• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 749
  • 286
  • 49
  • 12
  • 1
  • 1
  • Tagged with
  • 1403
  • 701
  • 602
  • 435
  • 340
  • 340
  • 324
  • 315
  • 247
  • 240
  • 240
  • 207
  • 204
  • 204
  • 194
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
961

Übersicht über die Habilitationen an der Fakultät für Mathematik und Informatik der Universität Leipzig von 1998 bis 2000

Universität Leipzig 06 August 2001 (has links)
No description available.
962

Mathematical Modelling of Spread of Vector Borne Disease In Germany

Bhowmick, Suman 23 January 2023 (has links)
Ziel dieser Doktorarbeit ist ein mathematisches Modell zu entwickeln, um eine mögliche Ausbreitung des West-Nil-Virus (WNV) in Deutschland zu simulieren und zu bewerten. Das entwickelte Werkzeug soll auch auf eine weitere, durch Zecken übertragene Krankheit, dem Krim-Kongo-Hämorrhagischen Fieber (CCHFV) angewendet werden. Die durch den Klimawandel verursachte globalen Erwärmung unterstützt auch die Verbreitung und Entwicklung verschiedener Vektorpopulationen. Dabei hat eine Temperaturerhöhung einen positiven Einfluss auf den Lebenszyklus des Vektors und die Zunahme der Vektoraktivität. In dieser Arbeit haben wir ein Differentialgleichungsmodell (ODE) entwickelt, um den Einfluss eines regelmäßigen Eintrags von Infektionserregern auf die empfängliche Population unter Berücksichtigung des Temperatureinflusses zu verstehen. Als Ergebnis haben wir einen analytischen Ausdruck der Basisreproduktionszahl und deren Wechselwirkung mit der Temperatur gefunden. Eine Sensitivitätsanalyse zeigt, wie wichtig das Verhältnis der anfälligen Mücken zur lokalen Wirtspopulation ist. Als ein zentrales Ergebnis haben wir den zukünftigen Temperaturverlauf auf Basis der Modellergebnisse des IPCC in unser Modell integriert und Bedingungen gefunden, unter denen es zu einer dauerhaften Etablierung des West-Nil-Virus in Deutschland kommt. Darüber hinaus haben wir die entwickelten mathematischen Modelle verwendet, um verschiedene Szenarien zu untersuchen, unter denen sich CCHFV möglicherweise in einer naiven Population etablieren kann, und wir haben verschiedene Kontrollszenarien mathematisch abgeleitet, um die Belastung von einer Infektion durch Zecken zu bewältigen. / The objective of this thesis is to develop the necessary mathematical model to assess the potential spread of West Nile Virus (WNV) in Germany and employ the developed tool to analyse another tick-borne disease Crimean- Congo Hemorrhagic Fever (CCHFV). Given the backdrop of global warming and the climate change, increasing temperature has benefitted the vector population. The increase in the temperature has a positive influence in the life cycle of the vector and the increase in its activities. In this thesis, we have developed an Ordinary Differential Equation (ODE) model system to understand the influence of the periodic introduction of infectious agents into the local susceptible population while taking account of influence of temperature. As results, we have found an analytic expression of the basic reproduction number and its interplay with the temperature. The sensitivity analysis shows us the importance of the ratio between the susceptible mosquitoes to the local host population. As a central result we have extrapolated the temperature trend under different IPCC conditions and found the condition under which the circulation of West Nile Virus will be permanent in Germany. Furthermore, we have utilised the developed mathematical models to examine different scenarios under which CCHFV can potentially establish in a naive population along with we mathematically derived different control scenarios to manage the burden of tick infection.
963

A Hybrid Method for Inverse Obstacle Scattering Problems / Ein hybride Verfahren für inverse Streuprobleme

Picado de Carvalho Serranho, Pedro Miguel 02 March 2007 (has links)
No description available.
964

Von Schweiggers erstem Galvanometer bis zu Cantors Mengenlehre: Zu den Wechselbeziehungen zwischen Mathematik und Physik an der Universität Halle-Wittenberg in der Zeit von 1817 bis 1890

Schlote, Karl-Heinz, Schneider, Martina 06 July 2017 (has links)
Es gibt wohl kaum Wissenschaftsgebiete, in denen die wechselseitige Beeinflussung stärker ist als zwischen Mathematik und Physik. Eine wichtige Frage ist dabei die nach der konkreten Ausgestaltung dieser Wechselbeziehungen, etwa an einer Universität, oder die nach prägenden Merkmalen in der Entwicklung dieser Beziehungen in einem historischen Zeitabschnitt. Im Rahmen eines mehrjährigen Akademieprojekts wurden diese Beziehungen an den Universitäten in Leipzig, Halle und Jena für den Zeitraum vom Beginn des 19. bis zur Mitte des 20. Jahrhunderts untersucht und in fünf Bänden dargestellt. Der erste dieser Bände erschien in den Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, die nachfolgenden (u.a. der vorliegende) als eigenständige Reihe unter dem Titel “Studien zur Entwicklung von Mathematik und Physik in ihren Wechselwirkungen“. Ein weiterer und abschließender Band dieser Reihe beinhaltet die Beiträge einer wissenschaftshistorischen Fachtagung im Jahr 2010, die das Thema in einem internationalen Kontext einbettet. Der vorliegende Band behandelt den Zeitraum von 1817 bis 1890 an der Universität Halle-Wittenberg. Recht deutlich fällt hier die meist nur mäßige Förderung der Hallenser Alma Mater auf, die sich aus ihrer Stellung in der Universitätslandschaft Preußens ergab. Trotz des daraus resultierenden engen Finanzbudgets gelang es der Philosophischen Fakultät, einige junge talentierte Dozenten sowie angesehene Fachvertreter (Gustav Roch, Hermann Amandus Schwarz, Wilhelm Hankel, Julius Plücker, Eduard Heine, Georg Cantor u.a.) zu gewinnen und, wenn auch oft nur für kurze Zeit, von deren Forschungsaktivitäten und -ideen zu profitieren. Gleichzeitig konnten Johann S. Chr. Schweigger und Hermann Knobloch mit der Einrichtung einer Professur für Physik bzw. dem Bau eines neuen Institutsgebäudes die Entwicklung der Physik voranbringen. Später trugen Ernst Dorn und Georg Cantor, die mehrere Jahrzehnte in Halle tätig waren, mit ihren Forschungen zum Ansehen der Hallenser Universität bei.:Vorwort 1 Einleitung 2 Die Anfänge der Vereinigten Friedrichs-Universität Halle-Wittenberg im Rahmen der neugestalteten Universitätenlandschaft Preußens ab 1817 3 Die Mathematik an der Vereinigten Friedrichs-Universität Halle-Wittenberg 3.1 Der Neubeginn und die ersten Lehrstuhlbesetzungen 3.2 Sohnckes Initiative zur Gründung eines mathematisch-physikalischen Seminars 3.3 Die Zeit der starken Fluktuation auf dem mathematischen Lehrstuhl und Heines Ringen um die Verbesserung der Ausbildung 3.4 Auf dem Weg zum mathematischen Institut 4 Die Astronomie – ein Hallenser Nischenfach 5 Die Einrichtung des Lehrstuhls für Physik und dessen Besetzung 5.1 Die Ära Schweigger 5.1.1 Die größere Repräsentanz der Physik durch Kaemtz und Weber 5.1.2 Auseinandersetzungen mit Schweigger und die Einrichtung des Ordinariats für Physik 5.1.3 Hankels Wechsel nach Leipzig und die Berufung Knoblauchs 5.2 Auf dem Weg zur Etablierung der theoretischen Physik 5.3 Der Bau des Physikalischen Instituts 6 Mathematik und Physik in der Lehre 6.1 Überblick 6.2 Vorlesungen zur Mechanik, mathematischen und theoretischen Physik 6.2.1 Erste Phase (1817 – 1842): relativ regelmäßiges Angebot 6.2.2 Zweite Phase (1843 – 1853): Einbruch 6.2.3 Dritte Phase (1854 – 1874): Wiederaufleben und Erstarken 6.2.4 Vierte Phase (1875 – 1890): Anstieg 6.3 Gesellschaften und Seminare als Vorläufer zur Etablierung von Übungen 7 Forschungsgebiete der Hallenser Mathematiker zwischen 1817 und 1890 7.1 Dynamik und Erdmagnetismus: F. Pfaff und J. G. Steinhäuser 7.1.1 Pfaffs Beitrag zur Integration der Bewegungsgleichungen 7.1.2 Steinhäusers Theorie zum Erdmagnetismus 7.1.3 Gartz’ Beiträge zur Mathematikgeschichte 7.2 Astronomische Berechnungen zur Kometenbahn: A. Rosenberger 7.3 Forschungsschwerpunkt Analysis: von J. J. Schoen bis E. Wiltheiß 7.3.1 Schoens Arbeiten 7.3.2 Scherks Beiträge 7.3.3 Sohnckes vielseitige Forschungsinteressen 7.3.4 Rochs Untersuchungen zu Abel’schen und elliptischen Integralen 7.3.5 Schwarz’ erste Arbeiten zu konformen Abbildungen 7.3.6 Thomaes Arbeiten zur Reihenentwicklung und Theorie der komplexen Funktionen 7.3.7 Jürgens’ Untersuchungen zu speziellen Funktionen und Differentialgleichungen 7.3.8 Wiltheiß’ Beiträge zu Abel’schen Funktionen und partiellen Differentialgleichungen 7.4 Beiträge zur Geometrie: von J. Plücker bis H. Wiener 7.4.1 Von der Theorie der algebraischen Kurven zur Optik: Julius Plücker 7.4.2 Algebraische projektive Geometrie: Ferdinand Joachimsthal und Otto Hesse 7.4.3 Untersuchungen zu den Grundlagen der Geometrie: Hermann Wiener 7.5 Die kurze Blütezeit der mathematischen Physik: E. Heine und C. Neumann 7.5.1 Ausbau der Potentialtheorie von mathematischer Seite: Eduard Heine 7.5.2 Von der Optik bis zur Kristallographie: Carl Neumanns vielfältige Beiträge zur mathematischen Physik 7.6 Die Begründung der Mengenlehre durch Georg Cantor 7.7 Zur Theorie der Newton’schen Ringe: A. Wangerin 8 Die physikalischen Forschungen an der Universität Halle-Wittenberg 8.1 Die stärkere Profilierung der Physik – Schweigger und seine Schüler 8.2 Knoblauch und die Erforschung der «strahlenden Wärme» 8.3 Die Vertretung der theoretischen Physik durch Cornelius, Oberbeck und Dorn 9 Hallenser Mathematiker und Physiker und die örtlichen Gelehrten Gesellschaften und Vereine 9.1 Die Naturforschende Gesellschaft zu Halle 9.2 Der Naturwissenschaftliche Verein 9.3 Die Deutsche Akademie der Naturforscher Leopoldina 10 Die Wechselbeziehungen zwischen Mathematik und Physik an der Hallenser Universität 10.1 Die grundlegenden Veränderungen in den Wechselbeziehungen 10.2 Die spezifische Hallenser Entwicklung der Wechselbeziehungen Anhang: Verzeichnis der Vorlesungen zur mathematischen und theoretischen Physik (Wintersemester 1817/18 – Sommersemester 1891) Literatur und Quellen Abbildungsverzeichnis Verzeichnis der Diagramme Personenverzeichnis Grafik: Vorlesungstätigkeit der Dozenten für Mathematik und Physik in Halle (1817-1890)
965

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
966

A Class of Elliptic Obstacle-Type Quasi-Variational Inequalities: Theory and Solution Methods

Brüggemann, Jo Andrea 24 November 2023 (has links)
Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext. Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösungen werden durch die Charakterisierung der QVI als eine Fixpunkt Gleichung ermöglicht. Zur Lösung der betrachteten QVI selbst wird im Allgemeinen auf eine sequentielle Minimierungsmethode zurückgegriffen und eine Folge von Minimierungs- oder Variationsproblemen vom Hindernis-Typ betrachtet. In diesem Sinne ist für die numerische Behandlung der QVI die effiziente Lösung der auftretenden sequentiellen Probleme maßgeblich. Bei der Entwicklung geeigneter Lösungsmethoden wird insbesondere den Aspekten gitterunabhängige Verfahren sowie adaptive Diskretisierung des kontinuierlichen Problems mittels Finiter Elemente Rechnung getragen: Nach Anwendung der sequentiellen Minimierungsmethode auf die QVI werden die Hindernisprobleme durch eine Folge von Moreau–Yosida-regularisierten Problemen approximiert und anschliessend mit der nichtglatten (semismooth) Newton Methode und einer Pfadverfolgungsstrategie hinsichtlich des Yosida-Parameters gelöst. Die numerische Lösung erfolgt mittels einer adaptiver Finite Elemente Methode (AFEM), wobei die lokale Gitterverfeinerung auf a posteriori Residuen-basierten Schätzern des Approximierungsfehlers beruht. Numerische Experimente schließen die Arbeit ab. / Quasi-variational inequalities (QVIs) are used to describe complex equilibrium-type phenomena in many models in the natural and social sciences. Despite the abundance of different applications of QVIs—e.g., in biology, continuum mechanics, physics, geology, economics—there is only scarce literature on general theoretical and algorithmic approaches to solve problems involving QVIs particularly in infinite dimensions. This thesis focuses on elliptic obstacle-type QVIs with an additional volume constraint that are motivated by the simplified model of a compliant obstacle-type situation stemming from biomedicine. The first part of the thesis establishes existence of solutions to this type of QVIs under different sets of assumptions upon converting the problem to a fixed point equation. Unless the compliant obstacle map exhibits differentiability properties—in which case the problem can be regularised and solved directly in function space—the QVI can only be solved using a sequential variational or minimisation technique that leads to a sequence of obstacle-type problems. The ensuing parts of the thesis cover the efficient (numerical) solution of the emerging sequential problems where a major focus is on the aspects of mesh-independent performance of the solution method and the adaptive discretisation of the continuous problem based on finite elements. The obstacle-type problems resulting from using the sequential minimisation technique on the QVI are solved resorting to Moreau–Yosida-based approximation along with a semismooth Newton solver and a path-following regime for the sake of mesh-independence, which is subject of the second part. The corresponding discretised problems are solved with an adaptive finite element method (AFEM) that uses a posteriori residual-based error estimation techniques for Moreau–Yosida-based approximations of obstacle-type problems, the latter which are explored in the third part. The thesis concludes with numerical experiments.
967

Stabilized Finite Element Methods for Coupled Incompressible Flow Problems

Arndt, Daniel 19 January 2016 (has links)
No description available.
968

Development of a three-dimensional all-at-once inversion approach for the magnetotelluric method

Wilhelms, Wenke 27 July 2016 (has links) (PDF)
A three-dimensional inversion was implemented for magnetotellurics, which is a passive electromagnetic method in geophysics. It exploits natural electromagnetic fields of the Earth, which function as sources. Their interaction with the conductive parts of the subsurface are registered when components of the electric and the magnetic field are measured and evaluated. The all-at-once approach is an inversion scheme that is relatively new to geophysics. In this approach, the objective function – the basis of each inversion – is called the Lagrangian. It consists of three parts: (i) the data residual norm, (ii) the regularisation part, and (iii) the forward problem. The latter is the significant difference to conventional inversion approaches that are built up of a forward calculation part and an inversion part. In the case of all-at-once, the forward problem is incorporated in the objective function and is therefore already taken into account in each inversion iteration. Thus, an explicit forward calculation is obsolete. As an objective function, the Lagrangian shall reach a minimum and therefore its first and second derivatives are evaluated. Hence, the gradient of the Lagrangian and its Hessian are constituent parts of the KKT system – the Newton-type system that is set up in the all-at-once inversion. Conventional inversion approaches avoid the Hessian because it is a large, dense, not positive definite matrix that is challenging to handle. However, it provides additional information to the inversion, which raises hope for a high quality inversion result. As a first step, the inversion was programmed for the more straightforward one-dimensional magnetotelluric case. This was particularly suitable to become familiar with sQMR – a Krylov subspace method which is essential for the three-dimensional case to be able to work with the Hessian and the resulting KKT system. After the implementation and validation of the one-dimensional forward operator, the Lagrangian and its derivatives were set up to complete the inversion, which successfully solved the KKT system. Accordingly, the three-dimensional forward operator also needed to be implemented and validated, which was done using published data from the 3D-2 COMMEMI model. To realise the inversion, the Lagrangian was assembled and its first and second derivatives were validated with a test that exploits the Taylor expansion. Then, the inversion was initially programmed for the Gauss-Newton approximation where second order information is neglected. Since the system matrix of the Gauss-Newton approximation is positive definite, the solution of this system of equations could be carried out by the conventional solver pcg. Based on that, the complete KKT system (Newton\\\'s method) was set up and preconditioned sQMR solved this system of equations.
969

Secondary large-scale index theory and positive scalar curvature

Zeidler, Rudolf 24 August 2016 (has links)
No description available.
970

Partial Least Squares for Serially Dependent Data

Singer, Marco 04 August 2016 (has links)
No description available.

Page generated in 0.4 seconds