Spelling suggestions: "subject:"computeraided engineering anda design"" "subject:"computeraided engineering anda 1design""
141 |
Screenshot Dimensions BBT Side Mold Assy M02D RC02Hemphill, Bill 07 June 2022 (has links)
https://dc.etsu.edu/oer-guitars-images-complete/1013/thumbnail.jpg
|
142 |
Screenshot Drill Template BBT Side Mold Assy M02D RC02Hemphill, Bill 07 June 2022 (has links)
https://dc.etsu.edu/oer-guitars-images-complete/1014/thumbnail.jpg
|
143 |
A Single-Stage Passive Vibration Isolation System for Scanning Tunneling MicroscopyLe, Toan T 01 February 2021 (has links) (PDF)
Scanning Tunneling Microscopy (STM) uses quantum tunneling effect to study the surfaces of materials on an atomic scale. Since the probe of the microscope is on the order of nanometers away from the surface, the device is prone to noises due to vibrations from the surroundings. To minimize the random noises and floor vibrations, passive vibration isolation is a commonly used technique due to its low cost and simpler design compared to active vibration isolation, especially when the entire vibration isolation system (VIS) stays inside an Ultra High Vacuum (UHV) environment. This research aims to analyze and build a single-stage passive VIS for an STM. The VIS consists of a mass-spring system staying inside an aluminum hollow tube. The mass-spring system is comprised of a circular copper stage suspended by a combination of six extension springs, and the STM stays on top of the copper stage. Magnetic damping with neodymium magnets, which induces eddy currents in the copper conductor, is the primary damping method to reduce the vibrations transferred to the mass-spring system. FEMM and MATLAB® are used to model magnetic flux density and damping coefficients from eddy current effect, which will help determine the necessary damping ratios for the VIS. Viton, which demonstrates a high compatibility with vacuum environments, will also serve as a great damping material between joints and contacts for the housing tube. Viton will be modeled as a Mooney-Rivlin hyperelastic material whose material parameters are previous studied, and Abaqus will be used as a Finite Element Analysis software to study the Viton gaskets’ natural frequencies. The natural frequencies of the aluminum hollow tube will also be investigated through Abaqus.
|
144 |
Deep Ocean Vehicle Applications and ModificationsArm, Nichole "Nikki" T 01 December 2023 (has links) (PDF)
This project had two primary goals: (1) to explore opportunities to further a deep-ocean vehicle’s reach using alternative pressure spheres, and (2) to implement an existing deep-ocean vehicle (lander) in active scientific research.
I gained a greater understanding of the limitations and design choices made for existing pressure spheres using Finite Element Analysis (FEA). My simplified FEA model predicted sphere failure for the existing 30% Fiber Glass 70% Nylon injection molded spheres at an external pressure of 3,954psi or 2,690m ocean-depth (only a 7.38% error compared to the tested minimum failure depth), so I determined it a valid model. I also explored alternative designs and materials that could be used for pressure spheres in deep-sea applications. Existing pressure sphere models filled with an incompressible fluid failed at 12,670psi or 8,621m ocean-depth - over three times the depth of the same sphere filled with air. Next, I varied the sphere thickness of existing spheres to determine its impact on depth rating. While the increased thickness did provide an increase in depth rating, there were diminishing returns as the sphere was made thicker. I deemed both of these design options infeasible for our application.
To consider the use of laminated composite spheres, the addition of an equatorial ring was required to manufacture O-ring seals safely and reliably. A simple cylindrical equatorial ring model using a stainless-steel ring had a predicted failure at 3,017psi or 2,053m ocean-depth. While this model predicted failure at 637m shallower than the sphere without the ring, it was the only ring material tested to reach the rated depth for the existing pressure spheres (2km), so I concluded stainless-steel is the best ring material. A spherical stainless-steel equatorial ring design was then analyzed which predicted failure at 3,915psi or 2,664m ocean-depth – only 8.3% less than the original sphere with no ring. Because of its successful performance and near identical results to the original model, I determined a stainless-steel spherical equatorial ring is the best option for laminated composite sphere sealing.
Finally, I analyzed three different kinds of laminated composite pressure spheres: two carbon fiber and one fiber glass. Each laminate was designed to be quasi-isotropic and as close to 0.8” thick as possible to keep it consistent with the original sphere design. The sphere made of 584 Carbon Fiber with a lay-up of: [[-45/45/0/90]6]s was found to predict failure at 10,000psi or 6,804m ocean-depth, more than 2.5 times that of the original sphere. Next, a model made of 282 Carbon Fiber with a lay-up of: [[-45/45/0/90]11]s predicted failure at 9,242psi or 6,289m ocean-depth – more than 2.3 times as deep as the original pressure spheres. Lastly, a sphere of 7781 Fiber Glass with a lay-up of: [[-45/45/0/90]11]s predicted failure at 6,630psi or 4,511m ocean-depth – about two-thirds the depth of the 584 Carbon Fiber composite, but more than 1.6 times the depth of the original sphere. While real-life applications of these materials would include design modifications and manufacturing imperfections which would lower their maximum depth rating, these results are highly encouraging and show that all three materials could be viable options for future production.
Additionally, through partnership with Dr. Crow White and his marine science undergraduate students, I completed numerous deployments for a Before and After Controlled Impact (BACI) study on the area of the proposed windfarm off the coast of Morro Bay, CA. Many modifications were made to the existing lander which enabled it to successfully be implemented in these studies including a new bait containment unit, light color filters, a GPS tracking device, and a large vessel recovery device. A total of 5 pier deployments and 3 boat deployments were conducted by my team over the course of 6-months. Planning for these deployments included accounting for budgeting, weather, permitting, and multi-organizational logistics while working with both NOAA and the Cal Poly marine operations staff.
|
145 |
Open Guitar Building ProjectHemphill, Bill 01 January 2022 (has links)
The ETSU Guitar Project’s Open Education Resource (OER) site is a repository of shareable files developed and used in the design & fabrication of electric and acoustic guitars. Begun in 2010, the ETSU Guitar Building Program is affiliated with the NSF-sponsored, national STEM Guitar Project to increase student engagement in the STEM disciplines from K-12 to Higher Ed. Guitar design, prototyping & build activities in the ENTC 3600 Manufacturing Technologies course use a hands-on mix of 2D CADD, 3D modeling, traditional woodworking, CNC routing and laser etching operations in a custom shop-type environment to create unique electric solid body and semi-hollow body electric guitars. Beginning in 2019, the Engineering Technology program faculty began partnering with faculty in ETSU’s groundbreaking Department of Bluegrass, Old Time, and Roots Music Studies program in building acoustic instruments. Designs of common and specialty acoustic instrument building including luthiers’ tooling, molds, templates, jigs and fixtures as well as alternative bracing are available from this repository. / https://dc.etsu.edu/etsu-oer/1009/thumbnail.jpg
|
146 |
BBT Side Mold AssyHemphill, Bill 07 June 2022 (has links)
This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass data, and layer names (formatted for AXYZ's ToolPath CAM software).
|
147 |
Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life SciencesHuisman, Maximiliaan 01 April 2019 (has links)
Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation.
A universal standard makes it easier to assess, compare and analyze imaging data – from the level of a single laboratory to the broader life sciences community. We propose a data-standard for fluorescence microscopy that can increase the confidence in experimental results, facilitate the exchange of data, and maximize compatibility with current and future data analysis techniques.
Cutting-edge imaging technologies often rely on sophisticated hardware and multi-layered algorithms for reconstruction and analysis. Consequently, the trustworthiness of new methods can be difficult to assess. To evaluate the reliability and limitations of complex methods, quantitative analyses – such as the one present here for the 3D SPEED method – are paramount.
The limited resolution of optical microscopes prevents direct observation of macro- molecules like DNA and RNA. We present a multi-color, achromatic, cryogenic fluorescence microscope that has the potential to produce multi-color images with sub-nanometer precision. This innovation would move fluorescence imaging beyond the limitations of optics and into the world of molecular resolution.
|
148 |
BBT Acoustic Alternative Top Bracing CADD Data Set-NoRev-2022Jun28Hemphill, Bill 22 July 2022 (has links)
This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are (a) a one-piece base for the standard kit's (Martin-style) bracing, (b) 277 Ladder-style bracing, and (c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.
The CADD data set for each of the three (3) top bracing designs includes (a) a nominal 24" x 18" x 3mm (0.118") Baltic birch plywood laser layout of (1) the one-piece base with slots, (2) pre-radiused and pre-scalloped vertical braces with tabs to ensure proper orientation and alignment, and (3) various gages and jigs and (b) a nominal 15" x 20" marking template.
The 'provided as is" CADD data is formatted for use on a Universal Laser Systems (ULS) laser cutter digital (CNC) device. Each CADD drawing is also provided in two (2) formats: Autodesk AutoCAD 2007 .DWG and .DXF R12. Users should modify and adapt the CADD data as required to fit their equipment. This CADD data set is released and distributed under a Creative Commons license; users are also encouraged to make changes o the data and share (with attribution) their designs with the worldwide acoustic guitar building community.
|
Page generated in 0.1408 seconds