• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 23
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 86
  • 34
  • 32
  • 30
  • 28
  • 22
  • 19
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hjullyft

Bergelin, Magnus, Eriksson, Patrik January 2007 (has links)
<p>The graduation essay has been carried out in co-operation with Kalmar Industries in Lidhult, Sweden. The purpose of our essay was to develop a complete construction solution on a hoist that could lift a laying wheel, lift it up and then turn it 90 degrees. After that the wheel shall be placed in a special holder.</p><p>The background of the essay is a record of reports of damage wheels when they been incorrect lifted with a forklift. The hoist shall be used together with the same forklifts that manage the wheels today. </p><p>Together with our instructor at Kalmar Industries we developed a requirement specification and from that we got free hands.</p><p>However this was not the main task from the beginning, then a simular hoist should be develop but used directly in the assembly workshop without using a forklift.</p><p>We started to find principle solutions that later was evaluated against the requirement specification. The best proposals were analyzed by hand and in Catia V5: s FEM-module.</p><p>After a couple of bettering proposal it resulted in a tenable solution. </p><p>Drawings, component specification and a risk analyze was made to finally have a complete solution.</p><p>Kalmar Industries decided to order material and manufacture the construction. The benefits with our construction compared to the daily solution are decreased risk of person injury, equipment-, and wheel damage. Our essay resulted in a complete construction ready to use.</p>
32

A comparative study of 2 CAD-integrated FE-programs using the linear static analysis

Amin, Handren January 2009 (has links)
This Master’s thesis is summery of a comparative study of 2 commercial CAD-integrated FE-programs. These FE-programs were CATIA v5 and ABAQUS 6.3-7. The primary objective of this study is to investigate the basic FEA capabilities of CATIA and ABAQUS 6.7-3 in performing the linear static analysis and to identify whether there are any differences and similarities between results the both Finite Element FE codes give. The overall research question in the present thesis is: Do different FE programs, here CATIA and ABAQUS, give the same results for FE analysis giving the same models if subjected to the same boundary conditions? This research seeks to achieve its aims through making a comparative qualitative study. Certain pre-selections were performed in advance of conducting Finite element analysis and the comparison process to ensure that results would reflect only the most relevant and meaningful differences and similarities between the both FE-codes. Five different 3D solid models have been selected to perform linear static Finite element analysis on. All these models (case studies) are created in CATIA V5 and the linear static analysis conducted on using FE-codes CATIA v5 and ABAQUS 6.7-3. Three static responses (results) of the linear static analysis have been adopted as criteria for comparisons purposes. These criteria were: (1) displacements, (2) Von Mises stress, and (3) principal stress. The results of comparisons showed that there is a very good agreement in most cases and small gap between in a few cases. Results of this study demonstrate that the both FE-programs CATIA v5 and ABAQUS 6.7-3 have good capabilities to perform FE-analysis and they give very near results. Reason behind differences is that each of them uses a different algorithm for solving problems. The final answer for the research question is given with valuable recommendations for future work in the scope of this research.
33

Industrial Silo Optimization

Gopinath, Varun January 2011 (has links)
This thesis aims to build a working design-analyze-optimize methodology for Alstom Power Sweden AB at Växjö, Sweden. In order to be profitable in today’s competitive industrial product market, it is necessary to engineer optimized products fast. This involves CAD design and FEA analysis to work within an optimization routine in a seamless fashion which will result in a more profitable product. This approach can be understood as a model-based design, where the 3D CAD data is central to the product life cycle. The present approach provides many benefits to a company because of the use of a central database ensure access to the latest release of the 3D model. This allows for a streamlined design to fabrication life cycle with inputs from all departments of a product based company. Alstom is looking into automating some of their design process so as to achieve efficiency within their design department. This report is the result of a study where an industrial silo is taken as an example. A design loop involving CAD design and FE analysis is built to work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. Most engineers work with a lot of constraints with regard to material stock size and other design codes (e.g. Euro Codes). In this report an efficient way to design an industrial product in a 3D CAD (CATIA) program so as to stay within these constrains and still obtain credible computation results within an optimization loop will be discussed.
34

3D Model of Fuel Tank for System Simulation : A methodology for combining CAD models with simulation tools

Wikström, Jonas January 2011 (has links)
Engineering aircraft systems is a complex task. Therefore models and computer simulations are needed to test functions and behaviors of non existing systems, reduce testing time and cost, reduce the risk involved and to detect problems early which reduce the amount of implementation errors. At the section Vehicle Simulation and Thermal Analysis at Saab Aeronautics in Linköping every basic aircraft system is designed and simulated, for example the fuel system. Currently 2-dimensional rectangular blocks are used in the simulation model to represent the fuel tanks. However, this is too simplistic to allow a more detailed analysis. The model needs to be extended with a more complex description of the tank geometry in order to get a more accurate model. This report explains the different steps in the developed methodology for combining 3-dimensional geometry models of any fuel tank created in CATIA with dynamic simulation of the fuel system in Dymola. The new 3-dimensional representation of the tank in Dymola should be able to calculate fuel surface location during simulation of a maneuvering aircraft.  The first step of the methodology is to create a solid model of the fuel contents in the tank. Then the area of validity for the model has to be specified, in this step all possible orientations of the fuel acceleration vector within the area of validity is generated. All these orientations are used in the automated volume analysis in CATIA. For each orientation CATIA splits the fuel body in a specified number of volumes and records the volume, the location of the fuel surface and the location of the center of gravity. This recorded data is then approximated with the use of radial basis functions implemented in MATLAB. In MATLAB a surrogate model is created which are then implemented in Dymola. In this way any fuel surface location and center of gravity can be calculated in an efficient way based on the orientation of the fuel acceleration vector and the amount of fuel. The new 3-dimensional tank model is simulated in Dymola and the results are compared with measures from the model in CATIA and with the results from the simulation of the old 2-dimensional tank model. The results shows that the 3-dimensional tank gives a better approximation of reality and that there is a big improvement compared with the 2-dimensional tank model. The downside is that it takes approximately 24 hours to develop this model. / Att utveckla ett nytt flygplanssystem är en väldigt komplicerad arbetsuppgift. Därför används modeller och simuleringar för att testa icke befintliga system, minska utvecklingstiden och kostnaderna, begränsa riskerna samt upptäcka problem tidigt och på så sätt minska andelen implementerade fel. Vid sektionen Vehicle Simulation and Thermal Analysis på Saab Aeronautics i Linköping designas och simuleras varje grundflygplanssystem, ett av dessa system är bränslesystemet. För närvarande används 2-dimensionella rätblock i simuleringsmodellen för att representera bränsletankarna, vilket är en väldigt grov approximation. För att kunna utföra mer detaljerade analyser behöver modellerna utökas med en bättre geometrisk beskrivning av bränsletankarna. Denna rapport går igenom de olika stegen i den framtagna metodiken för att kombinera 3- dimensionella tankmodeller skapade i CATIA med dynamisk simulering av bränslesystemet i Dymola. Den nya 3-dimensionella representationen av en tank i Dymola bör kunna beräkna bränsleytans läge under en simulering av ett manövrerande flygplan. Första steget i metodiken är att skapa en solid modell av bränslet som finns i tanken. Därefter specificeras modellens giltighetsområde och alla tänkbara riktningar hos accelerationsvektorn som påverkar bränslet genereras, dessa används sedan i den automatiserade volymanalysen i CATIA.  För varje riktning delar CATIA upp bränslemodellen i ett bestämt antal delar och registrerar volymen, bränsleytans läge samt tyngdpunktens position för varje del. Med hjälp av radiala basfunktioner som har implementerats i MATLAB approximeras dessa data och en surrogatmodell tas fram, denna implementeras sedan i Dymola. På så sätt kan bränsleytans och tyngdpunktens läge beräknas på ett effektivt sätt, baserat på riktningen hos bränslets accelerationsvektor samt mängden bränsle i tanken. Den nya 3-dimensionella tankmodellen simuleras i Dymola och resultaten jämförs med mätningar utförda i CATIA samt med resultaten från den gamla simuleringsmodellen. Resultaten visar att den 3-dimensionella tankmodellen ger en mycket bättre representation av verkligheten och att det är en stor förbättring jämfört med den 2-dimensionella representationen. Nackdelen är att det tar ungefär 24 timmar att få fram denna 3-dimensionella representation.
35

Hjullyft

Bergelin, Magnus, Eriksson, Patrik January 2007 (has links)
The graduation essay has been carried out in co-operation with Kalmar Industries in Lidhult, Sweden. The purpose of our essay was to develop a complete construction solution on a hoist that could lift a laying wheel, lift it up and then turn it 90 degrees. After that the wheel shall be placed in a special holder. The background of the essay is a record of reports of damage wheels when they been incorrect lifted with a forklift. The hoist shall be used together with the same forklifts that manage the wheels today. Together with our instructor at Kalmar Industries we developed a requirement specification and from that we got free hands. However this was not the main task from the beginning, then a simular hoist should be develop but used directly in the assembly workshop without using a forklift. We started to find principle solutions that later was evaluated against the requirement specification. The best proposals were analyzed by hand and in Catia V5: s FEM-module. After a couple of bettering proposal it resulted in a tenable solution. Drawings, component specification and a risk analyze was made to finally have a complete solution. Kalmar Industries decided to order material and manufacture the construction. The benefits with our construction compared to the daily solution are decreased risk of person injury, equipment-, and wheel damage. Our essay resulted in a complete construction ready to use.
36

Developing A Four-bar Mechanism Synthesis Program In Cad Environment

Erener, Kaan 01 June 2011 (has links) (PDF)
Flap, aileron, rudder, elevator, speed brake, stick, landing gear and similar movable systems used in aerospace industry have to operate according to the defined requirements and mechanisms used in those systems have to be synthesized in order to fulfill those requirements. Generally, without the use of synthesis tools, synthesis of mechanisms are done in CAD environment by trial-error and geometrical methods due to the complexity of analytical procedures. However, this approach is time consuming since it has to be repeated until the synthesized mechanism has suitable mechanism properties like transmission angle and connection points. Due to above reasons, a software developed for synthesis of mechanisms within the CAD environment can utilize all the graphical interfaces and provides convenience in mechanism design. In this work, it is aimed to develop a four-bar mechanism synthesis tool which is compatible with CATIA V5 by considering the requirements of aerospace industry. This tool performs function, path and motion synthesis and shows suitable mechanisms in CATIA according to input obtained from CATIA and mechanism properties.
37

Chassis calculations for Frame design

Olofsson, Erik January 2015 (has links)
This is a Masters Thesis report of a project carried out at Scania AB in Södertälje. The project concerns rationalizing Chassis calculations for use in truck Frame design. The subject for analysis is a six-wheeled articulated truck, and the load cases under study is Lateral Loading, Frame Torsion and Vertical Load on Kingpin. Making robust deformation and stress models with a calculation time sufficiently short and accuracy consistently high for efficient design work is an arduous task. This report presents several approaches to tackle this type of problem. By means of simplifying contemporary modeling approaches and methods and automating the setup process, a method that enables short calculation iterations on a chassis frame of a truck is achieved. This is done using the Catia GAS framework in conjunction with several other licences commonly used by designers.
38

Automatisierte Ermittlung bauteilspezifischer Kennwerte in komplexen Produktstrukturen zur Abstraktion umfangreicher Gesamtbaugruppen im Textilmaschinenbereich

Kurth, Robin 01 July 2015 (has links) (PDF)
Steigende Komplexität von Maschinen und Anlagen sowie unternehmensindividuelle Produktstrukturen führen zu Herausforderungen im Handling großer 3D-Modelle in kommerziell verfügbaren CAD-Systemen. Der Vortrag thematisiert die Anwendung unterschiedlicher Automatisierungsmöglichkeiten des CAD-Systems CATIA V5® der Firma Dassault Systèmes. Hierbei wird zum einen auf die besonderen Herausforderungen im Konstruktionsbereich des Textilmaschinenbaus eingegangen. Zum anderen werden Vorschläge für eine parametergesteuerte Anlagenkonzeption auf Basis von Knowledgeware, eine automatisierte Abstraktion großer Baugruppen und für die automatisierte Ermittlung masseabhängiger Parameter komplexer Produkte vorgestellt.
39

Knowledge-Based Flight Control System Integration in RAPID

Escolano Andrés, Inés January 2015 (has links)
This thesis work presents a parametrized integration of the flight control system within RAPID by means of the automation in CATIA V5, using Knowledge Pattern. Nowadays aircraft’s design and development processes are not only time-consuming but also incur high economic cost. In addition, system integration is highly a multi-disciplinary design process which often involves a large number of different discipline teams working at the same time and space. The main objective of this thesis is to investigate how CAD (Computer Aided Design) software can be used in the early design stages to define the flight control system integration. The purpose of this work to improve the functionality of an in house produced aircraft conceptual design tool carried out at the Division of Fluid and Mechatronic Systems, Linköping University. The work consists of preliminary integration of the RAPID flight control system and the hydraulics associated to it. By defining several reusable templates, the automatic definition of a flight control system within the RAPID aircraft has been achieved. Moreover it is a parametrical model which allows the user to modify a high number of features as desired to enhance the design process. For this, a user interface in Microsoft Excel connected to CATIA has also been attained.
40

Multidisziplinärer Datenfluss im Entwicklungsprozess des Flugzeugbaus am Beispiel eines Senkrechtstarters

Schnauffer, Peter. January 2006 (has links)
Stuttgart, Univ., Diss., 2006.

Page generated in 0.0319 seconds