191 |
Transcriptional Regulatory Logic of Cilium Formation in C. ElegansBrocal Ruiz, Rebeca 03 March 2022 (has links)
[ES] Los cilios son estructuras eucariotas complejas conservadas evolutivamente que, proyectando desde la superficie de las células, desempeñan un gran número de funciones biológicas. Los cilios se clasifican tradicionalmente en móviles o sensoriales y en su composición intervienen cientos de proteínas. Este conjunto de genes que codifican para los componentes ciliares se conoce como cilioma. Las mutaciones en el cilioma subyacen a un grupo cada vez mayor de enfermedades multisistémicas altamente pleiotrópicas denominadas globalmente como ciliopatías. Estas enfermedades se caracterizan, entre otros síntomas, por retraso mental, defectos sensoriales y/o trastornos metabólicos. A pesar de que se estima que 1 de cada 1.000 personas está afectada por estas enfermedades, las bases moleculares de las ciliopatías son todavía poco conocidas.
El adecuado ensamblaje y funcionalidad del cilio requieren de la expresión estrechamente coordinada de los componentes del cilio; sin embargo, se sabe poco sobre la lógica reguladora que controla la transcripción del cilioma. La mayoría de los genes del cilioma son compartidos tanto por cilios móviles como sensoriales. Los factores de transcripción (FTs) de la familia RFX tienen un papel evolutivamente conservado en la regulación transcripcional del cilioma tanto móvil como sensorial. En los vertebrados, la transcripción del cilioma móvil también está regulada directamente por FoxJ1, un FT de la familia forkhead (FKH). Sin embargo, hasta la fecha, se desconocen los FTs que actúan junto a RFX en la transcripción del cilioma sensorial en cualquier organismo.
En este trabajo, hemos identificado a FKH-8, un FT de la familia FKH, como selector terminal del cilioma sensorial de C. elegans. fkh-8 se expresa de forma consistente en las sesenta neuronas sensoriales ciliadas de C. elegans, se une a las regiones reguladoras de los genes del cilioma sensorial, también es necesario para la correcta expresión de los genes del cilioma y actúa de forma sinérgica con el conocido regulador maestro de la ciliogénesis DAF19/RFX. En consecuencia, los mutantes para fkh-8 muestran una amplia gama de defectos de comportamiento en una plétora de paradigmas sensoriales, incluyendo la olfacción, la gustación y la mecano-sensación.
Así, hemos identificado, por primera vez, un FT que actúa junto con los FTs de la familia RFX en la regulación directa del cilioma sensorial. Además, nuestros resultados, junto con trabajos anteriores, muestran que los FTs FKH y RFX actúan conjuntamente en la regulación de los cilios tanto móviles como sensoriales, lo que sugiere que esta lógica reguladora podría ser un rasgo evolutivo antiguo anterior a la subespecialización funcional de los cilios. Finalmente, esperamos que los resultados de nuestro trabajo ayuden a entender mejor las bases biológicas de las ciliopatías huérfanas / [CA] Els cilis són estructures eucariotes complexes conservades evolutivament que, projectant des de la superfície de les cèl·lules, exerceixen un gran nombre de funcions biològiques. Els cilis es classifiquen tradicionalment en mòbils o sensorials i en la seua composició intervenen centenars de proteïnes. Aquest conjunt de gens que codifiquen per als components ciliars es coneix com el cilioma. Les mutacions en el cilioma subjauen a un grup cada vegada major de malalties multisistèmiques altament pleiotròpiques denominades globalment com ciliopaties. Aquestes malalties es caracteritzen, entre altres símptomes, per retard mental, defectes sensorials i/o trastorns metabòlics. A pesar que s'estima que 1 de cada 1.000 persones està afectada per aquestes malalties, les bases moleculars de les ciliopaties són encara poc conegudes.
L'adequat assemblatge i funcionalitat del cili requereixen de l'expressió estretament coordinada dels components del cili; no obstant això, se sap poc sobre la lògica reguladora que controla la transcripció del cilioma. La majoria dels gens del cilioma són compartits tant per cilis mòbils com sensorials. Els factors de transcripció (FTs) de la família RFX tenen un paper evolutivament conservat en la regulació transcripcional del cilioma tant mòbil com sensorial. En els vertebrats, la transcripció del cilioma mòbil també està regulada directament per FoxJ1, un FT de la família forkhead (FKH). No obstant això, fins hui, es desconeixen els FTs que actuen al costat de RFX en la transcripció del cilioma sensorial en qualsevol organisme.
En aquest treball, hem identificat a FKH-8, un FT de la família FKH, com a selector terminal del cilioma sensorial de C. elegans. fkh-8 s'expressa de manera consistent en les seixanta neurones sensorials ciliades de C. elegans, s'uneix a les regions reguladores dels gens del cilioma sensorial, també és necessari per a la correcta expressió dels gens del cilioma i actua de manera sinèrgica amb el conegut regulador mestre de la ciliogènesi DAF-19/RFX. En conseqüència, els mutants per a fkh-8 mostren una àmplia gamma de defectes de comportament en una plètora de paradigmes sensorials, incloent la olfacció, la gustació i la mecano-sensació.
Així, hem identificat, per primera vegada, un FT que actua juntament amb els FTs de la família RFX en la regulació directa del cilioma sensorial. A més, els nostres resultats, juntament amb treballs anteriors, mostren que els FTs FKH i RFX actuen conjuntament en la regulació dels cilis tant mòbils com sensorials, la qual cosa suggereix que aquesta lògica reguladora podria ser un tret evolutiu antic anterior a la subespecialització funcional dels cilis. Finalment, esperem que els resultats del nostre treball ajuden a entendre millor les bases biològiques de les ciliopaties òrfenes. / [EN] Cilia are complex evolutionary conserved eukaryotic structures that, projecting from cell surfaces, perform a variety of biological roles. Cilia are traditionally classified into motile or sensory and hundreds of proteins take part in their composition. This set of genes coding for ciliary components is known as the ciliome. Mutations in the ciliome underlie an ever-growing group of highly pleiotropic multisystemic diseases globally termed as ciliopathies. These diseases are characterized, among other symptoms, by mental retardation, sensory defects and/or metabolic disorders. Despite an estimated 1 in 1,000 people affected by these diseases, the molecular bases of the ciliopathies are still poorly understood.
Proper cilium assembly and functionality requires the tightly co-regulated expression of ciliary components; however, little is known about the regulatory logic controlling ciliome transcription. Most ciliome genes are shared between motile and sensory cilia. RFX transcription factors (TFs) have an evolutionarily conserved role in the transcriptional regulation of both motile and sensory ciliome. In vertebrates, transcription of motile ciliome is also directly regulated by FoxJ1, a Forkhead (FKH) TF. However, to date, TFs working together with RFX in the transcription of the sensory ciliome are unknown in any organism.
In this work, we have identified FKH-8, a FKH TF, as a terminal selector of the sensory ciliome in C. elegans. fkh-8 is consistently expressed within the sixty ciliated sensory neurons of C. elegans, it binds the regulatory regions of the sensory ciliome genes, it is also required for correct ciliome gene expression and acts synergistically with the known master regulator of the ciliogenesis DAF-19/RFX. Accordingly, fkh-8 mutants display a wide range of behavioural defects in a plethora of sensory mediated paradigms, including olfaction, gustation, and mechano-sensation.
Thus, we have identified, for the first time, a TF that acts together with RFX TFs in the direct regulation of the sensory ciliome. Moreover, our results, together with previous work, show that FKH and RFX TFs act together in the regulation of both motile and sensory cilia, suggesting this regulatory logic could be an ancient trait pre-dating functional sub-specialization of cilia. Finally, we hope our results could help better understand the biological basis of orphan ciliopathies. / This thesis project has been made possible thanks to a pre-doctoral fellowship from the FPI Programme (BES-2015-072799) conferred
by the (now extinct) Spanish Ministry of Economy & Competitivity. The following grants also provided a funding frame throughout the
whole research process: “Estudio de los mecanismos transcripcionales que regulan la diferenciación de las neuronas monoaminérgicas y su conservación evolutiva.” SAF2014-56877-R “Dissecting the gene regulatory mechanisms that generate serotonergic neurons and their link to mental disorders.” ERC-St 281920 “Programas de regulación transcripcional asociados a enfermedades genéticas.” SAF2017-84790-R “Regulatory rules and evolution of neuronal gene expression.” ERC-Co 101002203 / Brocal Ruiz, R. (2022). Transcriptional Regulatory Logic of Cilium Formation in C. Elegans [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181667
|
192 |
Finite-element analysis of inner ear hair bundles: a parameter study of bundle mechanicsDuncan, Robert Keith 29 September 2009 (has links)
Inner ear hair cells have been identified as the sites of mechanoelectrical transduction from a mechanical event (e.g. hearing, motion) to an electrical event (e.g. neural response). Deflection of bundles of hair-like stereocilia extending from these cells has been associated with the transduction process. Stereocilia bundle structure and stiffness controls deflection and thus the fundamental sensitivity of the transduction process. The finite-element method was used along with analytical techniques to characterize individual stereocilium and stereocilia bundle stiffnesses. A three ‘stack’ bundle with a Young’s modulus of 3 GPa (F-actin protein) and Poisson’s ratio of 0.4 (nearly incompressible) resulted in a stiffness of K = 2.1 x 10⁻³ N/m. This value is within the range of experimentally determined stiffmesses. Tip-link and subapical band interconnecting structures each contribute significantly to bundle stiffness and each could act as the gating-spring in transduction models, which propose gating structures as a means of regulating ionic activity and therefore neural activity. Stiffness depends most strongly on individual stereocilium geometry and material description, tip-link orientation and material description, and stereocilia bundle width. Stiffness depends least on stereocilia height variations and subapical bands configuration. Linear analysis was reliable up to deflections of 3.5 um, the upper limit of physical response. Preliminary dynamic response indicates a natural frequency of 382 kHz for the vibration mode resembling physical deformation behavior. Future models should include hexagonal bundle arrangements, transversely isotropic stereocilia material descriptions, and viscoelastic tip-link behavior. / Master of Science
|
193 |
Spatial mapping of motile cilia proteins in respiratory and female reproductive tissuesBertilsson, Filippa January 2024 (has links)
Motile cilia play critical roles in the human body, including expelling mucus from the lungs and facilitating the transport of oocytes and sperm through the fallopian tubes. Understanding the complex structure and motility of cilia, as well as the diseases associated with them, is of big importance. This study investigates the proteins expressed in ciliated cells from both respiratory and reproductive tissues using multiplex immunofluorescence. We determined the subcellular localization of 134 proteins in the fallopian tube, endometrium, cervix, nasopharynx, and bronchus, focusing on five subcellular regions: the cilia tip, transition zone, basal body, cytoplasm, and nucleus. This analysis was conducted using an automated image analysis method developed specifically for this project. Our findings revealed a high correlation in protein expression across all tissues, although several proteins exhibited distinct expression patterns between different tissues. Notably, the fallopian tube showed a higher correlation with the nasopharynx and bronchus than with the endometrium and cervix. Within these proteins, six gene clusters were identified, with the two largest clusters being strongly associated with ciliary structure. This study enhances our understanding of motile ciliary structures and ciliated cells, identifying key proteins for further research into cilia motion, function, and related diseases.
|
194 |
Etude de la diversité phénotypique et génotypique des dyskinésies ciliaires primitives : vers une prise en charge personnalisée / Study of the phenotype and genotype diversity in primary ciliary dyskinesia : tomward a personalized careBlanchon, Sylvain 09 December 2016 (has links)
Résumé non transmis / Summary not transmitted
|
195 |
Tetratricopeptide 39C (TTC39C) Is Upregulated During Skeletal Muscle Atrophy and is Necessary for Muscle Cell DifferentiationHayes, Caleb 01 January 2018 (has links)
Ttc39c has been identified as a novel gene in skeletal muscle that is upregulated in response to neurogenic atrophy in mice. Quantitative PCR and Western blot analysis confirmed that Ttc39c is expressed in both proliferating and differentiated muscle cells. Furthermore, comparison of Ttc39c expression in undifferentiated and differentiated C2C12 cells demonstrated that Ttc39c levels peak in early differentiation, but decreases as cells become fully differentiated myotubes. The transcriptional regulation of Ttc39c was examined by cloning promoter fragments of the gene and fusing it with the SEAP reporter gene. The Ttc39c reporter gene constructs were transfected into muscle cells and confirmed to have significant transcriptional activity in cultured muscle cells and were also found to be transcriptionally repressed in response to ectopic expression of myogenic regulatory factors (MRF). Furthermore, conserved E-box elements in the proximal promoter region were identified, mutated, and analyzed for their role in the transcriptional regulation of Ttc39c expression. Mutation of the conserved E-box sequences reduced the activity of the Ttc39c reporter gene, suggesting that these elements are potentially necessary for full Ttc39c expression. To determine the sub-cellular location of Ttc39c in muscle cells, the Ttc39c cDNA was fused with the green fluorescent protein (GFP), expressed in muscle cells, and visualized by confocal microscopy revealing that Tct39c is localized to the cytoplasm of proliferating myoblasts and differentiating myotubes. Furthermore, Ttc39c appears to localize to the microtubule network and differentiating muscle cells developed elongated primary cilia in response to Ttc39c ectopic expression. Additionally, Ttc39c overexpression resulted in impaired muscle cell differentiation, attenuated Hedgehog and MAP Kinase signaling, and increased expression of IFT144, a component of the intraflagellar transport complex A involved in retrograde movement in primary cilia. Interestingly, Ttc39c knockdown also resulted in abrogated muscle cell differentiation and impaired Hedgehog and MAP Kinase signaling, but did not affect IFT144 expression levels. These results suggest that muscle cell differentiation is sensitive to aberrant Ttc39c expression, that Ttc39c is necessary for proper muscle cell differentiation, and that Ttc39c may participate in retrograde transport of the primary cilia of developing muscle cells.
|
196 |
Rôle des microARN dans la différenciation de l'épithélium respiratoire humain : caractérisation de miR-449 comme acteur central de la multiciliogenèse conservé chez les vertébrés / Role of microRNAs in human airway epithelium differentiation : characterization of miR-449 as a central player in multiciliogenesis conserved in vertebratesChevalier, Benoît 17 December 2013 (has links)
Chez les vertébrés, le battement coordonné des cils motiles présents par centaines à la surface apicale des cellules multiciliées (MCC) est requis pour propulser directionnellement les fluides biologiques à l’intérieur de certains organes (voies respiratoires, ventricules cérébraux, trompes utérines ou certaines structures embryonnaires). De nombreuses pathologies humaines sont associées à des défauts ciliaires ou à une perte des MCC (dyskinésies ciliaires, mucoviscidose, asthme,...). Dans ce contexte, mon travail de thèse a consisté à élucider les mécanismes complexes contrôlant la différenciation des MCC et donc la formation des cils motiles (multiciliogenèse). Par des approches de génomiques fonctionnelles à partir de deux modèles d’épithéliums multiciliés évolutivement éloignés (épithélium respiratoire humain et épiderme d’embryon de Xénope) nous avons identifié la famille des microARN (petits ARN non-codants régulateurs de l’expression génique) miR-449 comme majoritairement exprimée dans les MCC. Nous avons montré que miR-449 contrôle la multiciliogenèse i) en bloquant le cycle cellulaire, ii) en réprimant directement la voie de signalisation Notch et iii) en inhibant l’expression de la petite GTPase R-Ras. Enfin, nos travaux montrent que l’ensemble de ces mécanismes est conservé chez les vertébrés. En conclusion, miR-449 est un nouveau régulateur clé de la multiciliogenèse conservé au cours de l’évolution. Nos résultats pourraient ouvrir la voie à de nouvelles stratégies thérapeutiques utilisant des petits ARN régulateurs dans le traitement de certaines pathologies associées à des défauts ciliaires. / In vertebrates, the coordinated beating of hundreds of motile cilia present at the apical surface of multiciliated cells (MCC) is required for propel directionally flow of biological fluids inside some organs (airways, cerebral ventricles, fallopian tubes or some embryonic structures). Many human diseases are associated with ciliary defects or loss of MCC (ciliary dyskinesia, cystic fibrosis, asthma ...). In this context, my thesis has sought to elucidate the complex mechanisms that control the differentiation of MCC and thus the formation of motile cilia (multiciliogenesis). By functional genomic approaches from two evolutionarily distant models of multiciliated epithelia (human respiratory epithelium and epidermis of Xenopus embryo) we identified the miR-449 family of microRNAs (small non-coding RNAs regulating gene expression) as mainly expressed in MCC. Then, we showed that miR-449 controlled multiciliogenesis by i) blocking the cell cycle ii) directly suppressing the Notch pathway and iii) by inhibiting the expression of the small GTPase R-Ras. Finally, we have demonstrated that all these mechanisms were conserved in vertebrates. In conclusion, miR-449 is a new key and conserved regulator of multiciliogenesis. Our findings could pave the way for new therapeutic strategies using small regulatory RNAs in the treatment of several diseases associated with ciliary defects.
|
197 |
Simulations numériques du transport et du mélange de mucus bronchique par battement ciliaire métachronal / Numerical simulations of the transport and mixing of bronchial mucus by metachronal cilia wavesChateau, Sylvain 19 November 2018 (has links)
La clairance mucociliaire est un processus physico-chimique qui sert à transporter et éliminer le mucus bronchique. Pour cela, des milliards d'appendices de taille micrométrique, que l'on nomme cils, recouvrent l'épithélium respiratoire. Ces cils propulsent le mucus en suivant un motif périodique comprenant une phase de poussée où leur pointe peut pénétrer dans le mucus, et une phase de récupération où ils sont totalement immergés dans le fluide périciliaire. Un dysfonctionnement de ce processus peut engendrer de nombreux problèmes de santé. Il a été observé expérimentalement que les cils ne battent pas aléatoirement, mais synchronisent leurs battements avec leurs voisins, formant ainsi des ondes métachronales. Toutefois, les observations in vivo sont extrêmement difficiles à réaliser, et les propriétés de ces ondes restent mal connues. Dans cette thèse, nous utilisons un solveur Lattice Boltzmann - Frontière Immergée afin de reproduire un épithélium bronchique et étudier l'émergence, ainsi que les capacités de transports et de mélanges, de ces ondes / The mucociliary clearance process is a physico-chemical process which aims is to transport and eliminate bronchial mucus. To do so, billions of micro-sized appendages, called cilia, cover the respiratory epithelium. These cilia propel the mucus by performing a periodical pattern composed of a stroke phase where their tips can enter the mucus layer, and a recovery phase where the cilia are completely immersed in the periciliary liquid layer. A failure of this process may induce numerous health problems. It has been experimentally observed that cilia do not beat randomly, but instead adapt their beatings accordingly to their neighbours, forming metachronal waves. However, in vivo observations are extremely difficult to perfom, and the properties of these waves remain poorly understood. In this thesis, we use a Lattice Boltzmann - Immersed Boundary solver to reproduce a bronchial epithelium and study the emergence, as well as the transport and mixing capacities, of these waves
|
198 |
ACF7 DEFICIENCY DOES NOT IMPAIR AUDITORY HAIR CELL DEVELOPMENT OR HEARING FUNCTIONGilbert, Benjamin Lawrence 21 June 2021 (has links)
No description available.
|
199 |
Dynamics of Cilia and Flagella / Bewegung von Zilien und GeißelnHilfinger, Andreas 14 January 2006 (has links) (PDF)
Cilia and flagella are hair-like appendages of eukaryotic cells. They are actively bending structures that exhibit regular beat patterns and thereby play an important role in many different circumstances where motion on a cellular level is required. Most dramatic is the effect of nodal cilia whose vortical motion leads to a fluid flow that is directly responsible for establishing the left-right axis during embryological development in many vertebrate species, but examples range from the propulsion of single cells, such as the swimming of sperm, to the transport of mucus along epithelial cells, e.g. in the ciliated trachea. Cilia and flagella contain an evolutionary highly conserved structure called the axoneme, whose characteristic architecture is based on a cylindrical arrangement of elastic filaments (microtubules). In the presence of a chemical fuel (ATP), molecular motors (dynein) exert shear forces between neighbouring microtubules, leading to a bending of the axoneme through structural constraints. We address the following two questions: How can these organelles generate regular oscillatory beat patterns in the absence of a biochemical signal regulating the activity of the force generating elements? And how can the beat patterns be so different for apparently very similar structures? We present a theoretical description of the axonemal structure as an actively bending elastic cylinder, and show that in such a system bending waves emerge from a non-oscillatory state via a dynamic instability. The corresponding beat patterns are solutions to a set of coupled partial differential equations presented herein.
|
200 |
Dynamics of Cilia and FlagellaHilfinger, Andreas 07 February 2006 (has links)
Cilia and flagella are hair-like appendages of eukaryotic cells. They are actively bending structures that exhibit regular beat patterns and thereby play an important role in many different circumstances where motion on a cellular level is required. Most dramatic is the effect of nodal cilia whose vortical motion leads to a fluid flow that is directly responsible for establishing the left-right axis during embryological development in many vertebrate species, but examples range from the propulsion of single cells, such as the swimming of sperm, to the transport of mucus along epithelial cells, e.g. in the ciliated trachea. Cilia and flagella contain an evolutionary highly conserved structure called the axoneme, whose characteristic architecture is based on a cylindrical arrangement of elastic filaments (microtubules). In the presence of a chemical fuel (ATP), molecular motors (dynein) exert shear forces between neighbouring microtubules, leading to a bending of the axoneme through structural constraints. We address the following two questions: How can these organelles generate regular oscillatory beat patterns in the absence of a biochemical signal regulating the activity of the force generating elements? And how can the beat patterns be so different for apparently very similar structures? We present a theoretical description of the axonemal structure as an actively bending elastic cylinder, and show that in such a system bending waves emerge from a non-oscillatory state via a dynamic instability. The corresponding beat patterns are solutions to a set of coupled partial differential equations presented herein.
|
Page generated in 0.0239 seconds