Spelling suggestions: "subject:"61effective energy"" "subject:"c.affective energy""
1 |
The Influence of Climate and Landscape on Hydrological Processes, Vegetation Dynamics, Biogeochemistry and the Transfer of Effective Energy and Mass to the Critical ZoneZapata-Rios, Xavier January 2015 (has links)
The Critical Zone (CZ) is the surficial layer of the planet that sustains life on Earth and extends from the base of the weathered bedrock to the top of the vegetation canopy. Its structure influences water fluxes, biogeochemistry and vegetation. In this dissertation, I explore the relationships between climate, water fluxes, vegetation dynamics, biogeochemistry, and effective energy and mass transfer fluxes (EEMT) in a semi-arid critical zone. This research was carried out in the upper Jemez River Basin in northern New Mexico across gradients of climate and elevation. The main research objectives were to (i) quantify relations among inputs of mass and energy (EEMT), hydrological and biogeochemical processes within the CZ, (ii) determine water fluxes and vegetation dynamics in high elevation mountain catchments with different terrain aspect and solar radiation, and (iii) study temporal variability of climate and its influence on the CZ water availability, forest productivity and energy and mass fluxes. The key findings of this study include (i) significant correlations between EEMT, water transit times (WTT) and mineral weathering products around Redondo Peak. Significant correlations were observed between dissolved weathering products (Na⁺ and DIC) and maximum EEMT. Similarly, ³H concentrations measured at the springs were significantly correlated with maximum EEMT; (ii) terrain aspect strongly controls energy, water distribution, and vegetation productivity in high elevation ecosystems in catchments draining different aspects of Redondo Peak. The predominantly north facing catchment, when compared to the other two eastern catchments, receives less solar radiation, exhibits less forest cover and smaller biomass, has more surface runoff and smaller vegetation water consumption. Furthermore, the north facing catchment showed smaller NDVI values and shorter growing season length as a consequence of energy limitation, and (iii) from 1984 to 2012 a decreasing trend in water availability, increased vegetation water use, a reduction in both forest productivity and EEMT was observed at the upper Jemez River Basin. These changes point towards a hotter, drier and less productive ecosystem which may alter critical zone processes in high elevation semi-arid systems.
|
2 |
Monitoração dinâmica na cravação de estacas: aplicabilidade da equação de Energy Approach e estimativas das tensões de compressão. / Dynamic monitoring in pile driving: applicability of the Energy Approach equation and compression stresses estimation.Querelli, André Esposito 09 May 2019 (has links)
Fundações constituídas de estacas pré-moldadas cravadas têm, na questão dos controles executivos, significativas vantagens em relação às estacas moldadas in loco: desde a simplicidade executiva dos diagramas de cravação até a sofisticação teórica dos ensaios de carregamento dinâmico, há sempre a possibilidade de expeditas verificações de comportamento da cravação, de homogeneidade de estaqueamento e até estimativas da capacidade de carga. No entanto, assim como o grande número de dispositivos de controle para esse tipo de estaca representa uma vantagem, a diversidade de formas existentes de interpretá-los representa, igualmente, uma desvantagem. Em face disso, a presente pesquisa compilou 881 registros de ensaios de carregamento dinâmico (708 em estacas de concreto e 173 em estacas de aço) e os comparou com as estimativas de resistência da Equação de Energy Approach. A aplicabilidade da equação foi testada aos dois materiais de estaca, principalmente quando se estudaram variações do parâmetro Ksp em relação às diversas grandezas envolvidas na cravação, seus extremos empíricos e uma proposta de calibração à fórmula dinâmica por meio desse parâmetro chave. O estudo dos ensaios dinâmicos também levou à proposição de uma equação para se estimar a energia efetivamente transferida à estaca no golpe do martelo por meio da nega e do repique elástico. O presente estudo também dedicou uma seção à questão das tensões dinâmicas de compressão na cravação, avaliando estimativas de tensões por meio da Equação de Gambini e propondo duas versões alternativas ao método: uma primeira, simplificada e uma de cunho prático, com objetivo de possibilitar rápidas estimativas das tensões de compressão quando ainda em campo. / Driven precast piled foundations have significant advantages in respect of quality control over cast-in-place piles - from the executive simplicity of the blow count diagrams to the theoretical sophistication of dynamic load tests - there is always the possibility of fast and practical driving behavior check, homogeneity and even load capacities estimation. However, as the large number of available quality controls represents an advantage, that diversity can equally represent a disadvantage in respect to interpretation and methodology. Therefore, the present research compiled 881 records of dynamic load tests (708 on concrete piles and 173 on steel piles) and compared them with the resistance estimation with the Energy Approach Equation. The applicability of the equation was tested for both materials, especially when studying its main parameter (Ksp) variation related to several variables involved in pile driving, its empirical extremes and a calibration to the dynamic formula by means of Ksp. The study of the dynamic tests also led to the proposition of an equation to estimate the effective transferred energy to the pile in the hammer stroke by means of the blow count (set) and the elastic rebound. The study also devoted a section to the issue of dynamic compression stresses during driving, evaluating it through Gambini\'s Equation and proposing two alternative versions of that formula: a simplified one and a practical formulation in order to enable field estimations.
|
3 |
Modélisation quantochimiques des forces de dispersion de London par la méthode des phases aléatoires (RPA) : développements méthodologiques / Quantum chemical studies of London dispersion forces by the random phase approximation (RPA) : methodological developments.Mussard, Bastien 13 December 2013 (has links)
Dans cette thèse sont montrés des développements de l'approximation de la phase aléatoire (RPA) dans le contexte de théories à séparation de portée. On présente des travaux sur le formalisme de la RPA en général, et en particulier sur le formalisme "matrice diélectrique" qui est exploré de manière systématique. On montre un résumé d'un travail sur les équations RPA dans le contexte d'orbitales localisées, notamment des développements des orbitales virtuelles localisées que sont les "orbitales oscillantes projetées" (POO). Un programme a été écrit pour calculer des fonctions telles que le trou de d'échange, la fonction de réponse, etc... sur des grilles de l'espace réel (grilles parallélépipédiques ou de type "DFT"). On montre certaines de ces visualisations. Dans l'espace réel, on expose une adaptation de l'approximation du dénominateur effectif (EED), développée originellement dans l'espace réciproque en physique du solide. Également, les gradients analytiques des énergies de corrélation RPA dans le contexte de la séparation de portée sont dérivés. Le formalisme développé ici à l'aide d'un lagrangien permet une dérivation tout-en-un des termes courte- et longue-portée qui émergent dans les expressions du gradient, et qui montrent un parallèle intéressant. Des applications sont montrées, telles que des optimisations de géométries aux niveaux RSH-dRPA-I et RSH-SOSEX d'un ensemble de 16 petites molécules, ou encore le calcul et la visualisation des densités corrélées au niveau RSH-dRPA-I / In this thesis are shown developments in the random phase approximation (RPA) in the context of range-separated theories. We present advances in the formalism of the RPA in general, and particularly in the "dielectric matrix" formulation of RPA, which is explored in details. We show a summary of a work on the RPA equations with localized orbitals, especially developments of the virtual localized orbitals that are the "projected oscillatory orbitals" (POO). A program has been written to calculate functions such as the exchange hole, the response function, etc... on real space grid (parallelepipedic or of the "DFT" type) ; some of those visualizations are shown here. In the real space, we offer an adaptation of the effective energy denominator approximation (EED), originally developed in the reciprocal space in solid physics. The analytical gradients of the RPA correlation energies in the context of range separation has been derived. The formalism developed here with a Lagrangian allows an all-in-one derivation of the short- and long-range terms that emerge in the expressions of the gradient. These terms show interesting parallels. Geometry optimizations at the RSH-dRPA-I and RSH-SOSEX levels on a set of 16 molecules are shown, as well as calculations and visualizations of correlated densities at the RSH-dRPA-I level
|
4 |
Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen HalbleiternWidmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
|
5 |
Charge transport and energy levels in organic semiconductorsWidmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers
|
Page generated in 0.0712 seconds