Spelling suggestions: "subject:"compressor"" "subject:"kompressor""
401 |
Entwicklung eines variablen Turbolader-Verdichters für schwere NutzfahrzeugmotorenWöhr, Michael 20 October 2016 (has links)
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen.
In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen.
Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand.
Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich.
Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden.
Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität.:1 Einleitung
1.1 Einführung
1.2 Stand der Technik
1.3 Zielsetzung
2 Grundlagen
2.1 Der schwere Nutzfahrzeugmotor
2.1.1 Aufbau
2.1.2 Kenngrößen
2.1.3 Motorbremse
2.2 Der Turbolader-Radialverdichter
2.2.1 Systembeschreibung
2.2.2 Definition von Kenngrößen
2.2.3 ThermodynamischeBeschreibung
2.3 Thermodynamik des Aufladesystems
2.3.1 Stationäre Lastkurven im Verdichterkennfeld
2.3.2 Grenzwerte im Stationärbetrieb
2.3.3 Transientverhalten
3 Methodik
3.1 Lösungsweg
3.2 Lastkollektivauswertung
3.3 Parametrisiertes Diffusormodell
3.3.1 Geometrischer Aufbau
3.3.2 Auslegungsgrößen
3.3.3 Parameterstudie
3.4 Simulation
3.4.1 1D-Strömungssimulation in Diffusor und Volute
3.4.2 3D-Strömungssimulation der Verdichterstufe
3.4.3 Motorprozesssimulation
3.5 Heißgasprüfstand
3.5.1 Kennfeldvermessung
3.5.2 Aerodynamikmessung
3.5.3 Verkokungsanfälligkeit
3.6 Motorprüfstand
3.6.1 Aufbau
3.6.2 Randbedingungen
3.6.3 Akustikmessung
4 Ergebnisse
4.1 Validierung
4.1.1 Strömungszustand am Verdichterradaustritt
4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor
4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor
4.2 Verlustanalyse Basisverdichter
4.2.1 Auswertung der Lastkollektive
4.2.2 Aerodynamische Verlustanalyse
4.2.3 Strömungsmechanik im Diffusor
4.3 Parameterstudie beschaufelter Diffusoren
4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld
4.3.2 Anforderungen des schweren Nutzfahrzeugmotors
4.4 Aerodynamik beschaufelter Diffusoren
4.4.1 Auslegungskriterien
4.5 Verkokung beschaufelter Diffusoren
5 Variable Verdichter
5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil
5.1.1 Auslegung und Konstruktion
5.1.2 Heißgasprüfstand
5.2 VSVC-Doppeldiffusor
5.2.1 Auslegung und Konstruktion
5.2.2 Heißgasprüfstand
5.3 VPVC-RotierbareSchaufeln
5.3.1 Auslegung und Konstruktion
5.3.2 Heißgasprüfstand
5.4 Verhalten variabler Verdichter am schweren NFZ-Motor
5.4.1 Volllast
5.4.2 Lastvariation
5.4.3 DynamischesAnsprechverhalten
5.4.4 Low-End Torque
5.4.5 Dynamische Pumpstabilität
5.4.6 Bremsbetrieb
5.4.7 Ansteuerung
5.4.8 Akustik
5.5 Übersicht
6 Zusammenfassung und Ausblick
7 Anhang
Literaturverzeichnis / Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability.
In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements.
The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range.
The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%.
The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.:1 Einleitung
1.1 Einführung
1.2 Stand der Technik
1.3 Zielsetzung
2 Grundlagen
2.1 Der schwere Nutzfahrzeugmotor
2.1.1 Aufbau
2.1.2 Kenngrößen
2.1.3 Motorbremse
2.2 Der Turbolader-Radialverdichter
2.2.1 Systembeschreibung
2.2.2 Definition von Kenngrößen
2.2.3 ThermodynamischeBeschreibung
2.3 Thermodynamik des Aufladesystems
2.3.1 Stationäre Lastkurven im Verdichterkennfeld
2.3.2 Grenzwerte im Stationärbetrieb
2.3.3 Transientverhalten
3 Methodik
3.1 Lösungsweg
3.2 Lastkollektivauswertung
3.3 Parametrisiertes Diffusormodell
3.3.1 Geometrischer Aufbau
3.3.2 Auslegungsgrößen
3.3.3 Parameterstudie
3.4 Simulation
3.4.1 1D-Strömungssimulation in Diffusor und Volute
3.4.2 3D-Strömungssimulation der Verdichterstufe
3.4.3 Motorprozesssimulation
3.5 Heißgasprüfstand
3.5.1 Kennfeldvermessung
3.5.2 Aerodynamikmessung
3.5.3 Verkokungsanfälligkeit
3.6 Motorprüfstand
3.6.1 Aufbau
3.6.2 Randbedingungen
3.6.3 Akustikmessung
4 Ergebnisse
4.1 Validierung
4.1.1 Strömungszustand am Verdichterradaustritt
4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor
4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor
4.2 Verlustanalyse Basisverdichter
4.2.1 Auswertung der Lastkollektive
4.2.2 Aerodynamische Verlustanalyse
4.2.3 Strömungsmechanik im Diffusor
4.3 Parameterstudie beschaufelter Diffusoren
4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld
4.3.2 Anforderungen des schweren Nutzfahrzeugmotors
4.4 Aerodynamik beschaufelter Diffusoren
4.4.1 Auslegungskriterien
4.5 Verkokung beschaufelter Diffusoren
5 Variable Verdichter
5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil
5.1.1 Auslegung und Konstruktion
5.1.2 Heißgasprüfstand
5.2 VSVC-Doppeldiffusor
5.2.1 Auslegung und Konstruktion
5.2.2 Heißgasprüfstand
5.3 VPVC-RotierbareSchaufeln
5.3.1 Auslegung und Konstruktion
5.3.2 Heißgasprüfstand
5.4 Verhalten variabler Verdichter am schweren NFZ-Motor
5.4.1 Volllast
5.4.2 Lastvariation
5.4.3 DynamischesAnsprechverhalten
5.4.4 Low-End Torque
5.4.5 Dynamische Pumpstabilität
5.4.6 Bremsbetrieb
5.4.7 Ansteuerung
5.4.8 Akustik
5.5 Übersicht
6 Zusammenfassung und Ausblick
7 Anhang
Literaturverzeichnis
|
402 |
Towards the predictive FE analysis of a metal/composite booster casing’s thermomechanical integrityCapron, Adélie 30 November 2020 (has links) (PDF)
In response to serious environmental and economic concerns, the design and production of aircrafts have been changing profoundly over the past decades with the nose-to-tail switch from metallic materials to lightweight composite materials such as carbon fibre reinforced plastic (CFRP). In this context, the present doctoral research work aimed to contribute to the development of a CFRP booster casing, a real innovation in the field initiated and conducted by Safran Aero Boosters. More specifically, this thesis addresses the matter of joining metal/CFRP hybrid structures, which are prone to possibly detrimental residual stresses.The issue is treated with an approach combining experimental characterisation and finite element (FE) simulations. The multi-layered system’s state of damage was systematically examined on hundreds of micrographs, and the outcome of this study is presented under the form of a statistical analysis. Further, the defects’ 3D morphology is investigated by incremental polishing. A number of thermal and mechanical properties are measured by diverse physical tests on part of the constituent materials, i.e. the aerospace grade RTM6 epoxy resin, the structural Redux 322 epoxy film adhesive, and AISI 316L stainless steel. They are used as input data in a FE model of the multilayer that is developed and progressively refined to obtain detailed residual stress fields after thermal loading. These results are compared to experimental data acquired by X-ray diffraction stress analysis and with the curvature-based Stoney formula. Cohesive elements are placed at specific locations within the FE model to allow simulating progressive damage. Peel tests, mode I, mode II and mixed mode I/II fracture tests are thus performed in view of measuring the joint toughness. The results of these tests are discussed and the presence of residual stress in the fracture specimens is highlighted. Key information for the calibration of the cohesive law is finally identified via inverse FE analysis of the mode I test, this being a significant step in the process of building a damage predictive FE model of the multi-layered system. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
403 |
Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engineFitzpatrick, John Nathan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries.
Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.
|
404 |
Stability Enhancement in Aeroengine Centrifugal Compressors using Diffuser Recirculation ChannelsMark Yuriy Shapochka (13272837) 22 August 2022 (has links)
<p>The objective of this research was to develop stability enhancing design features for aeroengine centrifugal compressors. The motivation for this research is based on climate change and fuel-efficiency concerns, which call for improvements in achievable pressure ratios and surge margins. Specifically, this research aimed to develop diffuser recirculation channels and provide more insight into their design space. These channels are passive casing treatments in the diffuser and have been successfully demonstrated to improve stage surge margin. Diffuser recirculation channels are secondary flow paths that connect an opening near the diffuser inlet to one further down in the passage. Flow is recirculated by relieving the static pressure differential between the two openings. The basic design concept of these features is to add blockage upstream of the diffuser inlet, reducing the amount of diffusion in the vaneless space. In addition, channel geometries can be optimized to specifically target adverse flow properties, such as high incidence on the diffuser vane leading edge.</p>
<p><br></p>
<p>This design development was purely computational and served as the first approach to implementation of these features in a future generation of the Centrifugal Stage for Aerodynamic Research (CSTAR) at the Purdue Compressor Research Lab. Design development consisted of a computational design study, which quantified the effects of changing diffuser recirculation channel geometries on stage stability and performance metrics. Moreover, the CFD model for this future configuration of CSTAR was created and served as the baseline comparison for design iterations. The design study was comprised of controlled variation of channel geometry parameters and iterative solving of those cases in unsteady full stage single passage CFD models. Further design optimization studies were completed on specific down-selected recirculation channel geometry configurations. In total, 16 unsteady CFD cases with varied geometry configurations and 43 steady models were solved. Once a final optimized design was confirmed, a pressure characteristic at 100 % corrected design speed was generated. Compared to the baseline speed line, the implementation of diffuser recirculation channels resulted in a more gradual numerical surge and apparent numerical surge margin enhancement. Furthermore, the variation in incidence at the diffuser vane leading edge near the shroud was significantly reduced with diffuser recirculation. For the baseline compressor, incidence grew by about 70 degrees from the design aerodynamic loading to numerical surge at that location. However, flow stabilization due to diffuser 16 recirculation resulted in a change of approximately 2 degrees through that range. In conclusion, a first approach design recommendation for diffuser recirculation channels is CSTAR was generated through computational studies. Using this recommendation, diffusers with this recirculation channel design can be manufactured and tested for experimental concept validation. </p>
|
405 |
Utveckling av luftkompressormonterad ljuddämpare / Development of an air compressor mounted silencerMustafa, Kobin, Rozumberski, Kristian January 2018 (has links)
Ett ljudfenomen som uppstår i samband med luftkomprimeringen i den nya D7 motorn har uppmärksammats som ett problem av kunderna. Ljudfenomenet som resonerar i hytten bidrar till en obehaglig arbetsmiljö. Uppdraget har i sin tur varit att utveckla en luftkompressormonterad ljuddämpare mot en kravspecifikation som eliminerar detta fenomen. Med hjälp av diverse verktyg och en spiral produktutvecklingsprocess utfördes ett flertal iterationer av dem koncept som kan tänkas lösa problemet. Dessa iterationer konstruerades i mjukvaran CATIA V5 för att sedan beställas in som fysiska prototyper i materialet Pa12. För att bekräfta prototypernas funktionalitet utfördes simuleringar samt fysiska tester. Det resulterande arbetet blev ett konceptförslag till Scania CV AB som uppfyller kravspecifikationerna. Lösningens ljuddämpningsförmågan reducerade ljudfenomenet med 73% i genomsnitt. Med hjälp av observationer och analyser under de fysiska testgenomförandet uppmärksammades komplikationer som bör åtgärdas. Det mest kritiska med det nuvarande konceptet är dem vibrationer som uppstår. För att åtgärda detta problem kommer det krävas ytterligare infästningspunkter på motsvarande sida till de nuvarande. All mätdata i denna rapport är modifierat. Detta för att skydda känslig information. / A noise phenomenon that arises in connection with air compression in the new D7 engine has been noted as a problem by the customers. The sound phenomenon resonates in the cabin contributes to an unpleasant work environment. The mission, in turn, has been to develop an air compressor-mounted silencer against a requirement specification to eliminate this phenomenon. Using various tools and a spiral product development process, a number of iterations were made of those concepts that could solve the problem. These iterations were engineered in the CATIA V5 software, then ordered as physical prototypes in the material Pa12. To confirm the prototypes' functionality, simulations and physical tests were performed. The resulting work became a concept proposal for Scania CV AB that meets the requirements specifications. The solution managed to reduce the sound phenomenon by 73% on average. With the help of observations and analyzes during the physical test implementation, complications were noted that should be addressed. The most critical on the current concept is the vibration that occurs. To fix this problem additional attachment points will be required on the corresponding side to the current ones. All data in this report have been modified. This is to protect sensitive information.
|
406 |
EXPERIMENTAL STUDY OF LUBRICANT DROPLETS IN A ROTARY COMPRESSOR AND OPTICAL DIAGNOSTICS OF EVAPORATION PROCESSPuyuan Wu (13949580) 13 October 2022 (has links)
<p> </p>
<p>Part I studies the lubricant sprays and droplets in a rotary compressor. Air conditioning (AC) systems are now widely used in residential and commercial environments, while the compressor is the most important element in the AC system, and rotary compressors are often used in split AC appliances, whose number is estimated to reach 3.7 billion in 2050. In a rotary compressor, the lubricant oil atomizes into small droplets due to the differential pressure in and out of the cylinder. Part of the lubricant oil droplets carried by the refrigerant vapor will ultimately exhaust from the compressor through the discharge pipe. The ratio of the discharged oil volume to the total oil volume is characterized as the Oil Discharge Ratio (ODR). High ODR will reduce the reliability of the compressor and deteriorate the heat transfer of the condenser and the evaporator, resulting in decreased efficiency. Thus, controlling the ODR is a key issue for the design of the rotary compressor.</p>
<p>In Part I, rotary compressors were modified to provide optical access into its internal space, i.e., the lower cavity (refers to the space between the cylinder and the motor), above the rotor/stator, and at the discharge tube level. The modified rotary compressors’ operation was supported by a test rig which provided a wide range of operating conditions, e.g., pressure and frequency. Thus, in-situ optical measurements, e.g., shadowgraph and holograph, can be performed to visualize the lubricant sprays and droplets in the rotary compressor. An image processing routine containing the Canny operator and Convolutional Neural-Network was developed to identify droplets from high-resolution shadowgraph images, while Particle Image Velocimetry (PIV) and Optical Flow Velocimetry (OFV) were applied to calculate the spray and droplet’s velocities with time-resolved shadowgraph images. Parallel Four-Step Phase Shifting Holograph (PFSPSH) located the droplets’ positions in a three-dimensional volume under the specific operating condition.</p>
<p>Both primary and secondary atomization were observed in the rotary compressor, while primary atomization is the major source of droplet production. The droplet size distributions versus the frequency, vertical direction, radial direction, and pressure are obtained. It is observed that the droplet characteristic mean diameters increase with the frequency and pressure. They also become larger in the outer region above the rotor/stator and keep constant in the radial direction at the discharge tube level. The penetration velocity of the lubricant spray is calculated in the lower cavity. An outward shift of the jet core combined with an outward velocity component was observed. Additionally, horizontal swirling velocity above the rotor/stator and at the discharge tube level and the vertical recirculation velocity above the rotor/stator are characterized. The volume fraction of droplets was also characterized under the specific operating condition. The results provide detailed experimental data to set up the boundary conditions used in CFD. They also show that the droplets in the upper cavity are mostly from the discharge process of the cylinder in the lower cavity. The results support a droplet pathway model in the rotary compressor, which can guide the optimization of future rotary compressors.</p>
<p>Evaporation is commonly seen in hydrology, agriculture, combustion, refrigeration, welding, etc. And it always accompanies heat and mass transfer at the liquid-gas interface and is affected by the substance’s properties, the environment’s pressure, temperature, convection, and so on. PFSPSH in Part I aims to retrieve the phase information for holograph reconstruction. Part II further explores the application of the PFSPSH technology in Part I to observe the evaporation process of acetone, where the phase disturbance caused by the vapor is used to reconstruct the vapor concentration in space. The method is called Parallel Four-Step Phase Shifting Interferometer (PFSPSI). The first case studies the evaporation process of the acetone contained in a liquid pool with uniform air flow in a low-speed wind tunnel. The mole fractions of the acetone vapor near the liquid-air interface with different air speeds are characterized. The second case studies the evaporation process of acetone droplets levitated by an ultrasound levitator. The mole fraction of the acetone vapor near the liquid-air interface is characterized by assuming an axisymmetric field and using the analytical solution of the inverse Abel transform. The asymmetric pattern of the acetone vapor field is observed, which is considered due to the drastic sound pressure change at the stand wave location produced by the ultrasound levitator. The mass transfer of the evaporation process by the vapor’s mole fraction is calculated and compared with the mass transfer calculated by the droplet size change. It is observed that the mass transfer by the vapor’s mole fraction is generally smaller than the mass transfer calculated by the droplet size change, which can be explained by the convection process induced by the acoustic streaming.</p>
|
407 |
Auslegung eines Anodenrezirkulationsgebläses auf Basis des MedienspaltmotorsKlunker, Christoph, Nachtigal, Philipp, Kentschke, Thorge, Gößling, Sönke, Seume, Jörg 27 May 2022 (has links)
Im Rahmen des ZIM-geförderten Vorhabens „Rezirkulationsgebläse-Entwicklung für die Brennstoffzellen-Technologie“ (REZEBT) wurde die Entwicklung eines neuartigen aktiven Wasserstoff-Rezirkulationsgebläses für die Anodenseite einer Brennstoffzelle bis TRL4 vorangetrieben. Das vorgestellte Gebläse besteht im Wesentlichen aus einem schnelldrehenden Turboverdichter, welcher mit einem sogenannten Medienspaltmotor angetrieben wird. Der Medienspaltmotor zeichnet sich dadurch aus, dass er das Medium durch den Spalt zwischen Rotor und Stator fördert, wodurch gänzlich auf dynamische Dichtungen verzichtet werden kann und das Medium selbst zur Kühlung genutzt werden kann. Bauartbedingt kann bei diesem permanent-erregten Synchronmotor (sensorlos) auf eine aufwändige Konstruktion und teure Produktionsprozesse verzichtet werden. Diese Veröffentlichung beschreibt den Prozess und die Herausforderungen der Auslegung sowie den Aufbau des Anodenrezirkulationsgebläses (ARG). Die Funktionsfähigkeit wurde mittels eines Prototypen demonstriert.
|
408 |
Numerical study of EGR mixing and distribution in a piston engine intake lineGarcía Olivas, Guillermo 10 January 2022 (has links)
[ES] Teniendo en cuenta la cantidad de motores de combustión interna que se encuentran en activo actualmente, y sus potenciales emisiones de contaminación si se realizaran de forma incontrolada por el parque automovilístico, las normativas internacionales son cada vez más estrictas en cuanto a la cantidad de gases perjudiciales para el medio ambiente que pueden emitir dichos motores de manera unitaria. Debido a ello, se han ido desarrollando e implantando técnicas de reducción de contaminantes como el downsizing en el cual se reduce el tamaño del motor para reducir el consumo, la implantación de motores híbridos y la Recirculación de Gases de Escape. Esta técnica de recirculación puede abordarse de dos maneras alternativas: la Recirculación de Gases de Escape de Ruta Larga inyecta dichos gases antes del compresor, mientras que la Recirculación de Gases de Escape de Ruta Corta (o alta presión) los reinyecta después del compresor, en el mismo colector de admisión del motor. Dado que en ambas configuraciones se produce una inyección directa del flujo recirculado en la corriente principal, en el presente trabajo se propone un estudio numérico de la mezcla entre las corrientes de aire y gases recirculados usando un software comercial de mecánica de fluidos computacional (STAR-CCM+).
En la configuración de Ruta Larga se ha propuesto en primer lugar estudiar el efecto en los parámetros globales del compresor de una entrada heterogénea compuesta por aire y gases de escape. Para ello, se han analizado 9 puntos de funcionamiento distintos, tratando de abarcar el mapa completo del compresor centrífugo con una tasa de inyección constante. Se ha demostrado, por un lado, la necesidad de un esquema transitorio de cálculo para la obtención de resultados confiables en todo el dominio del compresor. Por otro lado, se ha demostrado que, con tasas de penetración de flujo estándar, la inyección de gases recirculados no tiene un impacto reseñable en las prestaciones del compresor, con excepción de la zona de bombeo. En segundo lugar, se ha desarrollado un diseño numérico de experimentos en configuración de Ruta Larga con el objetivo de encontrar correlaciones entre la condensación generada en dichas uniones (la cual puede aparecer bajo ciertas condiciones de operación del motor) y la mezcla entre las corrientes de aire y gases de escape. Se ha demostrado que la penetración de los gases en la corriente principal es un factor clave en la condensación generada, aumentando la cantidad de mezcla entre ambas corrientes.
En la configuración de Ruta Corta se han realizado estudios de configuración numérica tratando de estudiar la influencia de factores como malla, tamaño del paso temporal y modelos de turbulencia en la distribución final de los gases de escape entre los diferentes cilindros del motor. Se ha demostrado que los submodelos RANS pueden predecir la mayor parte de puntos de operación tanto en variables medias como instantáneas comparando resultados numéricos con mediciones experimentales. Fijando una configuración numérica, posteriormente se han analizado diferentes mezcladores en colectores de motores de 4 y 6 cilindros, demostrando la aplicabilidad de los índices de mezclado desarrollados y cuantificando la influencia de los diferentes efectos físicos que influyen en la distribución y mezcla de los gases de escape en la corriente principal. / [CA] Tenint en compte la quantitat de motors de combustió interna que es troben en actiu actualment, i les seues potencials emissions de contaminació si es realitzaren de manera incontrolada pel parc automobilístic, les normatives internacionals són cada vegada més estrictes quant a la quantitat de gasos perjudicials per al medi ambient que poden emetre aquests motors de manera unitària. A causa d'això, s'han anat desenvolupant i implantant tècniques de reducció de contaminants com el downsizing en el qual es redueix la grandària del motor per a reduir el consum, la implantació de motors híbrids i la Recirculació de Gasos de Fuita. Aquesta tècnica de recirculació pot abordar-se de dues maneres alternatives: la Recirculació de Gasos de Fuita de Ruta Llarga injecta aquests gasos abans del compressor, mentre que la Recirculació de Gasos de Fuita de Ruta Curta (o alta pressió) els reinjecta després del compressor, en el mateix collector d'admissió del motor. Atés que en totes dues configuracions es produeix una injecció directa del flux recirculat en el corrent principal, en el present treball es proposa un estudi numèric de la mescla entre els corrents d'aire i gasos recirculats usant un programari comercial de mecànica de fluids computacional (STAR-CCM+).
En la configuració de Ruta Llarga s'ha proposat en primer lloc estudiar l'efecte en els paràmetres globals del compressor d'una entrada heterogènia composta per aire i gasos de fuita. Per a això, s'han analitzat 9 punts de funcionament diferents, tractant d'abastar el mapa complet del compressor centrífug amb una taxa d'injecció constant. S'ha demostrat, d'una banda, la necessitat d'un esquema transitori de càlcul per a l'obtenció de resultats de confiança en tot el domini del compressor. D'altra banda, s'ha demostrat que, amb taxes de penetració de flux estàndard, la injecció de gasos recirculats no té un impacte ressenyable en les prestacions del compressor, amb excepció de la zona de bombament. En segon lloc, s'ha desenvolupat un disseny numèric d'experiments en configuració de Ruta Llarga amb l'objectiu de trobar correlacions entre la condensació generada en aquestes unions (la qual pot aparéixer sota unes certes condicions d'operació del motor) i la mescla entre els corrents d'aire i gasos de fuita. S'ha demostrat que la penetració dels gasos en el corrent principal és un factor clau en la condensació generada, augmentant la quantitat de mescla entre tots dos corrents.
En la configuració de Ruta Curta s'han realitzat estudis de configuració numèrica tractant d'estudiar la influència de factors com a malla, grandària del pas temporal i models de turbulència en la distribució final dels gasos de fuita entre els diferents cilindres del motor. S'ha demostrat que els submodelos RANS poden predir la major part de punts d'operació tant en variables mitjanes com instantànies comparant resultats numèrics amb mesuraments experimentals. Fixant una configuració numèrica, posteriorment s'han analitzat diferents mescladors en col·lectors de motors de 4 i 6 cilindres, demostrant l'aplicabilitat dels índexs de barrejat desenvolupats i quantificant la influència dels diferents efectes físics que influeixen en la distribució i mescla dels gasos de fuita en el corrent principal. / [EN] Considering the amount of internal combustion engines (ICEs) existing nowadays, and the pollutants that they could potentially emit, it is no surprise that international standards are getting increasingly severe regarding the allowed limits of pollutants that can be released by such engines. For this reason, different techniques have been developed in order to diminish pollutants, as downsizing in which the engine size is reduced to decrease the consumption, the hybridation of engines and the exhaust gases recirculation (EGR). This recirculation technique can be addressed by 2 different paths: Low Pressure EGR (LP-EGR) which reintroduce the exhaust gases before the compressor, while High Pressure EGR (HP-EGR) injects exhaust gases after the compressor in the intake manifold. Since both configurations deal with a direct injection of the recirculated flow in the main stream, in the present work a numerical study of the mixing between air and EGR flows is proposed, using a commercial code of computational fluid dynamics (STAR-CCM+).
In LP-EGR configuration has been proposed the study of the influence of a heterogeneous inlet (composed by air and exhaust gases) on the main performance of a centrifugal compressor. To do that, 9 different operating points have been analyzed, trying to cover the whole map of the compressor with a constant injection rate. It has been demonstrated the necessity of a transient scheme for obtaining reliable results in the complete domain of the compressor. On the other hand, it has been proved that, with standard penetration rates of the flow, EGR do not have a remarkable impact in the performance of the compressor, besides the surge zone. In LP-EGR scheme, a numerical design of experiments has been developed with the aim to find correlations between the generated volume condensation (which can appear under some operating points of the engine) and the mixing between air and exhaust gases. It has been proved that the penetration of the EGR in the main stream is a key factor in volume condensation, increasing the amount of mixing between the streams.
In HP-EGR configuration, different studies of numerical configuration have been conducted trying to find the influence of factors like mesh, time-step size, and turbulence models in the final distribution of exhaust gases between the cylinders of the engine. RANS submodels have demonstrated that can predict most of the operating points both average and instantaneous variables in comparison with experimental measurements. After that, fixing a numerical setup, different mixers in 4 and 6 cylinder manifolds have been calculated, showing the applicability of the developed mixing indexes, and quantifying the influence of the different physical effects that can influence in the mixing and distribution between air and exhaust gases streams. / García Olivas, G. (2021). Numerical study of EGR mixing and distribution in a piston engine intake line [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179406
|
409 |
Trigenerace a její využití v praxi / Trigeneration and its use in practiceČupera, Pavel January 2009 (has links)
e master's thesis clarifies the concept of trigeneration and the principle of absorbing cooling. Compare the advantages and disadvantages of this method of manufacture cool with compressor cooling. It presents an overview of the implementation of a developing cold absorption and performance. Acquainted with the types of absorption chillers of the two leading suppliers, their characteristics and existing applications of these refrigeration units in operation in the Czech Republic and abroad. It also assesses the possibility of using these units in conjunction with a cogeneration unit powered by internal combustion engine. It follows from the economic assessment of costs and income of the absorption chillers and compressor chillers and on concrete examples and an assessment of the effectiveness of the various options.
|
410 |
Vliv obtokového součinitele na návrh a geometrii přímého výparníku pro chladící jednotku / The Effect of the Bypass Factor on Design and Geometry of the Evaporator for the Cooling UnitVytasil, Michal January 2016 (has links)
Diploma thesis focuses on effect of the bypass factor on design and geometry of the evaporator for the cooling unit of data centre. Effect of the bypass factor on individual design parameters is solved in detail. All dependendecies are captured by using graphs in which s placed a cement on that parameter. In part C, mathematical and physical solutions are demonstrated calculations and processes leading to the design of the exchanger. In the end, evaluation of the calculations is done and there is also showed possible improvements for the practise.
|
Page generated in 0.0658 seconds