Spelling suggestions: "subject:"1concentration compactness"" "subject:"2concentration compactness""
1 |
Global Behavior Of Finite Energy Solutions To The Focusing Nonlinear Schrödinger Equation In d DimensionJanuary 2011 (has links)
abstract: Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules. / Dissertation/Thesis / Ph.D. Mathematics 2011
|
2 |
Multiplicidade de soluções para sistemas do tipo Schrödinger-PoissonOliveira, Alcionio Saldanha de 15 April 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 700931 bytes, checksum: e90ff8d817f64f35c7f45fb88026619e (MD5)
Previous issue date: 2014-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will use the Mountain Pass Theorem, Ekeland s Variational
Principle, the Concentration-Compactness Principle, the Brezis & Nirenberg Method,
Penalization Method and some properties involving Nehari manifolds to obtain existence
and multiplicity of solutions for the following class of elliptic systems.
() 8<:
u + V (x)u + u = r(x; u) em R3;
= u2 em R3;
where r : R3 R ! R is a function that has critical growth. / Neste trabalho, usaremos o Teorema do Passo da Montanha, Princípio Variacional
de Ekeland, o Princípio de Concentração de Compacidade, o Método de Brezis &
Nirenberga, o Método de Penalização e propriedades envolvendo Variedades de Nehari
para obter resultados de existência e multiplicidade de soluções positivas para uma
classe de sistemas elípticos ( também conhecidos como sistemas do tipo Schrödinger-
Poisson)(-) 8<:
-u + V (x)u + u = r(x; u) em R3;
= u2 em R3;
onde r : R3 R ! R é uma função que possui crescimento crítico.
|
3 |
Solução positiva de uma equação de Schrödinger assintoticamente linear no infinito via variedade de Pohozaev / Solución positiva de una ecuación de Schrödinger asintóticamente lineal en el infinito via variedad de PohozaevChata, Juan Carlos Ortiz [UNESP] 21 February 2017 (has links)
Submitted by JUAN CARLOS ORTIZ CHATA null (hacermate@outlook.com) on 2017-03-03T19:11:52Z
No. of bitstreams: 1
Disertação de Juan.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T13:50:24Z (GMT) No. of bitstreams: 1
chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Made available in DSpace on 2017-03-09T13:50:24Z (GMT). No. of bitstreams: 1
chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5)
Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho teórico em Equações Diferenciais Parciais Elípticas, iremos apresentar uma abordagem diferente e mais geral na busca de solução positiva da equação de Schrödinger assintoticamente linear no infinito -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Métodos variacionais são usados para o estudo da existência das soluções fracas positivas sobre um apropriado subconjunto da variedade de Pohozaev associado ao problema, sob certas condições na não-linearidade. / In this theoretical work in Elliptic Partial Differential Equation, we will present a different and more general approach in the search of positive solution of asymptotically linear Schrödinger equation -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Variational methods are used to study the existence of the weak positive solutions on an appropriate subset of Pohozaev manifold associated with the problem, under certain assumptions on the nonlinearty.
|
4 |
Uma versão abstrata do princípio de concentração de compacidade e aplicaçõesSouza, Diego ferraz de 14 October 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T13:04:57Z
No. of bitstreams: 1
arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5) / Made available in DSpace on 2016-03-31T13:04:57Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5)
Previous issue date: 2015-10-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we present an abstract version of the concentration compactness principle
by Lions, extending it to Hilbert spaces. To do so, we include the concept of dislocation
space, the pair (H;D) formed by a separable Hilbert space H (being H1(RN)
the model case, N 3) and a set D of linear limited operators on H; as well as the
concept of the D-weak convergence. The main result of this theory is, in a sense, a
generalization of the famous theorem of Banach-Bourbaki-Alaoglu. Another important
consequence of the theory is the equivalence of D-weak convergence in H1(RN);N 3
and strong convergence in Lp; for p 2 (2; 2 ) and D appropriate. With this version, we
prove existence of solution for some classes of elliptic problem on unbounded domains,
via constrained minimization method. / Neste trabalho apresentamos uma versão abstrata do princípio de concentração de
compacidade de Lions, estendo-o para espaços de Hilbert. Para tanto, incluímos o conceito
de espaço de deslocamento, o par (H;D); formado por um espaço de Hilbert H
separável (sendo H1(RN) o caso modelo, N 3) e um conjunto D de operadores lineares
limitados em H; além do conceito de convergência D-fraca. O principal resultado
desta teoria é, em certo sentido, uma generalização do célebre Teorema de Banach-
Alaoglu-Bourbaki. Outra importante consequência da teoria é a equivalência entre
convergência D-fraca em H1(RN); N 3; e convergência forte em Lp; para p 2 (2; 2 )
e D adequado. Com esta versão, provamos existência de solução para algumas classes
de problema elípticos em domínios ilimitados, via método de minimização com vínculo.
|
5 |
Etude d'un modèle de champ moyen en électrodynamique quantique / Study of a mean-field model in quantum electrodynamicsSok, Jérémy 08 July 2014 (has links)
Les modèles de champ moyen en QED apparaissent naturellement dans la modélisation du nuage électronique des atomes lourds. Cette modélisation joue un rôle croissant en physique et chimie quantique, les effets relativistes ne pouvant pas être négligés pour ces atomes. En physique quantique relativiste, le vide est un milieu polarisable, susceptible de réagir à la présence de champ électromagnétique.On se place dans le cadre du modèle variationnel de Bogoliubov-Dirac-Fock (BDF) qui est une approximation de champ moyen de la QED sans photon (en particulier, les interactions considérées sont purement électrostatiques).Il est à noter que pour donner un sens au modèle BDF, il est nécessaire d'introduire une régularisation ultra-violette. Il se produit un phénomène de renormalisation de charge due à la polarisation du vide : la charge de l'électron observée dépend de la charge « nue » de l'électron et du paramètre de régularisation. On étudie rigoureusement ce phénomène ainsi que le problème de la renormalisation de la masse. Cette dernière est en lien avec l'existence d'un état fondamental pour le système d'un électron dans le vide, en l'absence de tout champ extérieur. En revanche, on montre l'absence de minimiseurs dans le cas de deux électrons.Enfin, on exhibe des points critiques de l'énergie BDF, interprétés comme des états excités du vide. On met en évidence le positronium, système métastable d'un électron et de son antiparticule le positron, ainsi que le dipositronium, molécule métastable constituée de deux électrons et de deux positrons.Les méthodes utilisées sont variationnelles (concentration-compacité, lemme de Borwein et Preiss). / In QED, mean-field models appear in the modelling of the electron clouds of heavy atoms. This modelling plays a increasing role in physics and in quantum chemistry: relativistic effects cannot be neglected in these atoms. In relativistic quantum physics the vacuum is a polarizable medium that can react to the presence of an electromagnetic field.We consider the so-called Bogoliubov-Dirac-Fock (BDF) model, a variational model which is a mean-field approximation of no-photon QED (in particular the interactions are purely electrostatic).We point out that an ultraviolet regularisation is necessary to properly define the BDF model. The vacuum polarisation leads to a \emph{renormalisation} phenomenon, the "observed" charge of the electron depends on its "bare" charge and the regularisation parameter. We rigorously study both the problem of charge renormalisation and mass renormalisation. This last one is linked to the existence of ground state in the case of an electron in the vacuum, without any external field. In contrast, we show there is no ground state in the case of two electrons.Finally we exhibit some critical points of the BDF energy which are interpreted as vacuum excited states. In particular, there are the positronium (a metastable system constituted by an electron and its antiparticle called the positron) and the dipositronium (a metastable molecule constituted by two electrons and two positrons).The methods that we use are variational (concentration-compactness, Borwein and Preiss's Lemma).
|
6 |
Concentration-compactness principle and applications to nonlocal elliptic problemsSouza, Diego Ferraz de 13 December 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:14:54Z
No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5)
Previous issue date: 2016-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to analyze concentration-compactness principles for
fractional Sobolev spaces based on the concentration compactness principle of P.-L.
Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to
K. Tintarev and K.-H Fieseler. As application, we address questions on compactness
of the associated energy functional to the following nonlocal elliptic problems,
$'
''''''&'
''''''%
p qsu fpx; uq in RN;
p qsu apxqu fpx; uq in RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3;
p q Kpxqu2 in R3;
where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to
a suitable Lebesgue space. We obtain existence results for a wide class of possible
singular potentials apxq; not necessarily bounded away from zero and for oscillatory
nonlinearities in both subcritical and critical growth range that may not satisfy the
Ambrosetti-Rabinowitz condition. / O objetivo principal deste trabalho é analisar princípios de concentração de
compacidade para espaços de Sobolev fracionários baseados na concentração de
compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em
espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos
questões sobre a compacidade do funcional energia associado aos seguintes problems
elípticos não locais,
$'
''''''&'
''''''%
p qsu fpx; uq em RN;
p qsu apxqu fpx; uq em RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3;
p q Kpxqu2 em R3;
onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço
de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de
potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por
uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos
subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
|
7 |
Multiplicidade de Soluções para Problemas Elípticos Semilineares Envolvendo o Expoente Crítico de SobolevPrazeres, Disson Soares dos 04 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 549935 bytes, checksum: f7562c326b5af177cb80a71a184aa0c9 (MD5)
Previous issue date: 2010-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation, we study the multiplicity of solutions for the following class of semilinear elliptic problems involving the critical Sobolev exponent, ---u = - juj2---2 u + f (x; u) ; x 2 e u = 0; x 2 @ ; where N - 3, - RN is a smooth and bounded domain, - is a positive real parameter
and 2- = 2N= (N - 2) is the critical Sobolev exponent. In obtaining our result, we use variational methods, such as, minimax theorems, Lusternik-Schnirelman theorems, as well
as, concentration-compactness lemma. / Nesta dissertação, estudamos a multiplicidade de soluções para a seguinte classe de
problemas elípticos semilineares envolvendo o expoente crítico de Sobolev, --u = - juj2---2 u + f (x; u) ; x 2
e u (x) = 0; x 2 @ ; onde N - 3, - RN é um dominio suave e limitado, - é um parâmetro real positivo e 2* = 2N= (N - 2) é o expoente crítico de Sobolev. Na prova dos resultados, usamos métodos variacionais, tais como, teoremas do tipo minimax, teoremas do tipo Lusternik-Schnirelman, bem como, lemas de concentração-compacidade.
|
8 |
Sobre sistemas de equações do tipo Schrödinger-Poisson. / About systems of equations of the Schrödinger-Poisson type.LIMA, Romildo Nascimento de. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T15:14:18Z
No. of bitstreams: 1
ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) / Made available in DSpace on 2018-08-06T15:14:18Z (GMT). No. of bitstreams: 1
ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5)
Previous issue date: 2013-02 / Capes / Neste trabalho estaremos interessados em estudar resultados de existência e não
existência de solução, comportamento do funcional energia e condição de Palais-Smale
para sistemas de equações do tipo Schrödinger-Poisson; usaremos o método variacional.
E, as soluções são pontos críticos do funcional energia associado ao problema. Para
alcançar nossos objetivos, será fundamental o estudo das variedades de Ruiz e de
Nehari, o Princípio Variacional de Ekeland, o teorema do Passo da Montanha, e o lema
Concentração de Compacidade. / In this work we are interested in studying the results of existence and nonexistence
of solution, behavior of the energy functional and Palais-Smale condition
for systems of equations of the type Schrödinger-Poisson; by using variational approach.
In fact the solutions are critical points of the energy functional associated with
the problem. To achieve our goals, it is essential to study the Manifolds of Ruiz
and Nehari, the Ekeland Variational Principle, the Mountain Pass theorem, and the
Concentration-Compactness argument.
|
9 |
Méthodes variationnelles et topologiques pour l'étude de modèles non liénaires issus de la mécanique relativiste / Variational and topological methods for the study of nonlinear models from relativistic quantum mechanics.Le Treust, Loïc 05 July 2013 (has links)
Cette thèse porte sur l'étude de modèles non linéaires issus de la mécanique quantique relativiste.Dans la première partie, nous démontrons à l'aide d'une méthode de tir l'existence d'une infinité de solutions d'équations de Dirac non linéaires provenant d'un modèle de hadrons et d'un modèle de la physique des noyaux.Dans la seconde partie, nous prouvons par des méthodes variationnelles l'existence d'un état fondamental et d'états excités pour deux modèles de la physique des hadrons. Par la suite, nous étudions la transition de phase reliant les deux modèles grâce à la Gamma-convergence.La dernière partie est consacrée à l'étude d'un autre modèle de hadrons dans lequel les fonctions d'onde des quarks sont parfaitement localisées. Nous énonçons quelques résultats préliminaires que nous avons obtenus. / This thesis is devoted to the study of nonlinear models from relativistic quantum mechanics.In the first part, we show thanks to a shooting method, the existence of infinitely many solutions of nonlinear Dirac equations of two models from the physics of hadrons and the physics of the nucleus.In the second part, we prove thanks to variational methods the existence of a ground state and excited states for two models of the physics of hadrons. Next, we study the phase transition which links the models thanks to the $\Gamma$-convergence.The last part is devoted to the study of another model from the physics of hadrons in which the wave functions are perfectly confined. We give some preliminary results.
|
Page generated in 0.111 seconds