Spelling suggestions: "subject:"anaerob"" "subject:"anaerobe""
31 |
Hur påverkar valet mellan greppsula och glidsula sopningen i curlingBäck, Max January 2017 (has links)
Curling är unik i avseendet att man kan påverka stenens bana efter att den släppts av spelaren. Beroende på trycket (Kg) och frekvensen (soptag/min) man kan applicera under sopmoment påverkas stenen olika mycket. Syftet med studien är att undersöka om curlingspelare med greppsula är mer uthålliga beträffande trycket och frekvensen vid sopning under flera stenar jämfört med curlingspelare som sopar med glidsula. Studien är en experimentellundersökning med två grupper och urvalet bestod av 17 män, 16–23 år, som spelade curling i någon av de två högsta serierna i Sverige. Undersökningsdeltagarna sopade tre stenar i följd under 15 sekunder med 50 sekunders vila mellan varje sten. Utrustningen som användes var mätinstrumentet (Broom-Mate), pulsklockan (Pm25, Beurer: Tyskland) och (Borg-Rpe-skalan). Resultatet från studien tyder på att det inte finns några signifikanta skillnader mellan att sopa med greppsula eller glidsula gällande förmågan att applicera och bibehålla trycket och frekvensen under tre sopade stenar. / Curling is unique in the way that you can affect the path of the curling rock after it´s been released. Depending on the amount of force (Kg) and frequency (strokes/min) of the sweeping motion it affects the path differently. The purpose of this study is to exam if curling players sweeping with gripper on are better regarding sustaining their force and frequency sweeping multiple stones compared to curling players sweeping with sliders on. The report is an experimental study with two groups. The selection consisted of 17 men, aged 16-23 years, regularly playing in one of the two top leagues in Sweden. The participants swept three stones in a row during 15 seconds with 50 seconds rest in between the stones. Equipment used during the collection of data were the (Broom-mate), heartrate monitor (Pm25, Beurer: Germany) and (Borg-RPE-scale). The results from the report suggest that there´s no significant difference between sweeping with gripper or slider on, regarding the ability to apply and sustain their force and frequency during three rounds of sweeping.
|
32 |
Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manureGregeby, Erik January 2009 (has links)
Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är. / Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.
|
33 |
Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manureGregeby, Erik January 2009 (has links)
<p>Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är.</p> / <p>Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.</p>
|
34 |
Cykelintervaller som kompletterande träning för handbollsspelare på U16-nivå.Bodén, Amanda, Lundin, Emelie January 2017 (has links)
Syfte och frågeställningar Syftet med studien var att undersöka effekten av cykelintervaller som komplement till handbollsträning för att förbättra prestationsförmågan hos manliga ungdomsspelare på elitnivå. Den frågeställning studien svarat på är om cykelintervaller som komplement till handbollsträning har några effekter på den specifika prestationsförmågan. Metod En kvantitativ experimentell studie genomfördes med 13 manliga ungdomsspelare (fp) i handboll. Under 3 veckor fick fp genomföra cykelintervaller som komplement till ordinarie träning 2 gånger i veckan. Effekten av träningen kontrollerades genom förtest och eftertest där fp:s aeroba förmåga (Yo-Yo IR L1), anaeroba kapacitet (150 m shuttle run) samt anaeroba effekt (CMJ) testades. Utifrån resultaten vid förtesterna delades fp in i antingen cykelgrupp (CG) eller kontrollgrupp (KG). Indelning gjordes genom matchning av fp:s profil följt av lottning. CG genomförde 2 olika intervalltyper, 4 min intervaller och 30 sekunders intervaller med ökat antal set över tid. Efter 3 veckor, totalt 6 träningspass, fick samtliga fp återigen genomföra tester med identiskt testförfarande. Genom detta kunde skillnader i utveckling av delkapaciteter relevanta för handboll mellan grupperna utvärderas. Resultat CG förbättrade signifikant både sitt Yo-Yo IR L1 resultat (p≤0,05) samt resultatet i de tre 150 m shuttle run mätningarna (löpning 1, p=0,03; löpning 2, p<0,001; differens löpning 1 och 2, p<0,001). KG hade ingen förbättring i Yo-Yo IR L1 och bara en signifikant trend till förbättring i löpning 2 i 150 m shuttle run (p=0,08). Mellan grupperna förelåg dock inte några signifikanta skillnader. Det sågs ingen förändring i någon av grupperna vid eftertesterna av CMJ. Slutsats Trots att CG förbättrade sig signifikant i såväl aeroba som anaeroba tester förelåg ingen signifikant skillnad mellan grupperna vilket bland annat tros bero på för få fp samt för kort interventionstid. Resultatet indikerar dock att cykelträning kan vara av värde för handbollsspelare men vidare forskning på en större försöksgrupp och längre interventionstid behövs för att med säkerhet kunna dra några generella slutsatser gällande cykelträningens effektivitet för handbollsspelare.
|
35 |
Utilization of Biomethane in Decarbonising India´s Energy MixRavindra Kunkulol, Niraj January 2023 (has links)
This thesis investigates the potential of biomethane production in India, the impact of its integration into the energy mix, and the corresponding Greenhouse Gases (GHG) emission and potential reduction. India, with its huge population and being an agriculturally rich country, produces gigantic amounts of biodegradable waste from various sources such as Municipal Solid Waste (MSW),agricultural waste, animal husbandry, sugar industry, etc. Three different end-use scenarios: electricity generation, cooking fuel, and transportation fuel—are assessed in order to determine the decree to which current fossil fuels may be replaced and the net amount of greenhouse gas emissions that are saved by using this biomethane. The total biomethane generation potential according to the study conducted by the Ministry of New and Renewable Energy (MNRE) is 25.6 Billion Metric Standard Cubic Meters (BMSCM) and with the most efficient upgrading technology available (3-stage membrane filtration) the useful potential is 25.4 BMSCM. The electricity that can be produced from the biomethane potential available is 159.1 TWh, which corresponds to the optimistic value of GHG emission reduction of 89million tons. When used as a cooking fuel, biomethane can contribute immensely to satisfying the final thermal needs of India. It can satisfy more than half the combined total thermal energy from Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) consumed in India and, at the same time, reduce 46.2 million tons of GHG emissions caused by it. The transportation sectoris the most suited and easy to adapt as an end-use application for biomethane. It was observed that biomethane as a replacement for Petrol for road transportation fuel presents the best scenario, since biomethane can reduce more than 71% of its consumption and respectively reduce more than 57 million tons of GHG emission, which is the second highest after electricity production. This thesis puts up a strong case to look at biomethane as a very important fuel towards India’starget to be net zero by 2070 and its plans to be self-reliant. Moreover, biomethane production usingthe path of anaerobic digestion provides not only a renewable source of energy but also food security with digestate being used as fertilizer and an opportunity to address the impact of climate change by preventing the emission of methane in the atmosphere which has a global warming potential of28 and burning of agricultural waste in the open field. Eventually, the production of biomethane prevents soil, air and water pollution. / Denna avhandling undersöker potentialen för biometanproduktion i Indien, effekterna av dess integration i energimixen och motsvarande utsläpp och potential för växthusgaser (GHG). minskning. Indien, med sin enorma befolkning och är ett jordbruksrikt land, producerar gigantiska mängder biologiskt nedbrytbart avfall från olika källor som kommunalt fast avfall (MSW), jordbruksavfall, djurhållning, sockerindustri, etc. Tre olika slutanvändningsscenarier: el produktion,matlagningsbränsle och transportbränsle – utvärderas för att fastställa till vilket dekret nuvarande fossila bränslen får ersättas och nettomängden växthusgasutsläpp som sparas genom att använda denna biometan. Den totala biometangenereringspotentialen enligt studien utförd av ministeriet för ny och förnybarenergi (MNRE) är 25,6 miljarder metriska standardkubikmeter (BMSCM) och med den mest effektiva uppgraderingstekniken som finns tillgänglig (3-stegs membranfiltrering) är den användbara potentialen 25,4 BMSCM. Den el som kan produceras från den tillgängliga biometanpotentialen är 159,1 TWh medan det optimistiska värdet av växthusgasutsläpp som är möjligt med användning av biometan för elproduktion är 89 miljoner ton. När biometan används som matlagningsbränsle kan det bidra oerhört mycket för att tillfredsställa Indiens slutliga termiska behov. Det kan tillfredsställa mer än halva finalen termisk energi som förbrukas i Indien och samtidigt samma miljon ton i utsläpp av växthusgaser som orsakas av den. Transportsektorn är den mest lämpade och lätta att anpassa som slutanvändningsprogram för biometan. Det observerades att biometan som ersättning för bensin som transportbränsle är det bästa scenariot eftersom biometan kan minskamer än 71 % av sin förbrukning och respektive minska mer än 57 miljoner ton växthusgasutsläpp, vilket är det näst högsta efter elproduktion. Den här avhandlingen ger ett starkt argument för att se biometan som ett mycket viktigt bränslemot Indiens mål att vara nettonoll år 2070 och dess planer på att vara självförsörjande. Dessutom ger biometanproduktion genom att använda vägen för anaerob rötning inte bara en förnybar energikälla utan också livsmedelssäkerhet med rötgas som används som gödningsmedel och en möjlighet att ta itu med effekterna av klimatförändringar genom att förhindra utsläpp av metan i atmosfären som har en global uppvärmningspotential på 28 och förbränning av jordbruksavfall på det öppna fältet. Så småningom förhindrar produktionen av biometan mark-, luft- och vattenföroreningar.
|
36 |
Optimisation of Volatile Fatty Acid Production via Anaerobic Fermentation of Primary Sludge for Sustainable Wastewater Treatment Processes / Optimering av produktionen av flyktiga fettsyror genom anaerob jäsning av primärslam för hållbara avloppsreningsprocesserDelestig, Sara January 2024 (has links)
Den biologiska reningen av näringsämnen vid avloppsreningsverk (ARV) kräver tillgång på en lätt nedbrytbar kolkälla, som till exempel flyktiga fettsyror (VFA; eng. Volatile Fatty Acids). Denna studie utforskade möjligheten till VFA-produktion genom biologisk anaerob jäsning av primärslam från Fillan ARV i Sundsvall. Effekten av både temperatur och hydraulisk uppehållstid undersöktes. Resultaten visade högre VFA-koncentrationer vid 37 °C jämfört med 20 °C och 55 °C, vilket tyder på att temperaturen har en betydande effekt på VFA-produktionen. Dessutom undersöktes den optimala kombinationen av temperatur och uppehållstid, där 37 °C och fyra-dagars uppehållstid gav det högsta VFA-utbytet. Potentialen av att använda de producerade fettsyrorna för bortrening av näringsämnen vid Fillan ARV utvärderades genom både teoretiska beräkningar och experimentell validering. Resultaten visade att användandet av en internt producerad kolkälla utvunnen från primärslam skulle kunna vara ett alternativ till kommersiella (externa) kolkällor i reningsprocesser av avloppsvatten som en hållbar och ekonomiskt fördelaktig strategi. / Biological nutrient removal processes in wastewater treatment plants (WWTPs) rely on the availability of easily degradable carbon compounds, such as volatile fatty acids (VFAs). This study explored the feasibility of VFA production through biological anaerobic fermentation of primary sludge (PS) sourced from Fillan WWTP in Sundsvall, Sweden. The impact of temperature and hydraulic retention time (HRT) was investigated. Results revealed higher VFA concentrations at 37 °C compared to 20 °C and 55 °C, indicating temperature's impact on VFA production. Additionally, optimal temperature and HRT combinations were explored, with 37 °C and a four-day HRT showing the highest VFA yields. The potential for nutrient removal at Fillan WWTP using the VFAs produced as a carbon source was assessed through theoretical calculations and experimental validation. The findings revealed that using an internally produced carbon source derived from PS could be an alternative to commercial (external) carbon sources in the wastewater treatment processes as a sustainable and economically advantageous strategy.
|
37 |
Anaerobic Digestion of Wastewaters from Pulp and Paper Mills : A Substantial Source for Biomethane Production in SwedenLarsson, Madeleine January 2015 (has links)
The Swedish pulp and paper industry is the third largest exporter of pulp and paper products worldwide. It is a highly energy-demanding and water-utilising industry, which generates large volumes of wastewater rich in organic material. These organic materials are to different extents suitable for anaerobic digestion (AD) and production of energy-rich biomethane. The implementation of an AD process within the wastewater treatment plant of a mill would increase the treatment capacity and decrease the overall energy consumption due to less aeration and lower sludge production and in addition produce biomethane. Despite the many benefits of AD it is only applied at two mills in Sweden today. The reason for the low implementation over the years may be due to problems encountered linked to the complexity and varying composition of the wastewaters. Due to changes in market demands many mills have broadened their product portfolios and turned towards more refined products. This has increased both the complexity and the variations of the wastewaters´ composition even further, as the above changes can imply an increased pulp bleaching and utilisation of more diverse raw materials within the mills. The main aim of this thesis was therefore to generate knowledge needed for an expansion of the biomethane production within the pulp and paper industry. As a first step to achieve this an evaluation of the biomethane potential and the suitability for AD of wastewaters within a range of Swedish pulp and paper mills was performed. Thus, around 70 wastewater streams from 11 different processes at eight mills were screened for their biomethane potential. In a second step, the impact of shifts in wood raw material and bleaching on the AD process and the biomethane production was investigated and further evaluated in upflow anaerobic sludge bed (UASB) reactors. The screening showed that the biomethane potential within the Swedish pulp and paper industry could be estimated to 700 GWh, which corresponds to 40% of the Swedish biomethane production during 2014. However, depending on the conditions at each specific mill the strategy for the establishment of AD needs to differ. For mills producing kraft pulp the potential is mainly found in wastewaters rich in fibres, alkaline kraft bleaching wastewaters and methanol-rich condensates. The biomethane potential within thermo-mechanical pulp- (TMP) and chemical thermo-mechanical pulp (CTMP) mills is mainly present in the total effluents after pre-sedimentation and in the bleaching effluents as these holds high concentrations of dissolved organic material. The screening further showed that the raw material used for pulp production is an important factor for the biomethane potential of a specific wastewater stream, i.e. hardwood (HW) wastewaters have higher potentials than those from softwood (SW) pulp production. This was confirmed in the lab-scale UASB reactor experiments, in which an alkaline kraft bleaching wastewater and a composite pulping and bleaching CTMP wastewater were used as substrates. AD processes were developed and maintained stable throughout shifts in wastewater composition related to changes in the wood raw materials between SW and HW for the kraft wastewater and spruce, aspen and birch for the CTMP wastewater. The lower biomethane production from SW- compared to HW wastewaters was due to a lower degradability together with a higher ratio of sulphuric compounds per TOC for the SW case. The impact of shifts between bleached and unbleached CTMP production could not be fully evaluated in the continuous process mainly due to technical problems. However, due to the large increase in dissolved organic material when bleaching is applied, the potential biomethane production will increase during the production of bleached pulp compared to unbleached pulp. Based on the biomethane potentials obtained for one of the included CTMP mills, their yearly production of biomethane was estimated to 5-27 GWh with the lowest and the highest value corresponding to the production of unbleached spruce pulp vs. bleached birch pulp. Thus, the results of the investigations presented in this thesis show that the UASBreactor is suitable for AD of wastewaters within the pulp and paper industry. The results also show that challenges related to variations in the organic material composition of the wastewaters due to variations in wood raw materials could be managed. The outcome of the thesis work also imply that the production of more refined products, which may include the introduction of an increased number of raw materials and extended bleaching protocols, could increase the potential biomethane production, especially if the pulp production will make use of more HW. / Den svenska pappers- och massaindustrin är den tredje största exportören av massa och pappersprodukter och en viktig industriell aktör i Sverige. Det är en industri med hög energi- och vattenanvändning, som genererar stora mängder avloppsvatten rika på organiskt material. Detta organiska material kan via anaerob nedbrytning användas för att producera energirik biometan. Användandet av anaerob behandling, som ett steg i brukens vattenrening, genererar inte bara biometan utan kan också öka reningskapaciteten och minska energiförbrukning och kostnader tack vare minskat behov av luftning och minskad slamproduktion. Trots de många fördelarna med anaerob behandling är den idag bara tillämpad på två bruk i Sverige. En av orsakerna till detta kan vara processproblem som relaterats till avloppsvattnens komplexitet samt varierande sammansättning och flöden. Många pappers- och massabruk har utökat sina produktportföljer med bl a mer förfinade produkter, som en följd av en förändrad marknad. Dessa förändringar har ökat avloppsvattnens komplexitet och variation än mer, då ovan exempelvis kan medföra en ökad produktion av blekt massa samt att fler typer av träråvaror används vid ett och samma bruk. Huvudsyftet med föreliggande avhandling är att bidra med kunskap för en ökad produktion av biometan inom pappers- och massaindustrin. Som ett första steg genomfördes en övergripande utvärdering av ca 70 avloppsvattenströmmar från totalt 11 olika processer vid åtta svenska pappers- och massabruk med fokus på biometanpotential samt lämplighet för anaerob behandling. I ett andra steg utvärderades hur skiften i träråvara samt blekning påverkar biometanproduktionen samt processtabiliteten för en kontinuerlig anaerob nedbrytningsprocess i en UASBreaktor. Den initiala utvärderingen visade att den svenska pappers- och massaindustrin skulle kunna bidra med 700 GWh biometan per år, vilket motsvarar 40% av biometanproduktionen i Sverige under 2014. Beroende på utformningen av det enskilda bruket kommer strategier för implementering av anaeroba processer att se olika ut. För bruk som producerar sulfatmassa återfanns huvuddelen av biometanpotentialen i fiberrika avloppsvattenstömmar, alkaliska blekeriavlopp samt metanolrika kondensat. För bruk som producerar termomekanisk- (TMP) eller kemitermomekanisk (CTMP) massa föreligger biometanpotentialen framförallt i avloppsvatten rika på löst organiskt material såsom totalavlopp efter sedimentering och blekeriavlopp. Den initiala utvärderingen visade också att användandet av lövved ger en högre biometanpotential jämfört med barrved. Dessa resultat kunde bekräftas vid kontinuerliga experiment med anaerob nedbrytning i UASB-reaktorer, där ett alkaliskt blekeriavlopp från ett sulfatmassabruk och ett kombinerat massaproduktions- och blekeriavlopp från ett CTMP-bruk användes som substrat. Stabila anaeroba processer etablerades och bibehölls vid förändrad avloppsvattensammansättning på grund av skiften i träråvara (löv- och barrved för sulfatmassabruket samt gran, asp och björk för CTMP bruket). Den lägre produktionen av biometan för barrved jämfört med lövved kunde förklaras med en lägre nedbrytbarhet samt ett ökat svavelinnehåll i relation till mängden organiskt material. Skiften mellan avloppsvatten från blekt- och oblekt CTMP massa kunde inte utvärderas fullständigt i den kontinuerliga processen på grund av tekniska problem. Produktionen av blekt massa ökar dock mängden organiskt material i avloppsvattnet, vilket medför att mer biometan kan produceras jämfört med då oblekt massa produceras. Baserat på biometanpotentialerna för ett av i studien ingående CTMP bruk uppskattas den årliga produktionen av biometan till 5-27 GWh, där den lägsta produktionen motsvarar oblekt granmassa och den högsta produktionen motsvarar blekt björkmassa. Sammanfattningsvis visar studien att UASB-reaktorer är lämpliga för anaerob behandling av avloppsvatten inom pappers- och massaindustrin. Vidare visar resultaten från de kontinuerliga försöken att de utmaningar som medförs av den varierande sammansättningen av avloppsvattnens organiska material knutet till träråvaran kan hanteras. Slutligen, breddade produktportföljer samt produktionen av mer förfinade produkter, vilket kan innebära en ökad massablekning och ett ökat användande av olika träråvaror, kan öka brukens potentiella biometanproduktion, särskilt om mer lövved används för massaproduktion.
|
38 |
Chemical Speciation of Sulfur and Metals in Biogas Reactors : Implications for Cobalt and Nickel Bio-uptake Processes / Kemisk speciering av svavel och metaller i biogasreaktorer : implikationer för bioupptag av kobolt och nickelShakeri Yekta, Sepehr January 2014 (has links)
A balanced supply of micronutrients, including metals such as iron (Fe), cobalt (Co), and nickel (Ni), is required for the efficient and stable production of biogas. During biogas formation, the uptake of micronutrient metals by microorganisms is controlled by a complex network of biological and chemical reactions, in which reduced sulfur (S) compounds play a central role. This thesis addresses the interrelationship between the overall chemical speciation of S, Fe, Co, and Ni in relation to the metals bio-uptake processes. Laboratory continuous stirred tank biogas reactors (CSTBR) treating S-rich grain stillage, as well as a number full-scale CSTBRs treating sewage sludge and various combinations of organic wastes, termed co-digestion, were considered. Sulfur speciation was evaluated using acid volatile sulfide (AVS) extraction and S X-ray absorption near edge structure (XANES). The chemical speciation of Fe, Co, and Ni was evaluated through the determination of aqueous metals and metal fractions pertaining to solid phases, as well as kinetic and thermodynamic analyses (chemical speciation modelling). The relative Fe to S content in biogas reactors, which in practice is regulated through the addition of Fe for the purpose of sulfide removal or prior to the anaerobic digestion of sewage sludge, is identified as a critical factor for the chemical speciation and bio-uptake of metals. In the reactors treating sewage sludge, the quantity of Fe exceeds that of S, inducing Fe(II)-dominated conditions under anaerobic conditions, while sulfide dominates in the co-digestion and laboratory reactors due to an excess of S over Fe. Under sulfide-dominated conditions, chemical speciation of the metals is regulated by hydrogen sulfide and the formation of metal sulfide precipitates, which in turn restrict the availability of metals for microorganisms. However, despite the limitations set by sulfide, aqueous concentrations of different Co and Ni species were shown to be sufficient to support metal acquisition by the microorganisms under sulfidic conditions. Comparatively, the concentrations of free metal ions and labile metal-phosphate and -carbonate complexes in aqueous phase, which directly participate in bio-uptake processes, are higher under Fe-dominated conditions. This results in an enhanced metal adsorption on cell surfaces and faster bio-uptake rates. It is therefore suggested that the chemical speciation and potential bioavailability of metals may be controlled through adjustments of the influent Fe concentration in relation to S content. The results also indicated that the pool of metal sulfides in the biogas reactors could be regarded as a source of metals for microbial activities. Thus, the recovery and utilisation of this fraction of metals may be considered as a measure with which to minimise the metal dosing concentrations to CSTBRs. / För att en effektiv och stabil biogasproduktion från organiskt avfall skall uppnås, behöver mikroorganismer i biogasreaktorer ha tillgång till näringsämnen inklusive spårmetaller såsom järn (Fe), kobolt (Co), och nickel (Ni). Mikroorganismernas upptag av spårmetaller styrs av biologiska och kemiska reaktioner som påverkar metallernas tillgänglighet, där framför allt interaktioner mellan metaller och reducerat svavel (S) spelar en viktig roll. Avhandlingen analyserar sambandet mellan kemisk speciering av S, Fe, Co, och Ni i relation till metallernas biologiska upptagsprocesser. Omrörda tankreaktorer (CSTBR) i lab.- och fullskala för produktion av biogas från spannmålsdrank, avloppsslam, och olika kombinationer av organiska avfall (samrötning) har utgjort basen för studierna. Svavelspeciering analyserades med hjälp av AVS (acid volatile sulfide) extraktion och S XANES (sulfur X-ray absorption near edge structure). Speciering av Fe, Co, och Ni utvärderades med hjälp av sekventiell extraktion, mätning av metall koncentrationer i löst och fast faser samt genom kinetiska och termodynamiska analyser (kemisk specieringsmodellering). Biogasreaktorers relativa mängder av Fe och S, identifierades som en central faktor för kemisk speciering och bio-upptag av metaller. Järn-mängden regleras bl a genom tillsats av Fe för att rena biogasen från vätesulfid eller vid diverse fällningsreaktioner i reningsverk före rötningsstegen av avloppsslam. Därför är järnhalterna högre än S-halterna i reaktorer, som behandlar avloppsslam. Detta leder till en Fe(II)-dominerande miljö. Däremot dominerade vätesulfid i de samrötnings- och laboratoriereaktorer, som ingick i studien. Under dessa förhållande styrs den kemiska metallspecieringen av sulfid och fr a genom fällning av metallsulfider, som då begränsar tillgängligheten av metaller för mikroorganismerna. Trots begränsningarna via sulfidfällningen var koncentrationen av de lösta Co och Ni formerna tillräckliga för bio-upptag av dessa metaller. Vid de Fe-dominerade förhållandena var koncentrationer av fria metalljoner och labila komplex (t.ex. med fosfat och karbonat), som direkt deltar i bio-upptagsprocesser, relativt höga, vilket medför relativt goda möjligheter för metalladsorption till cellytor och bio-upptag. Resultaten visar att den kemiska specieringen och därmed biotillgängligheten av metaller skulle kunna regleras genom justering av inflödet Fe i förhållande till S. Resultaten visade också att metallsulfider i fast fas sannolikt utnyttjas av mikroorganismer som en källa till metaller. Det innebär att en återanvändning av denna metallfraktion skulle kunna utnyttjas som en del i att minimera metalldoseringskoncentrationer.
|
39 |
Sambandstudie mellan maximal styrka, effektutveckling och snabbhetCabrera Basurto, Danys Francisco, Nordin, Jens Carl Mikael January 2015 (has links)
Syfte och frågeställningar: Syftet med studien var att undersöka hos vältränade om det fanns något samband mellan maximal styrka, effektutveckling och snabbhet, dvs tester som till stor del speglar anaerob kapacitet. Syftet var också att undersöka om det här fanns någon skillnad och/eller likhet mellan kvinnor och män. (1) Hur ser det eventuella sambandet ut mellan effektutveckling och maximal styrka? (2) Hur ser det eventuella sambandet ut mellan effektutveckling och snabbhet? (3) Hur ser det eventuella sambandet ut mellan maximal styrka och snabbhet? (4) Hur ser det eventuella sambandet ut, på ovanstående frågeställningar, hos kvinnor och män? Metod: Metoden var kvantitativ och laborativ, utformad för att undersöka det eventuella sambandet mellan snabbhet, maximal styrka och effektutveckling – Detta testades genom tre olika fysiologiska tester. Testerna genomfördes på en grupp bestående av 10 män (ålder 24,4±2,8 år, kroppsvikt 78,9±9,7 kg och längd 175,6±7,5 cm) och 10 kvinnor (ålder 24,1±1,7 år, kroppsvikt 65±8,0 kg och längd 167±5,7 cm) som var vältränade men hade olika idrottsbakgrund. Målet var att, utifrån den undersökta gruppen, kunna göra uttalanden om en större population. Testerna som genomfördes var 1 RM knäböj (maximal styrka), sprint 5 m, 10 m och 30 m (snabbhet) samt ett Wingate-test (effektutveckling). Med hjälp av statistikprogrammet Statistica 12.0 och beräkningsmetoden Pearson korrelationskoefficient, har rådata från testerna beräknats för att redovisa det eventuella sambandet. Resultat: Resultatet visade att det fanns, antingen ett medelstarkt samband eller ett starkt samband mellan alla tre testerna, för hela gruppen. Majoriteten av testerna visade ett starkt samband, endast mellan effektutveckling och snabbhet 5 m och 30 m var det ett medelstarkt samband, inga svaga samband hittades. De starkaste sambanden som hittades, för hela gruppen, var mellan effektutveckling och maximal styrka (r 0,90 i absoluta tal och r 0,78 i relativa tal). Män hade, totalt sett, många fler starka samband mellan de olika testerna än kvinnor, kvinnor hade endast ett enda starkt samband, vilket var mellan effektutveckling och maximal styrka. Män å andra sidan hade, med majoritet (8 av 14), ett starkt samband mellan de olika testerna, de starkaste sambanden hittades mellan effektutveckling och övriga tester. Slutsats: Det fanns ett tydligt samband mellan de olika anaeroba kapaciteterna, för hela gruppen. När resultatet redovisas för kvinnor och män enskilt, så var slutsatsen inte densamma – Kvinnor visade både svagare och färre förekommande samband mellan alla kapaciteter än män. / <p>Ämneslärarprogrammet, Specialidrott</p>
|
40 |
Kontinuerlig rötning med hydrokol för högre biogasutbyte / Continuous anaerobic digestion with hydrochar for higher biogas yieldKariis, Annette January 2023 (has links)
Befolkningsökningen och därmed efterfrågan på energikällor som tillhandahålls från fossila bränslen leder till allvarliga miljöproblem på grund av utsläpp av växthusgaser. En annan utmaning är att effektivt hantera organisk avfall som till exempel matavfall som genereras världen över. Matproduktionen orsakar stora miljöproblem som övergödning, klimatpåverkan, kemikaliespridning, regnskogsavverkning och utfiskning. Det är därför viktigt att matsvinnet minskar men också att effektiva metoder används för hantering av avfallet för att inte belasta miljön ytterligare. En lösning för att hantera organiskt avfall, och samtidigt producera en förnybar energikälla är att använda anaerob rötning för att producera biogas. Vid anaerob rötning bryts organiskt material ner i en syrefri miljö, vilket resulterar i produktion av biogas som innehåller koldioxid och energirik metangas. Biprodukten som bildas är rötrest, som kan vidare användas som gödsel. Den anaeroba rötningsprocessen har olika utmaningar där biogasprocessen kan stabiliseras och effektiviseras genom tillsats av hydrokol. Hydrokol är ett kolrikt material framställd från hydrotermisk karbonisering av biomassa. Eftersom det finns mycket begränsad forskning på kontinuerlig anaerob rötning av matavfall med tillsats av hydrokol, och ingen forskning har utförts på hydrokol som är tillverkat från skogsindustriellt avfall, så var det viktigt och av intresse att genomföra denna studie. Syftet med studien är att undersöka hur tillsats av hydrokol påverkar biogasproduktion, metanproduktion och stabiliteten i en kontinuerlig anaerob rötningsprocess. Vidare syftar studien till att analysera effekterna av hydrokol på rötresterna som genereras, undersöka möjligheterna av sammankoppling av en befintlig rötkammare med en HTC reaktor, samt bedöma om det är ekonomiskt försvarbart att investera i hydrokol som additiv i rötningsprocessen. Målet har varit att undersöka om tillsats av hydrokol ger högre biogasutbyte, ökad metanproduktion och en stabil rötningsprocess. Målet har även varit att analysera rötresterna, utföra en materialflödesanalys över när Karlskogas rötkammare sammankopplas med en HTC reaktor, samt utföra en livscykelkostnadsanalys för att svara på om det är ekonomiskt försvarbart att investera i en HTC anläggning, alternativt att köpa in hydrokol externt. De laborativa försöket gjordes på Karlstads universitet där rötningen var en enstegs anaerob samrötning som gjordes i två kontinuerligt matade reaktorer. Inmatning och uttag av gas gjordes en gång om dagen där försöksserierna pågick under 68 dagars tid. Substratblandningarna eftersträvades efterlikna substratförhållandena på Biogasbolaget i Karlskoga. Inmatat material, det vill säga substratblandningen utgjorde 8,5% av ensilage, 0,6% av glycerol, och 90,9% av substrat (matavfall och flytgödsel). Detta förhållande är detsamma som på Biogasbolaget. I en av reaktorerna användes substratblandningen och i den andra substratblandningen och hydrokol. Hydrokolet blandades in med substratblandningen vid en koncentration på 8g/l. Materialflödesanalysen gjordes över Karlskogas biogasanläggning där flödena ritades ut i programmet Stan 2.5. LCC gjordes utifrån två olika scenarion, om hydrokol köps in externt alternativt att en HTC-reaktor ansluts till biogasanläggningen. Det valdes att beräkna utifrån scenarion om metanutbytet ökar med 17%, enligt resultat från studien gjord av Maria Kristoffersson eller om utbytet ökar med 53% enligt resultat från den här studien. Resultatet visar att tillsats av hydrokol som additiv ger en ökning på 59% för biogas utbytet och 53,5% för metanutbytet. I medelvärde från rötningsdag 27 till 68 så resulterade biogasproduktionen för hydrokolsreaktorn i 533 ml/g VS. Medelvärdet för referensreaktorn resulterade i 70 ml/g VS. Det här resulterar i en procentuell ökning med 663%. Eftersom misstankar finns att referensreaktorn inte bildar biogas som den ska har biogasproduktionen jämförts med tidigare studie som har gjorts på ungefär samma substratblandning och samma utrustning. Biogasproduktionen i medelvärde för referensreaktorn för (Leijen, 2016) resulterade i 335 ml/g VS. Procentuella skillnaden i biogasproduktion resulterar då i 59% mellan referensreaktorn och hydrokolsreaktorn. Metanproduktionen i hydrokolsreaktorn resulterade i medelvärde till 367 ml/g VS, i referensreaktorn till 18 ml/g VS och i referensreaktorn i Leijens studie till 237 ml/g VS. Jämfört med Leijens resultat resulterade den procentuella ökningen i metangasproduktion till 53,5%. En stabil rötningsprocess bekräftades genom att pH på rötresterna resulterade i 7,66 under hela rötningsprocessen. Det är möjligt att sammankoppla Karlskogas befintliga anläggning med en HTC-anläggning och återföra rötresterna för hydrokolsproduktion. Rötresterna med ett högre kol-och näringsinnehåll kan återanvändas och recirkuleras för produktion av hydrokol. Av 10 tonTS/dag rötrester som kommer ut från rötningskammaren kommer 2,46 tonTS/dag att recirkuleras för hydrokolsproduktion. Resten av rötresterna kan användas vidare som gödsel. Det är ekonomiskt försvarbart att investera i hydrokol som additiv till rötningsprocessen. Genom att bygga en HTC-anläggning, där tillsatsen av hydrokol kan ge 17% respektive 53% högre metanproduktion resulterar nettovinsten i 363 miljoner respektive 1237 miljoner kr över en 20-årsperiod. Alternativet är att köpa in hydrokol externt, där nettovinsten uppgår till 177 miljoner respektive 1052 miljoner kr över samma tidsperiod. Livscykelkostnadsanalysen visar att det är ekonomiskt mer fördelaktigt att investera i en HTC-anläggning jämfört med att köpa hydrokol externt. / The population growth and thus the demand for energy sources provided by fossil fuels leads to serious environmental problems due to greenhouse gas emissions. Another challenge is to effectively manage organic waste such as food waste generated worldwide. Food production causes major environmental problems such as eutrophication, climate impact, chemical dispersion, rainforest deforestation and depletion. It is therefore important that food waste is reduced, but also that effective methods are used to manage the waste so as not to burden the environment further. One solution for managing organic waste, while producing a renewable energy source, is to use anaerobic digestion to produce biogas. In anaerobic digestion, organic material is broken down in an oxygen-free environment, resulting in the production of biogas containing carbon dioxide and energy-rich methane gas. The by-product formed is digestate, which can be further used as fertilizer. The anaerobic digestion process has various challenges, where the biogas process can be stabilized and made more efficient by adding hydrochar. Hydrochar is a carbon-rich material produced from hydrothermal carbonization of biomass. Since there is very limited research on continuous anaerobic digestion of food waste with the addition of hydrochar, and no research has been conducted on hydrochar produced from forest industry biosludge, it was important and of interest to conduct this study. The aim of the study is to investigate how the addition of hydrochar affects biogas production, methane production and the stability of a continuous anaerobic digestion process. Furthermore, the study aims to analyze the effects of hydrochar on the digestate generated, investigate the possibilities of connecting an existing digester with an HTC reactor, and assess whether it is economically justifiable to invest in hydrochar as an additive in the digestion process. The goal has been to investigate whether the addition of hydrochar provides higher biogas yield, increased methane production and a stable digestion process. The goal has also been to analyze the digestate, perform a material flow analysis of when Karlskoga's digester is connected to an HTC reactor, and perform a life cycle cost analysis to answer whether it is economically justifiable to invest in an HTC plant, or to purchase hydrochar externally. The laboratory experiments were carried out at Karlstad University where the digestion was a single-stage anaerobic co-digestion in two continuously fed reactors. Gas was fed and withdrawn once a day and the experimental series lasted for 68 days. The substrate mixtures sought to mimic the substrate conditions at Biogasbolaget in Karlskoga. Input material, i.e. the substrate mixture consisted of 8.5% silage, 0.6% glycerol, and 90.9% substrate (food waste and liquid manure). This ratio is the same as at Biogasbolaget. One of the reactors used the substrate mixture and the other used the substrate mixture and hydrochar. The hydrochar was mixed with the substrate mixture at a concentration of 8g/l. The material flow analysis was made over Karlskoga's biogas plant where the flows were drawn in the program Stan 2.5. LCC was made based on two different scenarios, if hydrochar is purchased externally or if an HTC reactor is connected to the biogas plant. It was chosen to calculate based on scenarios if the methane yield increases by 17%, according to results from the study made by Maria Kristoffersson or if the yield increases by 53% according to results from this study. The results show that adding hydrochar as an additive gives an increase of 59% for the biogas yield and 53.5% for the methane yield. In average from digestion day 27 to 68, the biogas production for the hydrochar reactor resulted in 533 ml/g VS. The average value for the reference reactor resulted in 70 ml/g VS. This results in a percentage increase of 663%. Since there are suspicions that the reference reactor does not produce biogas as it should, the biogas production has been compared with previous studies that have been done on approximately the same substrate mixture and the same equipment. The biogas production in average for the reference reactor for (Leijen, 2016) resulted in 335 ml/g VS. The percentage difference in biogas production then results in 59% between the reference reactor and the hydrochar reactor. The methane production in the hydrochar reactor resulted on average to 367 ml/g VS, in the reference reactor to 18 ml/g VS and in the reference reactor in Leijen's study to 237 ml/g VS. Compared to Leijen's results, the percentage increase in methane gas production resulted in 53.5%. A stable digestion process was confirmed by the fact that the pH of the digestate resulted in 7.66 during the whole digestion process. It is possible to interconnect the existing Karlskoga plant with an HTC plant and recycle the digestate for hydrochar production. The digestate with a higher carbon and nutrient content can be reused and recycled for hydrochar production. Out of 10 tonTS/day of digestate coming out of the digestion chamber, 2.46 tonTS/day will be recycled for hydrochar production. The rest of the digestate can be further used as fertilizer. It is economically justifiable to invest in hydrochar as an additive to the digestion process. By building a HTC plant, where the addition of hydrochar can provide 17% and 53% higher methane production, the net profit results in 363 million and 1237 million SEK over a 20-year period. The alternative is to purchase hydrochar externally, where the net benefit amounts to SEK 177 million and 1052 million respectively over the same time period. The life cycle cost analysis shows that it is economically more advantageous to invest in an HTC plant compared to buying hydrochar externally.
|
Page generated in 0.0399 seconds