the reactants to the nanocatalyst surface located inside. The catalytic properties of Au@SiO2@PSS were studied using a model reaction of catalytic reduction of 4-nitrophenol (4-NP) and reductive degradation of different dyes. Kinetic studies show that Au@SiO2@PSS catalyst possesses enhanced catalytic activity as compared to other analogous systems reported in the literature so far. Furthermore, catalytic experiments on the reductive degradation of different dyes show that Au@SiO2@PSS catalyst can be considered as a very promising candidate for wastewater treatment.
Another proposed direction of applying the Au@SiO2 yolk-shells is by devising a continuous flow catalytic system composed of Au@SiO2 yolk-shell nanoparticles for the effective degradation of azo dyes as a promising candidate for wastewater treatment. This was done by infiltrating the Au@PS-b-P4VP@SiO2 particles inside a porous glass substrate (frits) and the subsequent pyrolytic removal of the BCP template resulting in the formation of Au@SiO2 yolk-shell nanostructures sintered inside the frit pores. The flow catalytic reactor was exploited in terms of studying its catalytic activity in the degradation of azo dyes and 4-nitrophenol and proved to have a catalytic efficiency of ca. 99% in terms of reagent conversion and has a long-term stability under flow. Thus, with a few modifications, these flow type systems can open the doors to a very promising continuous flow catalytic reactor in the future.
|
Page generated in 0.0296 seconds