• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 515
  • 182
  • 39
  • 26
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 762
  • 377
  • 118
  • 117
  • 105
  • 101
  • 92
  • 91
  • 85
  • 73
  • 70
  • 64
  • 63
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Synthèse chimique sur support solide d'ARN 5'-triphosphates et 5'-coiffés / Solid-phase synthesis of 5’-triphosphates RNAs en and 5’-capped RNAs

Thillier, Yann 20 December 2012 (has links)
Les ARN 5'-triphosphates (TP) et 5'-coiffés sont des molécules très convoitées des biologistes pour des études structurales par cristallographie ou comme outils thérapeutiques. Actuellement, ces oligonucléotides sont produits dans de faibles quantités via des procédés enzymatiques dépendants de la nature du nucléoside situé à l'extrémité 5'. Ces travaux se sont donc inscrits dans l'enjeu majeur de mettre au point une méthode chimique sur support solide qui permette l'accès à ces ARN 5'-fonctionnalisés en quantités importantes et sans restriction de séquences.Ce manuscrit rapporte une nouvelle méthode efficace de synthèse sur support solide d'ARN 5'-TP à grande échelle indépendante du nucléotide situé à l'extrémité 5' ou de la longueur de la séquence ARN. De plus, cette stratégie a été étendue avec quelques modifications à la synthèse d'analogues enzymatiquement plus stables de type: ARN 5'-β,γ-méthylène-TP, -(α-P-thio)-TP et -(α-P-thio)-(β,γ-méthylène)-TP.Une deuxième partie présente la synthèse supportée et l'évaluation antivirale de courts adénylates 2-5A 5'-TP portant des groupements enzymolabiles de type acétalesters en position 3' du ribose. Une dernière partie est consacrée à l'élaboration de nouvelles stratégies pour la synthèse d'ARN 5-coiffés. La première approche est un procédé en deux étapes où la structure coiffe (Gppp) est ajoutée sur support solide suivie d'une N7- méthylation enzymatique en solution, alors que la seconde est une méthode plus directe entièrement chimique. Par ailleurs, le couplage chimique de la coiffe sur les ARN supportés nécessite l'emploi d'un acide de Lewis. Ainsi l'utilisation de chlorures métalliques « verts » produits à partir de métaux de transition extraits de la biomasse a été évaluée dans la réaction du couplage de la coiffe sur les ARN. / 5'-triphosphates RNAand 5'-capped RNA are high valuable molecules which serve as important substrates for structural and mechanistic studies or drugs. To date, these oligonucléotides are produced by enzymatic process in low yields with a weak variability of the 5'-end. To overcome this bottleneck we aimed to develop a chemical access on solid-support of these 5'-functionalized RNA in great amount without any limitations in the RNA sequence.Here, a robust, reproducible, and scalable method for the solid-phase synthesis of 5′-triphosphate RNA is presented. Furthermore, this strategy was extended to produce enzymatic resistant analogs of the triphosphate counterpart like: 5'-β,γ-methylene-TP, -(α-P-thio)-TP et -(α-P-thio)-(β,γ-methylene)-TP RNA.In a second part, the solid-phase synthesis of short adenylates 2-5A 5'-TP bearing biolabile acetalester groups on nucleosides 3'-hydroxyls and their antiviral activities are described.Finally, we focused on developing two approaches for the production of 5'-capped RNA. One is a two-steps process which consists in the coupling of the cap structure on solid-support followed by an enzymatic N7-methylation in solution while the other one is a straightforward chemical strategy. Beside, the chemical coupling of the cap moiety on solid-supported RNA requires the use of Lewis acids. Then, the ability of « green » metal chlorides prepared from phytoextracted heavy metals to promote this reaction was studied.
202

ROLE DE DEUX ARN DANS LE CONTROLE DE L'EXPRESSION DES GENES: REGULATIONS DE LA REPLICATION DU PLASMIDE R1 PAR UN ARN ANTISENS ET DES GENES DE VIRULENCE DE STAPHYLOCOCCUS AUREUS PAR L'ARN-III

Kolb, Fabrice 27 September 2001 (has links) (PDF)
L'ARN antisens CopA régule le taux de réplication du plasmide bactérien R1 en contrôlant la synthèse de la protéine initiatrice de la réplication, RepA. CopA se fixe à sa séquence complémentaire (CopT) dans la région 5' non traduite de l'ARNm repA. Cette interaction induit principalement une inhibition de la traduction de l'ARNm repA et favorise sa dégradation par la RNase III. L'efficacité du contrôle est directement reliée à la vitesse de formation du complexe CopA-CopT. Nous avons montré que les deux ARN interagissent via une interaction de type boucle-boucle, mais que celle-ci doit être rapidement convertie pour former un complexe irréversible et fonctionnel. Celui-ci n'est pas un duplexe étendu mais contient une jonction à quatre hélices stabilisée par une longue hélice intermoléculaire. Plusieurs intermédiaires réactionnels menant au complexe stable ont été caractérisés, ainsi que les déterminants structuraux de CopA et de CopT nécessaires à cette conversion qui est essentielle au contrôle. Ainsi, nous proposons un mécanisme de formation du complexe stable qui implique plusieurs étapes dans un ordre hiérarchique. Ce mode d'appariement ARN-ARN insoupçonné apparaît être une règle plutôt qu'une exception. En effet, nous avons montré qu'il est conservé dans de nombreux plasmides homologues à R1. L'ARN-III contrôle l'expression des gènes de virulence chez Staphylococcus aureus. Cette deuxième partie de mon travail de thèse a eu pour but de déterminer la structure secondaire de cet ARN en solution et in vivo, et de définir des domaines fonctionnels. En combinant différentes approches in vitro, nous avons établi que l'ARN-III contient 14 structures en tige-boucle et trois interactions à longue distance. Nous avons également identifié un sous domaine fonctionnel impliqué dans le contrôle de la synthèse de la protéine A.
203

Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses

Alvarado Marchena, Luis Fernando 01 September 2022 (has links)
[ES] La N6-metiladenosina (m6A) es una modificación generalizada en los ARN celulares de diferentes organismos que puede afectar muchos procesos y vías celulares. En las plantas, ocurre mediante un complejo de metilación que contiene varias proteínas: MTA, MTB, FIP37, VIR y HAKAI. Esta modificación es eliminada por desmetilasas de la familia AlkB, mientras que los miembros de la familia ETC son las proteínas mejor descritas que reconocen y procesan los ARN m6A-modificados. Estudios de epitransciptómica viral han revelado un papel igualmente importante de m6A durante la infección por virus; sin embargo, no existe una función pro- o antiviral de m6A generalizada. El laboratorio donde se ha llevado a cabo este trabajo ha sido pionero en el estudio del efecto de m6A en la interacción planta-virus, utilizando como virus modelo el AMV. El AMV pertenece a la familia Bromoviridae, y su genoma está formado por tres (+)ssARN. Los ARN1/2 codifican las subunidades de replicasa (P1 y P2), mientras que el ARN3 codifica la proteína de movimiento (MP) y sirve como molde para la síntesis del sgARN4, que codifica la proteína de cubierta (CP). Al comienzo de esta tesis, nuestro laboratorio ya había informado sobre: la presencia de supuestos motivos m6A en el 3'UTR/RNA3, una región crítica para la replicación de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la relevancia funcional de ALKBH9B para mantener niveles adecuados de m6A/A para la correcta replicación de AMV, la capacidad de la CP de AMV para interactuar con ALKBH9B, posiblemente para usurpar la actividad de ALKBH9B, y la capacidad de las proteínas de Arabidopsis ECT2/3/5 para interactuar con el ARNv de AMV que contienen m6A. Dada la relevancia funcional de m6A en la biología de AMV, en esta tesis se decidió profundizar en el conocimiento de las implicaciones del mecanismo de regulación de m6A en el ciclo infeccioso viral de AMV. Para ello, se decidió: profundizar en la comprensión funcional de la m6A-desmetilasa ALKBH9B, evaluar la función in vivo de los supuestos dos sitios m6A presentes en el 3'UTR/ARN3, y explorar una posible implicación de algunas m6A metiltransferasas en la infección causada por AMV. El mapeo de los subdominios funcionales de atALKBH9B determinó la presencia de IDRs en la región N-terminal, dentro del dominio interno similar a AlkB y en la región C-terminal. Alrededor del 78% del RBD identificado en ALKBH9B está contenido en el IDR C-terminal. Debido a que las IDRs se localizan con frecuencia en proteínas que se someten a LLPS, un proceso que probablemente contribuye a la formación y estabilidad de los gránulos de ARN, es posible que las IDR y la RBD de ALKBH9B puedan actuar de manera cooperativa para promover la formación de gránulos de ARN. El análisis de los putativos motivos DRACH localizados en el bucle de hpB y en el tallo inferior de hpE del 3'UTR/ARN3 de AMV demostró que son sitios críticos involucrados en la replicación in vivo de AMV. La identidad de los residuos 2012A, 2013A y 2014A en el bucle hpB parece ser un requisito estructural clave para la replicación y/o acumulación de AMV. Con respecto a hpE, nuestros resultados determinaron que el supuesto residuo de m6A (1902A), así como el apareamiento de bases del tallo inferior de hpE, también son requisitos esenciales para la síntesis in vivo de ARNs de cadena positiva en AMV. Hasta donde sabemos, esta es la primera evidencia en AMV que muestra que el bucle de hpB y el tallo inferior de hpE están involucrados en la replicación/acumulación viral y la síntesis de ARNs de cadena positiva, respectivamente. Finalmente, en cuanto al estudio de la influencia de las m6A-metiltransferasas en el ciclo de infección viral de AMV, no se determinó un efecto proviral y/o antiviral en el complejo m6A-ARNm metiltransferasa conformado por atMTA:atMTB, ni en el putativo complejo m6A- ARNr metiltransferasa conformado por atMETTL5-like:atTRMT112-like sobre la biología de AMV. / [CA] La N6-metiladenosina (m6A) és una modificació generalitzada en els ARN cellulars de diferents organismes que pot afectar molts processos i vies cellulars. En les plantes, ocorre mitjançant un complex de metilació que conté diverses proteïnes: MTA, MTB, FIP37, VIR i HAKAI. Aquesta modificació és eliminada per desmetilasas de la família AlkB, mentre que els membres de la família ETC són les proteïnes més ben descrites que reconeixen i processen els ARN m6A-modificats. Estudis de epitransciptómica viral han revelat un paper igualment important de m6A durant la infecció per virus; no obstant això, no existeix una funció pro- o antiviral de m6A generalitzada. El laboratori on s'ha dut a terme aquest treball ha sigut pioner en l'estudi de l'efecte de m6A en la interacció planta-virus, utilitzant com a virus model el AMV. El AMV pertany a la família Bromoviridae, i el seu genoma està format per tres (+) ssARN. Els ARN1/2 codifiquen les subunitats de replicasa (P1 i P2), mentre que l'ARN3 codifica la MP i serveix com a motle per a la síntesi del sgARN4, que codifica la CP. Al començament d'aquesta tesi, el nostre laboratori ja havia informat sobre: la presència de suposats motius m6A en el 3'UTR/RNA3, una regió crítica per a la replicació de AMV, la primera m6A-desmetilasa de Arabidopsis (ALKBH9B), la rellevància funcional d'ALKBH9B per a mantindre nivells adequats de m6A/A per a la correcta replicació de AMV, la capacitat de la CP de AMV per a interactuar amb ALKBH9B, possiblement per a usurpar l'activitat d'ALKBH9B, i la capacitat de les proteïnes de Arabidopsis ECT2/3/5 per a interactuar amb el ARNv de AMV que contenen m6A. Donada la rellevància funcional de m6A en la biologia de AMV, en aquesta tesi es va decidir aprofundir en el coneixement de les implicacions del mecanisme de regulació de m6A en el cicle infecciós viral de AMV. Per a això, es va decidir: aprofundir en la comprensió funcional de la m6A-desmetilasa ALKBH9B, avaluar la funció in vivo dels supòsits dos llocs m6A presents en el 3'UTR/ARN3, i explorar una possible implicació d'algunes m6A metiltransferasas en la infecció causada per AMV. El mapatge dels subdominis funcionals de atALKBH9B va determinar la presència de IDRs a la regió N-terminal, dins del domini intern similar a AlkB i a la regió C-terminal. Al voltant del 78% del RBD identificat en ALKBH9B està contingut en el IDR C-terminal. Pel fet que les IDRs es localitzen amb freqüència en proteïnes que se sotmeten a LLPS, un procés que probablement contribueix a la formació i estabilitat dels grànuls d'ARN, és possible que les IDR i la RBD d'ALKBH9B puguen actuar de manera cooperativa per a promoure la formació de grànuls d'ARN. L'anàlisi dels putatius motius DRACH localitzats en el bucle de hpB i en la tija inferior de hpE del 3'UTR/ARN3 de AMV va demostrar que són llocs crítics involucrats en la replicació in vivo de AMV. La identitat dels residus 2012A, 2013A i 2014A en el bucle hpB sembla ser un requisit estructural clau per a la replicació i/o acumulació de AMV. Respecte a hpE, els nostres resultats van determinar que el suposat residu de m6A (1902A), així com l'aparellament de bases de la tija inferior de hpE, també són requisits essencials per a la síntesi in vivo de ARNs de cadena positiva en AMV. Fins on sabem, aquesta és la primera evidència en AMV que mostra que el bucle de hpB i la tija inferior de hpE estan involucrats en la replicació/acumulació viral i la síntesi de ARNs de cadena positiva, respectivament. Finalment, quant a l'estudi de la influència de les m6A-metiltransferasas en el cicle d'infecció viral de AMV, no es va determinar un efecte proviral i/o antiviral en el complex m6A-ARNm metiltransferasa conformat per atMTA:atMTB, ni en el putatiu complex m6A-ARNr metiltransferasa conformat per atMETTL5-like:atTRMT112-like sobre la biologia de AMV. / [EN] N6-methyladenosine (m6A) is a widespread modification on cellular RNAs of different organisms that can impact many cellular processes and pathways. In plants, m6A-methylation is mainly installed by a methylation complex containing several proteins: MTA, MTB, FIP37, VIR, and HAKAI. This modification is removed by demethylases of the AlkB family, and members of the ECT family are the best described proteins that recognize and process m6A-modified RNAs. Studies of viral epitransciptomics have revealed an equally important role of m6A during virus infection; however, there is no global pro- or antiviral role of m6A that can be generalized. The laboratory where this work was carried out has been a pioneer in the study of the effect of m6A on plant-viruses, using AMV as a model-virus. AMV belongs to the Bromoviridae family and, as the rest of the members of this family, its genome consists of three (+)ssRNAs. RNA1 and RNA2 encode the replicase subunits (P1 and P2), whereas RNA 3 encodes the MP and serves as a template for the synthesis of sgRNA 4, which encodes CP. At the beginning of this thesis, our laboratory had already reported on: the presence of putative m6A-motifs in the 3'UTR RNA3, a critical region for AMV replication, the first Arabidopsis m6A-demethylase (ALKBH9B), the functional relevance of ALKBH9B to maintain adequate m6A/A levels for correct AMV replication, the ability of AMV-CP to interact with ALKBH9B, possibly to usurp ALKBH9B activity, and the capability of Arabidopsis ECT2/3/5 to interact with m6A-containing AMV vRNAs. Given the functional relevance of m6A on the biology of AMV, in this thesis it was decided to deepen the knowledge of the implications of the m6A regulation mechanism on the viral infectious cycle of AMV. For this, it was decided: deepen the functional understanding of the m6A-demethylase ALKBH9B, evaluate the in vivo function of the putative two m6A-sites present in the 3'UTR-RNA 3, and explore a possible involvement of some m6A-methyltransferases in infection caused by AMV. We mapped functional subdomains in the atALKBH9B m6A-demethylase required for its binding to the vRNA and to the CP of AMV. Remarkably, it was observed the presence of IDRs in the N-terminal region, within the internal domain like AlkB and in the C-terminal region. About 78% of the RBD identified in ALKBH9B is contained in the C-terminal IDR. In this context, it has been proposed that the capability to specifically target different RNAs in RBPs containing IDRs is due to conformational flexibility as well as the establishment of extended conserved electrostatic interfaces with RNAs. Additionally, due that IDRs are frequently localized in proteins that undergo LLPS, a process that likely contributes to the formation and stability of RNA granules, it's possible that the IDRs and the RBD of ALKBH9B could act cooperatively to promote RNA granule formation. The analysis of the putative DRACH-motifs located in the hpB loop and the lower-stem of hpE in the 3'UTR RNA 3 present hot sites involved in AMV replication in vivo. The identity of residues 2012A, 2013A and 2014A in the hpB loop appears to be a key structural requirement for AMV replication and/or accumulation. Regarding hpE, our results determined that the putative m6A-residue 1902A, as well as the base pairing of the lower-stem of hpE, are also essential requirements for the in vivo plus-strand synthesis in AMV. To our knowledge, this is the first evidence in AMV to show that the hpB loop and the lower-stem of hpE are involved in viral replication/accumulation and plus-strand synthesis, respectively. Finally, regarding the study of the influence of m6A-methyltransferases on the viral infection cycle of AMV, a non-proviral and/or antiviral effect was determined in the m6A-mRNA methyltransferase complex made up of atMTA:atMTB, nor of the putative m6A-rRNA methyltransferase complex made up of atMETTL5-like:atTRMT112-like on the biology of AMV. / Alvarado Marchena, LF. (2022). Insights into the Molecular Mechanisms of the N6-Methyladenosine (m6A) Methylation Machinery in the Regulation of the Infection Cycle of RNA Plant Viruses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185122 / TESIS
204

Transcription of surfaces proteine genes by Trypanosoma brucei/Recherche de facteurs impliqués dans le contrôle de l’expression des gènes d’antigènes de surface chez Trypanosoma brucei

Devaux, Sara 02 February 2007 (has links)
Trypanosoma brucei est un parasite unicellulaire qui est transmis d’un hôte mammifère à l’autre par l’intermédiaire de la mouche Tsé-tsé. Au cours de son cycle de vie, il est donc confronté à des environnements extrêmement différents auxquels il s’adapte en modifiant, entre autres choses, ses antigènes de surface. Dans la mouche, l’antigène de surface exprimé est la PROCYCLINE alors que dans le sang des mammifères, l’antigène exprimé est le VSG. Ces protéines sont importantes pour l’adaptation du parasite à son environnement. L’objet de ce travail était de trouver des facteurs impliqués dans le contrôle de l’expression de ces antigènes de surface. Nous nous sommes donc intéressés aux mécanismes de transcription, impliqués dans la régulation de l’expression des gènes. Chez les autres eucaryotes, les gènes codant pour des protéines sont toujours transcrits par une ARN polymérase de type II (Pol II). Les ARN codant pour des protéines subissent en effet une maturation particulière (épissage et polyadénylation) et la machinerie enzymatique nécessaire à cette maturation est spécifiquement recrutée par la Pol II. Une particularité étonnante des gènes de PROCYCLINE et de VSG est qu’ils sont transcrits par une ARN polymérase de type I (Pol I) mais les transcrits résultants sont maturés comme s’ils étaient transcrits par la Pol II. L’hypothèse à la base de ce travail est que la régulation de l’expression des gènes codant pour la PROCYCLINE et le VSG s’effectue via le recrutement, au niveau de la Pol I, d’un/de facteurs normalement associé(s) à la Pol II. Nous avons donc tenté de trouver un lien entre les machineries Pol I et Pol II du parasite. Pour ce faire, nous nous sommes intéressés d’une part au facteur de transcription TFIIH et d’autre part à la machinerie de transcription Pol II du trypanosome. Le facteur TFIIH est un facteur de transcription qui interagit avec la Pol II mais aussi avec la Pol I chez d’autres eucaryotes. Il nous semblait donc être un bon facteur potentiel de lien entre les deux machineries de transcription. Nous avons dans un premier temps mis en évidence que six des dix sous-unités humaines de ce complexe ont des homologues chez le parasite et que au moins quatre d’entre elles forment un complexe. Nous avons ensuite montré que la présence de TFIIH est importante pour la transcription des gènes Pol II du parasite. Sa fonction dans la transcription des gènes Pol I devra être confirmée. Par ailleurs, nous avons caractérisé la composition du complexe Pol II du parasite ce qui nous permet de conclure que la composition globale de la Pol II du parasite est conservée par rapport à celle de l’homme et de la levure. Nous avons aussi montré que la sous-unité RPB5 qui interagit avec le complexe Pol II n’est pas la même que celle qui interagit avec le complexe Pol I. Le trypanosome possède en effet deux gènes codant pour deux isoformes de RPB5 (RPB5 et RPB5z) alors que la majorité des eucaryotes ne possèdent qu’un seul variant de cette protéine. Nous avons mis en évidence au cours de ce travail que chaque isoforme était spécifique d’un complexe de polymérase particulier. L’isoforme associée à la Pol II et à la Pol III ressemble à la protéine homologue présente chez l’homme et la levure, tandis que l’isoforme associée à la Pol I diverge de cette isoforme canonique. Le même phénomène a été mis en évidence pour la sous-unité RPB6. La présence d’isoformes divergentes spécifiquement associées à la Pol I du parasite pourraient être liées aux capacités qu’à cette holoenzyme de transcrire des gènes codant pour des protéines. Enfin, au cours de ce travail, nous avons montré que l’inhibition de la transcription Pol II perturbait l’expression spécifique de stade des gènes codant pour les antigènes de surface. Bien que le mécanisme sous-jacent reste inconnu, il est possible que l’inhibition de la transcription Pol II, créee artificiellement dans nos expériences, mime ce qui ce passe naturellement lorsque le parasite s’apprête à changer de stade.
205

Mécanisme et origine de l’édition des ARN messagers des mitochondries de plante / Mechanism and origin of plant mitochondria RNA editing

Castandet, Benoît 22 December 2010 (has links)
L’édition des ARN est une exception à la règle de la biologie moléculaire qui stipule que l’information codée par le gène se trouve fidèlement transmise à la protéine. Dans les mitochondries de plante, elle procède par conversion de centaines de cytosines en uraciles par désamination, principalement dans les ARNm. Afin de comprendre le mode de reconnaissance des cytosines par la machinerie d’édition nous avons systématiquement vérifié l’importance des nucléotides -1 et +1 entourant la cytosine cible dans l’édition des transcrits cox2 de blé. Sur cette base, les sites d'édition peuvent être classés en quatre familles: (a) dépendance du résidu +1, (b) dépendance du résidu -1, (c) dépendance des deux résidus et (d) indépendance. Nous avons d’autre part mis en évidence des effets à distance sur le taux de la réaction d’édition, montrant ainsi que certains sites ne sont pas autonomes pour la réaction. L'ensemble des observations nous révèle que le devenir des transcrits a une influence sur l'efficacité de l’édition. Pour le vérifier nous avons construit des gènes cox2 et rps10 dépourvus d'introns. L’efficacité d’édition des transcrits qui ne sont pas soumis à l'épissage est grandement réduite par rapport aux transcrits sauvages, ce qui renforce l’idée que les mécanismes de maturation doivent être interconnectés dans les mitochondries de plante. D’autre part, nous avons montré que l’édition de certains sites introniques pouvait être indispensable à la maturation des transcrits en rétablissant des structures nécessaires à l’épissage. L’exploration de la mécanistique de l’épissage des introns mitochondriaux nous a conduit à mettre au point un test de trans-épissage in organello. Ce test doit permettre de valider expérimentalement les hypothèses ayant trait à la reconnaissance des transcrits et de vérifier le rôle de l’édition dans ce mécanisme. Enfin, la mise en relation de l’édition avec d’autres phénomènes physiologiques touchant les organelles, comme la stérilité mâle cytoplasmique, nous a permis de développer une hypothèse permettant d’expliquer l’émergence et le maintien au cours de l’évolution de ce phénomène chez les plantes. Nous proposons que le conflit nucléo-cytoplasmique a constitué l’élément moteur pour l’apparition de l’édition en permettant l’installation de mutations T en C au niveau de la mitochondrie. La réponse nucléaire a été la correction de ces mutations sur l’ARN mitochondrial, aboutissant à ce que nous appelons aujourd'hui l’édition des ARN. / RNA editing is an exception to the central dogma of molecular biology which states that the information encoded by the gene is faithfully transmitted to the protein. The plant mitochondrial transcriptome undergoes hundreds of specific C-to-U changes by RNA editing, mainly in mRNAs. To understand the mechanism used by the plant to select the C targets on the transcript, we studied the role of the neighbors -1 and +1 nucleotides in wheat cox2 editing sites. Under this scheme, four different recognition patterns can be distinguished: (a) +1 dependency (b) -1 dependency (c) +1/-1 dependency and (d) no dependency on nearest neighbor residues. An important observation was that distal elements can influence the editing efficiency, indicating that some sites are not autonomous for the reaction. We propose that these results could be a consequence of the fate of transcripts during the different maturation steps. To test this hypothesis, we constructed intronless cox2 and rps10 genes. RNA editing was strongly reduced in these constructs, suggesting that efficient RNA processing may require a close interaction of factors engaged in different maturation processes. Our results on editing events in non coding region, particularly in introns, indicate that editing is essential for splicing by remodeling the secondary structure required to excise the intron. To gain insight into the splicing mechanism for scattered mitochondrial genes, we have settled an in organello trans-splicing assay. By this way, it should be possible to decipher the molecular determinants of the reaction and the eventual role of RNA editing in this process. Finally, we proposed a new hypothesis explaining the origin and evolution of RNA editing in plant mitochondria. We assume that the nucleo-cytoplasmic conflict was the driving force allowing the settlement of T-to-C mutations in the mitochondrial genome. The nuclear response was the correction of these mutations on the RNA, i.e. RNA editing.
206

Réorganisation spatio-temporelle de l'architecture nucléaire de fibroblastes normaux et cellules de mélanome : effet du peptide (VGVAPG)3 / Spatiotemporel nucleus reorganization of fibroblasts and melanoma cells : effects of elastin peptide (VGVAPG)3

Chatron-Colliet, Aurore 29 September 2011 (has links)
Le mélanome est un cancer agressif dont la progression est facilitée par la dégradation de la matrice extracellulaire, à la fois par les fibroblastes et les cellules tumorales. Cette dégradation génère des peptides d’élastine, notamment responsables de la prolifération des cellules saines et cancéreuses. Le peptide d’élastine (VGVAPG)3 accélère la reprise et le déroulement du cycle cellulaire de fibroblastes normaux et de cellules de mélanomes préalablement synchronisés (expression de pKi-67, détection de la phase S et quantification d’ADN). L’architecture nucléaire associée à la reprise de la synthèse des ARNm concerne les compartiments nucléaires PML-NBs et domaines SC35, partenaires indissociables de la transcription et de l’épissage, qui sont étudiés, après immunomarquages, en microscopie confocale suivie d’une reconstruction 3D. Les compartiment PML-NBs et domaines SC35 se réorganisent en fonction d’une part des phases du cycle cellulaire et d’autre part de l’activité transcriptionnelle, passant d’une séquestration du SC35 dans les PML-NBs à une interpénétration des deux compartiments. L’analyse quantitative de ces compartiments complète les résultats architecturaux en 3D. Le peptide se fixe sur le complexe récepteur de l’élastine, et induit de l’activation de la voie MEK ½ ERK ½. Un antagoniste de cette fixation (lactose) ainsi que l’inhibition de la voie ERK ½ (UO126) conduisent à l’abolition des effets dus au peptide tant pour le cycle cellulaire que pour l’organisation des PML-NBs et domaines SC35, confirmant ainsi l’implication de ces voies. / Melanoma is an aggressive cancer for which invasion is facilitated by degradation of the extracellular matrix, both by normal fibroplasts and tumor cells. This degradation generates elastin peptides, in particular responsible for the proliferation of normal and tumor cells. The elastin peptide (VGVAPG)3. accelerates recovery and progression in cell cycle of normal fibroblasts and melanoma cells previously synchronized (expression of pKi-67, S-phase detection and quantification of DNA). The nuclear architecture associated with the recovery of the synthesis of mRNA on the PML-NBs nuclear compartments and SC35 domains, inseparable partners of transcription and splicing, which are studied after immunostaining by confocal microscopy followed by 3D reconstruction. Compartments PML-NBs and SC35domains are reorganized according of the phases of the cell cycle and also the transcriptional activity, from SC35 sequestration in PML-NBs to an interpenetration of the two compartments. The quantitative analysis of these compartments consolidates the 3D architectural results. The peptide binds to the elastin receptor complex and induceds the activation of the MEK 1/2 ERK 1/2. An antagonist of the fixation (lactose) and inhibition of ERK 1/2 (UO126) lead to the abolition of effects due to the peptide for both the cell cycle and the organized of PML-NBs and SC35 domains, confirming the involvement of these pathways.
207

Biochemical insights into SARS-CoV replication

Subissi, Lorenzo 21 February 2014 (has links)
Mon travail de thèse s'est focalisé sur la machinerie enzymatique impliquée dans la réplication du génome ARN du Syndrome Respiratoire Aigu Sévère-Coronavirus (SRAS-CoV). J'ai montré in vitro que l'activité ARN polymérase ARN-dépendante (RdRp) portée par nsp12 nécessite le complexe nsp7/nsp8, qui agit comme facteur de processivité. Grâce à ce complexe polymérase hautement actif, j'ai pu en suite étudier le mécanisme de "proofreading" (correction d'épreuve) associé aux coronavirus, pour lequel seulement des preuves indirectes avaient été assemblées. En effet, les coronavirus codent pour une activité exonucléase 3'-5' (nsp14-ExoN) qui lorsqu'elle est absente, entraine 14-fois plus d'erreurs de réplication en contexte cellulaire. In vitro, nous avons pu montrer que nsp14-ExoN est capable d'exciser l'ARN double brin ainsi qu'un nucléotide mésapparié en 3' de l'ARN en cours d'élongation. J'ai pu apporter pour la première fois une preuve directe de l'existence d'un système de réparation des erreurs au cours de la synthèse, mené par le complexe nsp7/nsp8/nsp12/nsp14. En effet, le complexe nsp7/nsp8/nsp12 ralentit jusqu'à 30-fois quand il rajoute une base mésappariée. Par sequençage, nous avons pu montrer la réparation de cette base mésappariée en presence de nsp14. Enfin, grâce à ce système in vitro nous avons une base pour comprendre l'inefficacité de la ribavirine sur des patients atteints du SRAS. En effet, la ribavirine, incorporée par le complexe polymérase, serait également excisée par nsp14, annihilant tout potentiel effet mutagenique. En conclusion, ce système va permettre de guider le développement d'antiviraux de type nucleoside analogues contre les coronavirus. / This work focused on the enzymatic machinery involved in Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) RNA replication and transcription. Firstly, I established a robust in vitro polymerase assay with the canonical SARS-CoV RNA-dependent RNA polymerase (RdRp) nsp12. I showed that nsp12, in order to engage processive RNA synthesis, needs two viral proteins, i.e. nsp7 and nsp8. This nsp7/nsp8 complex not only activates nsp12-RdRp, but also acts as a processivity factor. Thus, using this processive polymerase complex, I could investigate SARS-CoV proofreading for which only indirect evidences were reported. Indeed, coronaviruses encode for a 3'-5' exonuclease (nsp14-ExoN), putatively involved in a mechanism that proofreads coronavirus RNA during viral replication. We first showed in vitro that nsp14-ExoN, which is stimulated by nsp10, is able to excise specifically dsRNA as well as all primer/templates bearing a 3' mismatch on the primer. Moreover, we could confirm by sequencing that a RNA 3' mismatch was indeed corrected in vitro by the nsp7/nsp8/nsp12/nsp14 complex. We provide for the first time direct evidence that nsp14-ExoN, in coordination with the polymerase complex, is able to proofread RNA. Interestingly, using this in vitro system we found an element that could possibly explain the inefficacy of ribavirin therapeutic treatment on SARS-patients: ribavirin, which is incorporated by the SARS-CoV polymerase complex, would also be excised by nsp14. In conclusion, this system will drive future development of antivirals, particularly of the nucleoside analogue type, against coronaviruses.
208

RNA/RNA interactions involved in the regulation of Benyviridae viral cicle / Interactions ARN/ARN impliquées dans la régulation du cycle viral des Benyviridae

Dall'Ara, Mattia 18 May 2018 (has links)
Pour préserver l’intégrité de leur génome, les virus multipartite à ARN nécessitent une forte multiplicité d’infection qui représente un coût biologique inapproprié en terme de réplication virale. Dans cette étude, un réseau d’interaction entre ARN génomiques (ARNg), constitué d’au moins un type de chaque ARNg est proposé. Un tel réseau permet de réduire les coûts biologiques liés à la réplication en assurant une reconnaissance intermoléculaire et une mobilisation d’un complexe RNP modulaire maintenant l’intégrité du génome. Un tel complexe est considéré comme l’unité infectieuse mobile assurant la dissémination du virus dans la plante entière. Le but de cette thèse a été de démontrer l’existence d’interactions entre les ARNg du beet necrotic yellow vein virus (BNYVV) et de déterminer l’incidence de ces interactions sur le cycle viral. Une formule génomique a été déterminée pour différentes plantes et tissus. Les ARNg ont tous été co-détectés dans des cellules isolées issues de tissus infectés. Un domaine d’interaction entre l’ARN1 et 2 a été identifié in vitro et in silico puis évaluée in vivo par des approches de mutagenèse et de complémentation. / Multipartite RNA virus condition to provide a complete set of genomic segments in each infected cell implies a high level of MOI that results in an unsustainable biological cost in terms of viral replication. In the proposed model, to minimize the cost of the genome integrity preservation, a network of RNA/RNA interactions determines the recognition and the mobilization of at least one of each genomic RNAs in a modular RNP complex. Such complex must be considered as the mobile infectious unit of the segmented genome during viral spread in the plant. The Aim of this thesis was to experimentally determine the existence of RNA/RNA interactions between BNYVV RNAs and their implication in the viral cycle. BNYVV genomic segments have been co-detected within isolated single cells from systemic tissues where they accumulate to reach set point genome formulas. In the model where vRNAs interact each other to form the minimal mobile infective unit, RNA1 and RNA2 interaction domain has been identified in silico and in vitro. The rationale of such an interaction has been provided in vivo using BNYVV and Beet soil-borne mosaic virus chimeras.
209

Nucleotide Excision Repair at the crossroad with transcription / La réparation par excision de nucléotides à la croisée des chemins avec la transcription

Cerutti, Elena 10 May 2019 (has links)
L’intégrité de l’ADN est continuellement remise en question par divers agents endogènes et exogènes (p. ex., la lumière ultraviolette, la fumée de cigarette, la pollution de l’environnement, les dommages oxydatifs, etc.) qui causent des lésions de l’ADN qui interfèrent avec les fonctions cellulaires correctes. Le mécanisme de réparation par excision de nucléotides (NER) supprime les adduits d’ADN déformantes l’hélice tels que les lésions induites par les UV et il existe dans deux sous voies distinctes selon l’endroit où les lésions de l’ADN sont situées dans le génome. L’une de ces sous voies est directement liée à la transcription de l’ADN (TCR) par l’ARN Polymérase 2 (ARNP2). Dans la première partie de ce travail, nous avons démontré qu’un mécanisme NER entièrement compétent est également nécessaire pour la réparation de l’ADN ribosomique (ADNr), transcrite par ARN Polymérase 1 (ARNP1) et représentant 60 % de la transcription cellulaire totale. De plus, nous avons identifié et clarifié le mécanisme de deux protéines responsables du repositionnement nucléolaire dépendant des UV de l’ARNP1 et de l’ADNr observé pendant la réparation. Dans la deuxième partie de ce travail, nous avons étudié la fonctionne moléculaire de la protéine XAB2 lors de la réparation NER et nous avons démontré son implication dans le processus TCR. De plus, nous avons également montré la présence de XAB2 dans un complexe d’épissage du pré-ARNm. Enfin, nous avons décrit l’impact de XAB2 sur la mobilité de l’ARNP2 lors des premières étapes de la réparation TCR, suggérant ainsi un rôle de XAB2 dans le processus de reconnaissance des lésions / The integrity of DNA is continuously challenged by a variety of endogenous and exogenous agents (e.g. ultraviolet light, cigarette smoke, environmental pollution, oxidative damage, etc.) that cause DNA lesions which interfere with proper cellular functions. Nucleotide Excision Repair (NER) mechanism removes helix-distorting DNA adducts such as UV-induced lesions and it exists in two distinct sub-pathways depending where DNA lesions are located within the genome. One of these sub pathways is directly linked to the DNA transcription by RNA Polymerase 2 (TCR). In the first part of this work, we demonstrated that a fully proficient NER mechanism is also necessary for repair of ribosomal DNA, transcribed by RNA polymerase 1 and accounting for the 60 % of the total cellular transcription. Furthermore, we identified and clarified the mechanism of two proteins responsible for the UV-dependent nucleolar repositioning of RNAP1 and rDNA observed during repair. In the second part of this work, we studied the molecular function of the XAB2 protein during NER repair and we demonstrated its involvement in the TCR process. In addition, we also shown the presence of XAB2 in a pre-mRNA splicing complex. Finally, we described the impact of XAB2 on RNAP2 mobility during the first steps of TCR repair, thus suggesting a role of XAB2 in the lesion recognition process
210

Le complexe MILI/mHEN1 et études fonctionnelles des protéines DrTDRD1 et DrMOV10L

Eckhardt, Stephanie 12 April 2011 (has links) (PDF)
Les protéines Argonaute sont associées à de petits ARN et participent à la régulation de l'expression des gènes. Les protéines Piwi, sous-famille des protéines Argonaute, sont principalement exprimées dans les lignées germinales. Elles recrutent les piRNA (Piwi-interacting RNA) et assurent la stabilité du génome en inhibant les transposons. Une caractéristique des piRNA est la présence de groupes 2'-O-methyl à l'extrémité 3'. Les microARN et siRNA (small interfering RNA) de plantes, comme les siRNA de Drosophyle portent aussi cette modification qui est catalysée par l'ARN méthyl-tranférase HEN1. Son homologue murin, mHEN1, méthyle in vitro de petits ARN, mais son rôle dans la voie des piRNA n'avait pas encore été envisagé. Mon objectif était de relier mHEN1 à la voie des piRNA. J'ai démontré que mHEN1 interagit directement avec la partie N-ter de MILI mais pas avec les autres protéines Piwi de souris. La partie N-ter de MILI porte des arginines méthylées. J'ai démontré que l'interaction ne dépendait pas de la présence de cette modification, ce qui suggère que mHEN1 intervient avant la modification de MILI. Par imagerie cellulaire j'ai montré la compartimentation de HEN1 et des protéines Piwi dans des granules cytoplasmiques différents. Parallèlement, afin de caractériser les éléments de la voie piRNA, j'ai développé un nouveau modèle d'étude basé sur des embryons de poisson zèbre (Danio rerio). Ainsi, j'ai évalué le rôle de deux protéines interagissant avec les protéines Piwi, TDRD1 (Tudor-domain containing) et l'hélicase MOV10l décrits chez la souris mais pas chez le poisson zèbre. J'ai montré que l'expression de DrTDRD1, spécifique à la lignée germinale, dépend de sa partie 3'UTR. La réduction de l'expression de DrMOV10l, obtenue grâce à l'utilisation de morpholinos, entraîne la dérépression des éléments rétrotransposables des embryons en développement. Cette technique de Knock Down sera utilisée pour identifier de nouveaux éléments de la biogenèse des piRNA.

Page generated in 0.0492 seconds