• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 20
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 30
  • 21
  • 21
  • 21
  • 20
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen

Meyer, Karsten 22 February 2004 (has links) (PDF)
In der vorliegenden Arbeit wird die Physik von Schwer-Fermion-Systemen, die durch Lanthanid- und Aktinid-Übergangsmetallverbindungen realisiert werden, untersucht. Die Basis für eine theoretische Beschreibung bildet das Anderson-Gitter, welches das Wechselspiel freier Leitungselektronen und stark korrelierter Elektronen aus lokalisierten f-Orbitalen charakterisiert. Als Zugang zu diesem Modell wird die von Wegner vorgeschlagene Flussgleichungsmethode verwendet, ein analytisches Verfahren, welches auf der Konstruktion eines effektiven Hamilton-Operators basiert. Ein zentrales Thema dieser Arbeit ist die Beschreibung der elektronischen Struktur von Schwer-Fermion-Systemen. Insbesondere wird die Abhängigkeit statischer Größen vom Einfluss verschiedener Systemparameter betrachtet. Die Dynamik kollektiver Anregungen in Schwer-Fermion-Systemen wird an Hand der elektronischen Zustandsdichten und dynamischen magnetischen Suszeptibilitäten untersucht. / The physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations.
52

Das parabolische Anderson-Modell mit Be- und Entschleunigung

Schmidt, Sylvia 24 January 2011 (has links) (PDF)
We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
53

Assymptotische Eigenschaften im Wechselspiel von Diffusion und Wellenausbreitung in zufälligen Medien

Metzger, Bernd 23 May 2005 (has links)
Thema der Dissertation ist die Untersuchung von asymptotischen Eigenschaften im Wechselspiel von Diffusion und Wellenausbreitung. Es geht um diskrete, zufällige Schrödingeroperatoren, die in die diskrete Wärmeleitungsgleichung eingefügt werden. Das Ensemble der Lösungen kann mit der vom diskreten Laplace erzeugten Irrfahrt in kontinuierlicher Zeit und der Feynman-Kac-Formel stochastisch interpretiert werden. So werden Methoden aus der Theorie der großen Abweichungen anwendbar. Neben dem stochastischen Zugang können die Schrödingeroperatoren auch spektraltheoretisch untersucht werden. In der Dissertation wird das Wechselspiel dieser beiden Herangehensweisen im Hinblick auf die asymptotischen Eigenschaften der Momente, der integrierten Zustandsdichte und der Korrelationsfunktion betrachtet.
54

A note on correlated and non-monotone Anderson models

Tautenhahn, Martin, Veselic', Ivan 17 January 2008 (has links)
We prove exponential decay for a fractional power of the Green's function for some correlated Anderson models using the fractional moment method.
55

Das parabolische Anderson-Modell mit Be- und Entschleunigung

Schmidt, Sylvia 15 December 2010 (has links)
We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
56

Destino dos estados estendidos e origem dos estados localizados no regime Hall quântico / Fate of extended states and origin of localized states in quantum Hall regime

Pereira, Ana Luiza Cardoso, 1976- 31 March 2005 (has links)
Orientadores: Peter A. B. Schulz, John T. Chalker / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-06T19:00:22Z (GMT). No. of bitstreams: 1 Pereira_AnaLuizaCardoso_D.pdf: 2880300 bytes, checksum: ffd133973b4bc6e23c91694bc47d8794 (MD5) Previous issue date: 2005 / Resumo: Esse trabalho é dedicado ao estudo de dois problemas de interesse atual em sistemas quânticos de baixa dimensionalidade. Ambos são relacionados ao processo de localização eletrônica no regime Hall quântico. O primeiro problema diz respeito ao destino dos estados estendidos no limite de baixos campos magnéticos ou forte desordem, onde ocorre a transição de líquido de Hall para o isolante de Hall. O problema é abordado através de simulações numéricas, com um modelo de rede bidimensional tratado por um Hamiltoniano tight-binding, considerando-se tanto desordem tipo ruído branco quanto desordem correlacionada com perfil Gaussiano. Nós observamos que à medida que o campo magnético tende a zero ou a desordem é suficientemente aumentada no sistema, os estados estendidos sofrem um deslocamento em relação ao centro das bandas de Landau, indo em direção às mais altas energias e, eventualmente, ultrapassando a energia de Fermi. Esse mecanismo é chamado na literatura de levitação de estados estendidos. Nossos resultados permitem uma análise quantitativa. Identificamos os seguintes parâmetros como sendo os relevantes para mapear a levitação: (i) a razão entre escalas de energia ¿ entre a energia de separação dos níveis de Landau e o alargamento do nível devido à desordem; e (ii) a razão entre escalas de comprimento ¿ entre o comprimento magnético e o comprimento de correlação da desordem. Analisando uma vasta gama de parâmetros, uma expressão de escala descrevendo a levitação de estados estendidos é estabelecida neste trabalho. O segundo problema abordado nesta tese é relacionado ao processo de blindagem do potencial de desordem e ao mecanismo de formação dos estados localizados em sistemas Hall quânticos. O trabalho analítico apresentado aqui é motivado por recentes resultados experimentais, que mostram imagens de microscopia com medidas locais do potencial eletrostático e da compressibilidade desses sistemas, evidenciando como se dá o processo de carga de estados localizados por cargas inteiras ou fracionárias (quase-partículas). Em um regime onde o comportamento é dominado por interações Coulombianas, estabelecemos um modelo eletrostático que descreve o estado localizado como sendo uma região compressível (quantum dot ou antidot) envolta por um plano incompressível, usando a aproximação de Thomas-Fermi para tratar as interações. O potencial eletrostático nas vizinhanças da região compressível é calculado, fornecendo o tamanho dos saltos que ocorrem no potencial à medida que cada carga é adicionada ou removida do estado localizado. Além de mostrar como estes saltos se tornam menores com o aumento do índice de Landau, nossos resultados mostram a dependência deles com a altura de observação do potencial (ou seja, a altura da ponta de prova em relação ao gás de elétrons). O modelo apresentado pode ser usado para tratar estados localizados observados nos platôs do efeito Hall quântico inteiro ou fracionário / Abstract: This work is devoted to the study of two problems of current interest in low dimensional quantum systems. Both are related to the process of electron localization in the quantum Hall regime. The first problem refers to the fate of extended states in the limit of low magnetic fields or strong disorder, where the transition from quantum Hall liquid to Hall insulator takes place. A numerical approach to the problem is used, with a 2D lattice model treated in a tight-binding framework, considering both white-noise and Gaussian correlated disorder. We observe that as the magnetic field vanishes or the disorder is sufficiently increased in the system, the extended states are shifted from the Landau band centers, going to higher energies and, eventually, rising above the Fermi energy. This mechanism is referred in the literature as levitation of extended states. Our results allow a quantitative analysis. We identify the following parameters as the relevant ones to map the levitation: (i) the energy scales ratio - between the energy separation of consecutive Landau levels and the level broadening due to disorder; and (ii) the length scales ratio - between the magnetic length and the disorder correlation length. Analyzing a wide range of parameters, a scaling expression describing the levitation of extended states is established. The second problem considered in this thesis is related to the screening of the disorder potential and to the mechanism of formation of localized states in quantum Hall systems. The analytical work we present here is motivated by recent imaging experiments, which probe locally the electrostatic potential and the compressibility of these systems, showing the charging of individual localized states by integer or fractional charges (quasiparticles). For a regime where the behavior is dominated by Coulomb interactions, we set out an electrostatic model describing the localized state as a compressible region (quantum dot or antidot) embebed in an incompressible background, using the Thomas-Fermi approximation to treat the interactions. The electrostatic potential in the vicinity of the compressible region is calculated, providing the size of potential steps as each charge is added or removed from the localized state. Besides from showing how the potential steps get smaller for higher Landau levels, our results show the dependence of these steps with the height of observation (i.e., the distance from the scanning probe to the electron gas). The proposed model can be used to treat localized states observed on integer or fractional quantum Hall plateaus / Doutorado / Física da Matéria Condensada / Doutor em Ciências
57

Anderson transitions on random Voronoi-Delaunay lattices / Anderson-Übergänge auf zufälligen Voronoi-Delaunay-Gittern

Puschmann, Martin 20 December 2017 (has links) (PDF)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed. / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.
58

Application of Projection Operator Techniques to Transport Investigations in Closed Quantum Systems

Steinigeweg, Robin 28 August 2008 (has links)
The work at hand presents a novel approach to transport in closed quantum systems. To this end a method is introduced which is essentially based on projection operator techniques, in particular on the time-convolutionless (TCL) technique. The projection onto local densities of quantities such as energy, magnetization, particles, etc. yields the reduced dynamics of the respective quantities in terms of a systematic perturbation expansion. Especially, the lowest order contribution of this expansion is used as a strategy for the analysis of transport in "modular" quantum systems. The term modular basically corresponds to (quasi-) one-dimensional structures consisting of identical or at least similar many-level subunits. Modular quantum systems are demonstrated to represent many physical situations and several examples are given. In the context of these quantum systems lowest order TCL is shown as an efficient tool which also allows to investigate the dependence of transport on the considered length scale. In addition an estimation for the validity range of lowest order TCL is derived. As a first application a "design" model is considered for which a complete characterization of all available transport types as well as the transitions to each other is possible. For this model the relationship to quantum chaos and the validity of the Kubo formula is further discussed. As an example for a "real" system the Anderson model is finally analyzed. The results are partially verified by the numerical solution of the full time-dependent Schroedinger equation which is obtained by exact diagonalization or approximative integrators.
59

Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen

Meyer, Karsten 15 March 2004 (has links)
In der vorliegenden Arbeit wird die Physik von Schwer-Fermion-Systemen, die durch Lanthanid- und Aktinid-Übergangsmetallverbindungen realisiert werden, untersucht. Die Basis für eine theoretische Beschreibung bildet das Anderson-Gitter, welches das Wechselspiel freier Leitungselektronen und stark korrelierter Elektronen aus lokalisierten f-Orbitalen charakterisiert. Als Zugang zu diesem Modell wird die von Wegner vorgeschlagene Flussgleichungsmethode verwendet, ein analytisches Verfahren, welches auf der Konstruktion eines effektiven Hamilton-Operators basiert. Ein zentrales Thema dieser Arbeit ist die Beschreibung der elektronischen Struktur von Schwer-Fermion-Systemen. Insbesondere wird die Abhängigkeit statischer Größen vom Einfluss verschiedener Systemparameter betrachtet. Die Dynamik kollektiver Anregungen in Schwer-Fermion-Systemen wird an Hand der elektronischen Zustandsdichten und dynamischen magnetischen Suszeptibilitäten untersucht. / The physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations.
60

Anderson transitions on random Voronoi-Delaunay lattices

Puschmann, Martin 05 December 2017 (has links)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications

Page generated in 0.2793 seconds