• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 11
  • 2
  • Tagged with
  • 30
  • 30
  • 15
  • 15
  • 14
  • 14
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory

Albouy, Olivier 12 June 2009 (has links) (PDF)
Pour d non puissance d'un nombre premier, le nombre maximal de bases deux à deux décorrélées d'un espace de Hilbert de dimension d n'est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.Puis nous étudions de façon systématique la possibilité de construire de telle bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur Zdm montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de Zd2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Zd)²),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
12

Théorèmes de Künneth en homologie de contact

Zenaidi, Naim 24 September 2013 (has links)
L'homologie de contact est un invariant homologique pour variétés de contact dont la définition est basée sur l'utilisation de courbes holomorphes. Ce travail de thèse concerne l'étude de cet invariant dans le cas des produits de contact. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
13

Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l'information quantique

Albouy, Olivier 12 June 2009 (has links) (PDF)
Pour d non puissance d'un nombre premier, le nombre maximal de bases deux à deux décorrélées d'un espace de Hilbert de dimension d n'est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.<br /> Puis nous étudions de façon systématique la possibilité de construire de telles bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur (Z_d)^m montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de (Z_d)^2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Z_d)^2),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.<br /> Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
14

Systèmes intégrables semi-classiques: du local au global

VU NGOC, San 10 December 2003 (has links) (PDF)
Ce mémoire a pour but de présenter un panorama des recherches que j'ai effectuées depuis la soutenance de ma thèse en 1998. J'en ai également profité pour réordonner mes résultats et émailler le texte de réflexions parfois nouvelles afin de tenter de combiner l'introduction au sujet avec la synthèse de mes recherches. Il sera question de systèmes hamiltoniens complètement intégrables, de leur étude locale, de leurs singularités, de leurs aspects globaux et de certains liens qu'il entretiennent avec les variétés toriques, tout ceci du point de vue de la mécanique classique ainsi que de celui de leur quantification semi-classique. Une étude détaillée des singularités dites non-dégénérées sera présentée.
15

Aspects semi-classiques de la quantification géométrique

CHARLES, Laurent 15 December 2000 (has links) (PDF)
Dans cette thèse, nous étudions les opérateurs de Berezin-Toeplitz sur les variétés kähleriennes et leur généralisation aux variétés symplectiques compactes. Le premier chapitre porte sur l'intégrale de Feynman : nous exprimons le noyau du propagateur quantique à l'aide d'une intégrale de Wiener en fonction de l'action classique. Dans le second chapitre, nous proposons un ansatz pour le noyau des opérateurs de Berezin-Toeplitz, grâce auquel on donne une preuve directe des résultats connus sur ces opérateurs et l'on décrit le calcul des symboles covariants et contravariants en fonction de la métrique kählerienne. Ceci mène à la définition de plusieurs star-produits sur les variétés kähleriennes par une formule universelle. Dans le troisième chapitre, nous généralisons l'ansatz précédent afin de quantifier les sous-variétés lagrangiennes des variétés kähleriennes. Nous appliquons ceci de diverses manières : construction de quasi-modes, énoncé des conditions de Bohr-Sommerfeld, quantification des symplectomorphismes, réalisation d'équivalence microlocale. En comparaison avec la théorie des opérateurs pseudodifférentiels, les invariants de la géométrie des cotangents sont remplacés par des invariants de la géométrie kählerienne. Dans le dernier chapitre, nous entreprenons la généralisation des résultats précédents aux variétés symplectiques compactes, notamment nous quantifions les sous-variétés lagrangiennes et décrivons le calcul symbolique des opérateurs de Berezin-Toeplitz.
16

The Chiral Structure of Loop Quantum Gravity

Wieland, Wolfgang Martin 12 December 2013 (has links) (PDF)
La gravité quantique à boucles est une théorie candidate à la description unifiée de la relativité générale et de la mécanique quantique à l'échelle de Planck. Cette théorie peut être formulée de deux manières. L'approche canonique, d'une part, cherche à résoudre l'équation de Wheeler--DeWitt et à définir les états physiques. L'approche par les écumes de spins, d'autre part, a pour but de calculer les amplitudes de transition de la gravité quantique via une intégrale de chemin covariante. Ces deux approches s'appuient sur a même structure d'espace de Hilbert, mais la question de leur correspondance exacte reste un important problème ouvert à ce jour. Dans ce travail de thèse, nous présentons quatre résultats en rapport avec ces deux approches. Après un premier chapitre introductif, le second chapitre concerne l'étude de la théorie classique. Historiquement, l'introduction des variables d'Ashtekar complexes (self-duales) dans la formulation hamiltonienne de la relativité générale fut motivée par l'obtention d'une contrainte scalaire polynomiale. Cette simplification drastique est à la base du programme de la gravité quantique à boucles. Pour un certain nombre de raisons techniques, ces variables complexes furent ensuite abandonnées au profit des variables d'Ashtekar-Barbero, pour lesquelles le groupe de jauge est SU(2). Avec ce choix de variables réelles, la contrainte hamiltonienne n'est malheureusement plus polynomiale. La formulation en terme des variables SU(2) réelles peut être obtenue à partir de l'action de Holst, qui contient le paramètre dit de Barbero-Immirzi comme constante de couplage additionnelle. Dans un premier temps, nous allons utiliser les variables d'Ashtekar complexes pour effectuer l'analyse canonique de l'action de Holst avec un paramètre de Barbero-Immirzi réel. Les contraintes qui découlent de cette analyse canonique dépendent de ce paramètre libre, et ont l'avantage d'être polynomiales. Afin de garantir que la métrique soit une quantité réelle, un ensemble de contraintes de réalité doivent être imposées. Il s'avère que ces conditions de réalité correspondent aux contraintes de simplicité linéaires utilisées pour la construction des modèles d'écumes de spins. Ces contraintes sont préservées par l'évolution hamiltonienne si et seulement si la connexion est sans torsion. Cette condition sur l'absence de torsion est en fait une contrainte secondaire de l'analyse canonique. La second chapitre concerne également la théorie classique, mais s'intéresse à sa discrétisation en terme des variables de premier ordre dites holonomie-flux. L'espace des phases qui résulte de cette construction possède une structure non-linéaire. Le formalisme des twisteurs permet d'accommoder cette non-linéarité en travaillant sur un espace des phases linéaire paramétré par les coordonnées canoniques de Darboux. Ce formalisme fut introduit par Freidel et Speziale, mais uniquement dans le cas des variables SU(2) d'Ashtekar-Barbero. Nous généralisons ce résultat au cas du groupe de Lorentz. Nous étudions ensuite la dynamique en terme d'écumes de spins obtenue à partir de ces variables, et développons une nouvelle formulation hamiltonienne de la gravité discrétisée. Ce nouveau formalisme est obtenu en écrivant l'action de la théorie continue sur une discrétisation simpliciale de l'espace-temps fixée. L'action discrète ainsi obtenue est la somme de l'analogue en terme de spineurs d'une action topologique de type BF et des contraintes de réalité qui garantissent l'existence d'une métrique réelle. Cette action est polynomiale en terme des spineurs, ce qui permet de procéder à sa quantification canonique de manière relativement aisée. Le dernier chapitre s'intéresse à la théorie quantique obtenue suivant cette procédure. Les amplitudes de transition reproduisent celles du modèle d'écume de spins EPRL (Engle Pereira Rovelli Livine). Ce résultat est intéressant car il démontre que la formulation de la gravité quantique en termes d'écumes de spins peut être obtenue à partir d'une action classique écrite en terme de spineurs.
17

Solution de viscosité des équations Hamilton-Jacobi et minmax itérés

Wei, Qiaoling 30 May 2013 (has links) (PDF)
Dans cette thèse, nous étudions les solutions des équations Hamilton-Jacobi. Plus précisément, nous comparons la solution de viscosité, obtenue comme limite de solutions de l'équation perturbée par un petit terme de diffusion, et la solution minmax, définie géométriquement à partir d'une fonction génératrice quadratique à l'infini. Dans la littérature, il y a des cas bien connus où les deux coïncident, par exemple lorsque le hamiltonien est convexe ou concave, le minmax pouvant alors être réduit à un min ou un max. Mais les solutions minmax et de viscosité diffèrent en général. Nous construisons des "minmax itérés" en répétant pas à pas la procédure de minmax et démontrons que, quand la taille du pas tend vers zéro, les minmax itérés tendent vers la solution de viscosité. Dans une deuxième partie, nous étudions les lois de conservation en dimension un d'espace par le méthode de "front tracking". Nous montrons que dans le cas où la donnée initiale est convexe, la solution de viscosité et le minmax sont égaux. Et comme application, nous décrivons sur des exemples la manière dont sont construites les singularités de la solution de viscosité. Pour finir, nous montrons que la notion de minmax n'est pas aussi évidente qu'il y paraît.
18

Stability in the plane planetary three-body problem / Stabilité dans le problème à trois corps planétaire plan

Castan, Thibaut 21 April 2017 (has links)
Arnold a démontré l'existence de solutions quasipériodiques dans le problème planétaire à trois corps plan, sous réserve que la masse de deux des corps, les planètes, soit petite par rapport à celle du troisième, le Soleil. Cette condition de petitesse dépend de façon cachée de la largeur d'analyticité de l'hamiltonien du problème, dans des coordonnées transcendantes. Hénon ex- plicita un rapport de masses minimal nécessaire à l'application du théorème de Arnold. L'objectif de cette thèse sera de donner une condition suffisante sur les rapports de masses. Une première partie de mon travail consiste à estimer cette largeur d'analyticité, ce qui passe par l'étude précise de l'équation de Kepler dans le complexe, ainsi que celle des singularités complexes de la fonction perturbatrice. Une deuxième partie consiste à mettre l'hamiltonien sous forme normale, dans l'optique d'une application du théorème KAM (du nom de Kolmogorov-Arnold-Moser). Il est nécessaire d'étudier le hamiltonien séculaire pour le mettre sous une forme normale adéquate. On peut alors quantifier la non-dégénérescence de l'hamiltonien séculaire, ainsi qu'estimer la perturbation. Enfin, il faut démontrer une version quantitative fine du théorème KAM, inspirée de Pöschel, avec des constantes explicites. A l'issue de ce travail, il est montré que le théorème KAM peut être appliqué pour des rapports de masses entre planètes et étoile de l'ordre de 10^(-85). / Arnold showed the existence of quasi-periodic solutions in the plane planetary three-body prob- lem, provided that the mass of two of the bodies, the planets, is small compared to the mass of the third one, the Sun. This smallness condition depends in a sensitive way on the analyticity widths of the Hamiltonian of the three-body problem, expressed with the help of some tran- scendental coordinates. Hénon gave a minimal ratio of masses necessary to the application of Arnold’s theorem. The main objective of this thesis is to determine a sufficient condition on this ratio. A first part of this work consists in estimating these analyticity widths, which requires a precise study of the complex Kepler equation, as well as the complex singularities of the disturb- ing function. A second part consists in reworking the Hamiltonian to put it under normal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-Arnold-Moser). In this aim, it is essential to work with the secular Hamiltonian to put it under a suitable normal form. We can then quantify the non-degeneracy of the secular Hamiltonian, as well as estimate the perturbation. Finally, it is necessary to derive a quantitative version of the KAM theorem, in order to identify the hypotheses necessary for its application to the plane three-body problem. After this work, it is shown that the KAM theorem can be applied for a ratio of masses that is close to 10^(−85) between the planets and the star.
19

Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques / Hamiltonian automorphisms of a star product and symplectic Dirac operators

La Fuente Gravy, Laurent 25 September 2013 (has links)
Cette thèse est consacrée à l'étude de deux sujets de géométrie symplectique inspirés<p>de la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines <p>connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.<p><p>Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété <p>symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes<p>hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous <p>identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe<p>des automorphismes du produit star. Nous relions certaines propriétés géométriques de <p>ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes<p>hamiltoniens.<p><p>Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients<p>nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs <p>symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en<p>quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits<p>de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock<p>lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions<p>les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.<p>Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous <p>prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.<p><p>/<p><p>In this thesis we study two topics of symplectic geometry inspired from mathematical physics.<p><p>Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel<p>of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms. <p><p>Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space <p>$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
20

Extrinsic symmetric symplectic spaces / Espaces symétriques extrinsèques symplectiques

Richard, Nicolas 14 September 2010 (has links)
Résumé de la thèse :ce travail porte sur la notion d'espace symétrique symplectique extrinsèque. Ces espaces sont des espaces symétriques symplectiques dont la structure est induite par le plongement dans variété symplectique ambiante munie d'une connexion.<p><p>Par analogie à la théorie standard des espaces symétriques, nous démontrons un théorème d'équivalence entre les espaces symétriques symplectiques extrinsèques d'une variété qui est elle-même un espace symétrique symplectique.<p><p>La définition d'un espace symétrique symplectique extrinsèque fait intervenir l'existence d'affinités globales de la variété ambiante, les ``symétries extrinsèques', qui induisent la structure symétrique de la sous-variété ;ceci mène à poser une question du type :quelles sont les variétés possédant ``beaucoup' de ces affinités~? Une question précise ainsi qu'une réponse sont fournies dans un contexte où la variété ambiante est seulement supposée munie d'une structure<p>symplectique et d'une connexion symplectiques. Nous considérons également le cas où ces symétries commutent avec un champ $K$ d'endomorphismes symplectiques fixé de la variété, de carré $pmId$. Nous définissons une notion de courbure sectionnelle pour plans $K$-stables et montrons que les espaces à $K$-courbure sectionnelle constantes sont localement symétriques de type Ricci.<p><p>Par suite nous étudions les espaces symétriques symplectiques extrinsèques dans un espace vectoriel symplectique. Nous montrons par exemple qu'un tel espace, s'ils est de dimension deux, est forcément intrinsèquement plat (c.-à-d. à courbure intrinsèque nulle), mais que son image n'est pas forcément un plan affin de l'espace vectoriel ambiant. Nous décrivons en fait explicitement tous les espaces<p>symétriques symplectiques extrinsèques, dans un espace vectoriel, dont la courbure intrinsèque s'annule identiquement. Nous décrivons également une famille d'exemples d'espaces extrinsèques, dont nous montrons qu'elle fournit la totalité des espaces extrinsèques de codimension $2$, dans un espace vectoriel.<p><p>Enfin, nous décrivons quelques exemples d'espaces symétriques symplectiques extrinsèques qui sont totalement géodésiques, dans un espace de type Ricci particulier.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0824 seconds