• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 565
  • 290
  • 67
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 932
  • 430
  • 268
  • 155
  • 150
  • 144
  • 137
  • 130
  • 106
  • 99
  • 81
  • 76
  • 73
  • 73
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Le développement parallèle des notions de proportion et de projection géométrique

Chabot, Nathalie 23 February 2022 (has links)
La présente étude consiste à mettre en parallèle les niveaux de développement de deux notions différentes: proportion et projection géométrique. Celles-ci sont étudiées à l'aide de - l'épreuve des concentrations et de l'épreuve des vues orthogonales codées. Plus précisément, c'est la notion de structure d'ensemble qui est étudiée. L'échantillon se compose de 146 sujets âgés de 10 à 23 ans (6ème année, secondaire 1 à 5, Université). L'administration des épreuves se fait de façon collective. L'analyse des résultats est faite à l'aide des méthodes suivantes s calogramme, analyses factorielles et analyse qualitative. Cette dernière est basée sur un modèle à vérifier : les 4 systèmes. Des niveaux de développement sont mis en évidence pour chacune des épreuves. De plus, ces niveaux se correspondent vérifiant ainsi l'hypothèse de l'existence d'une structure d'ensemble, décrite à l'aide du modèle des 4 systèmes.
62

Espace-temps globalement hyperboliques conformément plats

Rossi Salvemini, Clara 24 May 2012 (has links) (PDF)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive
63

Opérateurs de Dirac sur les sous-variétés

GINOUX, Nicolas 10 September 2002 (has links) (PDF)
Les travaux effectués dans cette thèse portent sur l'étude du spectre de deux opérateurs de Dirac définis sur une sous-variété. Dans un premier temps, nous minorons la plus petite valeur propre d'un opérateur canoniquement associé à l'opérateur de Dirac-Witten. Nous montrons par la suite que l'égalité dans ces minorations ne peut être atteinte que si la sous-variété admet un spineur dit de Killing tordu. Dans un second temps, nous majorons les petites valeurs propres de l'opérateur de Dirac de la sous-variété tordu par son fibré normal. Complétant les travaux de C. Bär pour les hypersurfaces de l'espace hyperbolique, nous donnons de nouvelles estimations pour les hypersurfaces de variétés admettant des spineurs-twisteurs. Nous étendons enfin ces résultats aux sous-variétés de certaines variétés kählériennes. L'existence de spineurs de Killing kählériens sur de telles variétés permet d'estimer les petites valeurs propres des sous-variétés CR. Nous obtenons comme conséquence un théorème de comparaison de valeurs propres pour les sous-variétés kählériennes de l'espace projectif complexe.
64

Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle

Mithalal, Joris 09 December 2010 (has links) (PDF)
Ce travail de thèse porte sur le passage, dans l'enseignement secondaire, d'une géométrie du concret à une géométrie portant sur des objets idéaux. Nous montrons que des environnements de géométrie dynamique tridimensionnelle offrent des conditions favorables à ce passage, que nous détaillons. La réflexion théorique s'appuie sur la Théorie des situations didactiques (Brousseau, 1998) pour proposer des hypothèses quant aux conditions et mécanismes d'apprentissage. En outre, notre questionnement initial est interprété à l'aide de deux cadres principaux. Le point de vue épistémologique des paradigmes géométriques (Houdement et Kuzniak, 2006) permet d'identifier la référence à GII comme un objectif fondamental. L'approche cognitive de Duval (2005, 1994) montre qu'à cette fin, l'élève doit abandonner la visualisation iconique et s'appuyer sur déconstruction dimensionnelle pour l'interprétation et la résolution des problèmes de géométrie. La géométrie dynamique dans l'espace est envisagée comme moteur de cette double perspective, et la déconstruction instrumentale y joue un rôle clef. Ce rôle, ainsi que des hypothèses d'émergences de la déconstruction dimensionnelle, sont précisés par un important travail théorique s'appuyant sur le modèle cKc (Balacheff, 1995; Balacheff et Margolinas, 2005), ainsi que la mise en œuvre d'une ingénierie didactique. Celle-ci apporte une validation expérimentale de plusieurs plusieurs résultats, au nombre desquels : - la pertinence d'analyser l'activité géométrique simultanément en termes de visualisations, déconstructions, et paradigmes géométriques ; - l'intérêt de la géométrie dynamique dans l'espace pour déstabiliser la visualisation iconique ; - l'existence de deux déconstructions instrumentales, et leur rôle fondamental pour l'émergence de la déconstruction dimensionnelle ; - les interactions entre les différentes déconstructions, qui n'étaient pas établies dans les travaux antérieurs ; - la possibilité de produire des situations s'appuyant sur la géométrie dynamique dans l'espace favorisant l'émergence de la déconstruction dimensionnelle ; - l'intérêt du modèle cKc pour la modélisation et l'analyse des phénomènes observés.
65

Méthodes Spinorielles et géométrie para-complexe et para-quaternionique en théorie des sous-variétés.

Lawn-Paillusseau, Marie-Amelie 14 December 2006 (has links) (PDF)
Ce travail est relatif à la théorie des immersions et utilise des méthodes issues de la géométrie spinorielle, para-complexe et para-quaternionique. Les deux premières parties sont consacrées aux immersions conformes de surfaces pseudo-Riemanniennes. D'une part, nous étudions ce type d'immersions dans l'espace pseudo-Euclidien de dimension trois. Avec des méthodes de géométrie para-complexe et des représentations spinorielles réelles, l'équivalence entre les données d'une immersion conforme d'une surface de Lorentz dans $\mathbb{R}^{2,1}$ et de spineurs satisfaisant une équation de type Dirac est prouvée. D'autre part nous considérons des surfaces de Lorentz dans la pseudo-sphère $\mathbb{S}^{2,2}$: une bijection entre ces immersions et des sous-fibrés en droite para-quaternioniques du fibré $M\times\mathbb{H}^2$ est établie. Considérant une structure (para-)complexe particulière de ce fibré, la congruence pseudo-sphérique, et les champs de Hopf para-quaternioniques, nous définissons la fonctionnelle de Willmore de la surface et exprimons son énergie comme la somme de cette fonctionnelle et d'un invariant topologique. La dernière partie, plus générale, traite des fibrés vectoriels et immersions affines para-complexes. Nous introduisons la notion de fibré vectoriel para-holomorphe, et les sous-fibrés para-holomorphes et de type $(1,1)$ en termes de connections associées induites et de secondes formes fondamentales. Les équations fondamentales pour des décompositions générales de fibrés vectoriels munis d'une connexion sont étudiées dans le cas où certains des fibrés sont para-holomorphes afin d'obtenir des théorèmes d'existence et d'unicité pour des immersions affines para-complexes.
66

Variétés de Gray et géométries spéciales en dimension 6

Butruille, Jean-Baptiste 04 October 2005 (has links) (PDF)
On étudie des variétés presque hermitiennes de dimension 6 qui admettent une réduction supplémentaire à SU(3), induite par la partie de type (3,0) de la différentielle de la forme de Kähler dω. On se sert du fait constaté par Hitchin qu'une 2-forme ω et une 3-forme ψ, d'un certain type algébrique, sont suffisantes pour définir une structure SU(3) sur une variété de dimension 6, ainsi que du fait démontré par Chiossi, Salamon que les différentielles de ω, ψ mais aussi de φ, le dual de Hodge de ψ, déterminent le 1-jet de cette structure SU(3) en tout point. L'exemple privilégié de cette situation, où la réduction est globale, est celui des variétés « nearly Kähler » non kähleriennes en dimension 6, appelées par nous variétés de Gray. On classifie les variétés de Gray homogènes ce qui permet de résoudre une ancienne conjecture de Gray et Wolf : toutes les variétés strictement « nearly Kähler » homogènes sont des espaces 3-symétriques. Un autre résultat concerne une sous-variété naturelle de l'espace de twisteurs d'une variété presque hermitienne. Cet « espace de twisteurs réduit » est muni d'une structure presque complexe naturelle qu'on montre n'être intégrable que si la variété est localement conforme à une variété kählerienne, Bochner-plate ou à la sphère S6. En passant, on montre que les variétés de type W1+W4 dans la classification de Gray, Hervella (où W1 est la classe des variétés « nearly-Kähler » et W4 la classe des variétés localement conformément kähleriennes) sont localement conformes à des variétés nearly-Kähler, en dimension 6.
67

Géométrie des variétés rationnellement connexes / Geometry of rationally connected varieties

Ou, Wenhao 07 December 2015 (has links)
Dans cette thèse, on étudie plusieurs sujets sur la géométrie des variétés rationnellement connexes. Une variété complexe est dite rationnellement connexe si par deux points généraux, il passe une courbe rationnelle. Le premier sujet qu'on étudie est la base d'une fibration lagrangienne d'une variété projective irréductible symplectique de dimension quatre. On prouve qu'il y a aux plus deux possibilités pour la base. Dans la deuxième partie, on classifie certain type de variétés de Fano. Enfin, on étudie les structures des variétés rationnellement connexes singulières qui portent des pluri-formes non nulles / In this dissertation, we study several subjects on the geometry of rationally connected varieties. A complex variety is called rationally connected if for two general points, there is a rational curve passing through them. The first subject we study is the base of a Lagrangian fibration of a projective irreducible symplectic fourfold. We prove that there are at most two possibilities for the base. In the second part, we classify certain type of Fano varieties. In the end, we study the structures of singular rationally connected varieties which carry non-zero pluri-forms
68

Opportunités d'amélioration des gants destinés à la course en fauteuil roulant

Marcou, François January 2015 (has links)
Certains athlètes pratiquant la course en fauteuil roulant utilisent des gants durs pour obtenir l’adhérence nécessaire leur permettant de pousser le fauteuil avec leurs bras et le balancement de leur corps d’avant en arrière. Dans le cadre d’un projet de recherche visant à améliorer les performances des athlètes, une étude portant sur le contact gant – cerceau a été menée. Plusieurs opportunités d’amélioration sont présentées pour améliorer les gants durs et ainsi éviter les glissements en condition de pluie et les rebonds de la main sur le cerceau. Deux paramètres majeurs influent sur la performance : la forme du gant et le matériau permettant l’adhérence avec le cerceau. La forme du gant optimale dépend de la configuration de l’assise de chaque athlète ainsi que de la manière de pousser. À la suite d’une étude théorique et expérimentale, il a été conclu qu’une rainure en forme de V modelée directement dans un gant dur augmente la force normale aux surfaces et ainsi contribue à améliorer l’adhérence sur le cerceau. Cette rainure placée sur l’avant du gant, dans la zone d’impact, ne doit pas présenter un angle d’ouverture trop resserré pour permettre une sortie rapide du cerceau dans la zone de dégagement située en arrière du gant. Le matériau permettant l’adhérence sur le cerceau doit avoir des aspérités de tailles adaptées à la vitesse d’impact du gant sur le cerceau, et à la présence potentielle d’eau. Le matériau recherché doit également résister à l’usure de frottement pour permettre à l’athlète de terminer la course sans difficulté. Au final, le matériau suède semble répondre à tous ces critères : assez résistant, il présente un revêtement qui garde une certaine adhérence sur le cerceau en condition de pluie.
69

(a,b)-modules auto-adjoints et formes hermitiennes

Karwasz, Piotr P. 10 December 2009 (has links) (PDF)
Dans cette thèse nous présenterons un travail relatif à la théorie des (a,b)-modules. Nous nous intéresserons en particulier à trois problèmes liés à la dualité des (a,b)-modules: l'existence de formes hermitiennes, la symétrie des suites de Jordan-Hölder et la relation avec les "higher residue pairings" de K. Saito. Dans la première partie on étudie les équivalents des concepts de conjugué, adjoint et de forme hermitienne dans le contexte des (a,b)-modules. Dans notre analyse des formes hermitiennes nous sont amenés à définir la notion de (a,b)-module indécomposable et à montrer l'analogue du théorème de Krull-Schmidt dans la théorie des modules sur un anneau commutatif. On montre par la suite l'existence de formes ou bien hermitiennes ou anti-hermitiennes sur les modules réguliers indécomposables auto-adjoints et on donne un exemple non trivial de rang 4 admettant uniquement une forme anti-hermitienne. Suit une étude des suites de Jordan-Hölder de (a,b)-modules auto-adjoints. L'intérêt se porte en particulier sur les suites de Jordan-Hölder dites elles aussi auto-adjointes et on en montre l'existence, pour tout (a,b)-module régulier auto-adjoint. En guise de conclusion on applique les résultats obtenus aux (a,b)-modules associés à une hypersurface à singularité isolée, c'est-à-dire au complété formel de son module de Brieskorn. On montre que le symétrisé de l'isomorphisme avec l'adjoint donné par R. Belgrade satisfait aux axiomes donnés par K. Saito dans la présentation de ses "higher residue pairings".
70

Les objets logiques et l'invariance : le statut du programme d'Erlangen dans les approches contemporaines

Bélanger, Mathieu January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0308 seconds