Spelling suggestions: "subject:"granulocytemonocyte stimulating 3factor"" "subject:"granulocytemonocyte stimulating 4factor""
21 |
Transgenic expression of human granulocyte colony-stimulating factor in rice.January 2005 (has links)
by Ng Wing Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 156-174). / Abstracts in English and Chinese. / Acknowledgements --- p.iii / Abstract --- p.v / 摘要 --- p.vii / Table of Contents --- p.ix / List of Figures --- p.xiii / List of Tables --- p.xvi / List of Graphs --- p.xvii / List of Abbreviations --- p.xviii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.3 / Chapter 2.1 --- Human granulocyte colony-stimulating factor (hG-CSF) --- p.3 / Chapter 2.1.1 --- Historical background --- p.3 / Chapter 2.1.2 --- Physiological Roles --- p.5 / Chapter 2.1.3 --- Molecular properties --- p.8 / Chapter 2.1.4 --- Biochemical properties --- p.9 / Chapter 2.1.5 --- Comparison to G-CSF of other species --- p.11 / Chapter 2.1.6 --- Biological Activities --- p.12 / Chapter 2.1.7 --- Clinical Applications --- p.14 / Chapter 2.1.7.1 --- Clinical use in myelosuppressive chemotherapy and neutropenic fever --- p.14 / Chapter 2.1.7.2 --- Clinical use in bone marrow transplantation (BMT) and peripheral blood progenitor cell (PBPC) transplantation --- p.14 / Chapter 2.1.7.3 --- Clinical use in HIV infection --- p.16 / Chapter 2.1.7.4 --- Clinical use in diabetes mellitus --- p.17 / Chapter 2.1.7.5 --- Clinical use in severe chronic neutropenia --- p.18 / Chapter 2.1.7.6 --- Future prospects --- p.18 / Chapter 2.1.7.7 --- Dosages and adverse effects --- p.19 / Chapter 2.1.8 --- Economic value --- p.20 / Chapter 2.2 --- Plant as bioractor --- p.20 / Chapter 2.2.1 --- Medical molecular farming --- p.20 / Chapter 2.2.2 --- Commercial biopharmaceutical proteins --- p.25 / Chapter 2.2.3 --- Transgenic plants producing hematopoietic growth factors --- p.25 / Chapter 2.2.3.1 --- Granulocyte-macrophage colony-stimulating factor (GM-CSF) --- p.26 / Chapter 2.2.3.2 --- Interleukin-2 (IL-2) --- p.28 / Chapter 2.3 --- Rice as expression system --- p.29 / Chapter 2.3.1 --- Characteristics --- p.29 / Chapter 2.3.2 --- Advantages of using rice as bioreactor --- p.30 / Chapter 2.3.3 --- Previous studies --- p.31 / Chapter 2.3.4 --- Transformation method --- p.33 / Chapter 2.3.5 --- Super-binary vector --- p.34 / Chapter 2.4 --- Strategies for enhancing protein expression level --- p.36 / Chapter 2.4.1 --- Vacuolar targeting --- p.36 / Chapter 2.4.1.1 --- Protein targeting signals --- p.38 / Chapter 2.4.1.2 --- Binding protein of 80kDa (BP-80) --- p.39 / Chapter 2.4.1.3 --- a-Tonoplast intrinsic protein (α-TIP) --- p.39 / Chapter 2.4.1.4 --- Receptor homology region-transmembrane domain-Ring H2 motif (RMR) --- p.40 / Chapter 2.4.2 --- Fusion with glutelin in rice --- p.41 / Chapter 2.5 --- Hypotheses and aims of this study --- p.43 / Chapter Chapter 3 --- Materials and Methods --- p.45 / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Chemicals --- p.45 / Chapter 3.3 --- Bacterial strains --- p.46 / Chapter 3.4 --- Chimeric genes construction --- p.46 / Chapter 3.4.1 --- Protein targeting constructs --- p.51 / Chapter 3.4.2 --- Enterokinase site constructs --- p.60 / Chapter 3.4.3 --- Glutein signal peptide constructs --- p.65 / Chapter 3.4.4 --- Glutelin fusion constructs --- p.70 / Chapter 3.4.5 --- Sequence fidelity of chimeric genes --- p.77 / Chapter 3.4.6 --- Cloning of chimeric genes into rice super-binary vector --- p.77 / Chapter 3.5 --- Rice transformation --- p.79 / Chapter 3.5.1 --- Plant materials --- p.79 / Chapter 3.5.2 --- Agrobacterium transformation --- p.79 / Chapter 3.5.3 --- A grobacterium-mediated transformation of rice --- p.79 / Chapter 3.6 --- Transgenic expression --- p.81 / Chapter 3.6.1 --- Extraction of leaf genomic DNA --- p.81 / Chapter 3.6.2 --- Synthesis of DIG-labeled double-stranded DNA probe --- p.82 / Chapter 3.6.3 --- Southern blot analysis --- p.83 / Chapter 3.6.4 --- Extraction of total RNA from immature rice seeds --- p.84 / Chapter 3.6.5 --- Northern blot analysis --- p.85 / Chapter 3.6.6 --- Protein extraction --- p.86 / Chapter 3.6.7 --- Tricine SDS-PAGE --- p.86 / Chapter 3.6.8 --- Western blot analysis --- p.87 / Chapter 3.6.9 --- Enterokinase digestion of EK fusion proteins --- p.88 / Chapter 3.7 --- Confocal immunoflorescence studies of rhG-CSF in rice grain --- p.89 / Chapter 3.7.1 --- Preparation of sample sections --- p.89 / Chapter 3.7.2 --- Double-labeling of fluorescence probes --- p.89 / Chapter 3.7.3 --- Image collection --- p.90 / Chapter 3.8 --- Functional analysis of rhG-CSF --- p.91 / Chapter 3.8.1 --- Culture of NFS-60 cells --- p.91 / Chapter 3.8.2 --- MTT cell proliferation assay --- p.92 / Chapter 3.9 --- Bacterial expression of anti-hG-CSF --- p.93 / Chapter 3.9.1 --- pET expression in E. coli --- p.93 / Chapter 3.9.2 --- Purification of His-hG-CSF --- p.97 / Chapter 3.9.3 --- Immunization of rabbits --- p.97 / Chapter Chapter 4 --- Results --- p.99 / Chapter 4.1 --- Construction of chimeric genes for rice transformation --- p.99 / Chapter 4.2 --- "Rice transformation, selection and regeneration" --- p.103 / Chapter 4.3 --- Southern blot analysis --- p.105 / Chapter 4.4 --- Northern blot analysis --- p.109 / Chapter 4.5 --- Western blot analysis --- p.114 / Chapter 4.6 --- Enterokinase digestion of EK fusion proteins --- p.125 / Chapter 4.7 --- Confocal immunofluorescence studies of rhG-CSF in transgenic rice grain --- p.128 / Chapter 4.8 --- Functional analysis of rhG-CSF --- p.132 / Chapter 4.9 --- Bacterial expression of anti-hG-CSF --- p.135 / Chapter 4.9.1 --- Expression and purification of recombinant His-hG-CSF in E. coli --- p.135 / Chapter 4.9.2 --- Titer and specificity of the anti-serum --- p.137 / Chapter Chapter 5 --- Discussion --- p.139 / Chapter 5.1 --- Introduction --- p.139 / Chapter 5.2 --- Fusion of hG-CSF with protein sorting determinants --- p.141 / Chapter 5.3 --- Fusion of hG-CSF with rice glutelin --- p.145 / Chapter 5.4 --- Glutelin signal peptide --- p.146 / Chapter 5.5 --- O-glycosylation --- p.148 / Chapter 5.6 --- Enterokinase digestion --- p.148 / Chapter 5.7 --- Expression level of rhG-CSF --- p.149 / Chapter 5.8 --- Functional analysis of rhG-CSF --- p.151 / Chapter 5.9 --- Future perspectives --- p.151 / Chapter Chapter 6 --- Conclusion --- p.155 / References --- p.156
|
22 |
Coleta de células progenitoras hematopoéticas de sangue periférico após administração de ciclofosfamida e fator estimulador de colônias de granulócitos (G-CSF): uma análise de 307 pacientes / Collection of peripheral blood progenitor cell after administration of cyclophosphamide and granulocyte-colony stimulating factor (GCSF): an analysis of 307 patientsAlfredo Mendrone Junior 23 April 2008 (has links)
Mobilização inadequada de células progenitoras hematopoéticas (CPH) tem sido observada em 10 - 30% dos pacientes submetidos a transplante de medula óssea (TMO) autogênico para tratamento de doenças onco-hematológicas. Os fatores relacionados com má resposta à mobilização ainda não estão totalmente estabelecidos. Apresentamos uma análise retrospectiva de pacientes submetidos à TMO autogênico com o objetivo de identificar variáveis associadas com resposta ruim ao regime de mobilização utilizado. Casuística e Métodos: Fizeram parte desta análise 307 pacientes com diferentes diagnósticos, tratados com TMO autogênico em uma única Instituição, no período de Abril de 2001 a Abril de 2007. Todos os pacientes incluídos no estudo foram submetidos a um único regime de mobilização baseado na administração de ciclofosfamida (dose total de 60-120 mg/kg de peso IV) e fator estimulador de colônias de granulócitos (G-CSF) (dose diária de 6 - 17 ug/(kg de peso)/dia SC). O sucesso na resposta ao regime de mobilização foi definido quando um número maior ou igual a 2,0x10 (6) células CD34 + /(kg de peso) foi coletado do sangue periférico com até três procedimentos de leucaférese. Resultados: Dos pacientes analisados, 260 apresentaram sucesso na mobilização (84,7%). Nestes pacientes, um número mediano de 3,67 (2,0 - 46,0) células CD34+ /(kg de peso) foi coletado por paciente com um número mediano de 1 (1-3) procedimento de leucaférese. O insucesso na mobilização foi observado em 47 pacientes (15,3%): 24 (7,8%) que foram submetidos à coleta de CPH de sangue periférico, porém não coletaram número maior ou igual 2,0x10 (6) células CD34+/(kg de peso) com pelo menos três procedimentos de leucaférese; e, 23 (7,5%) foram submetidos à coleta de CPH por punção da medula óssea, por não terem atingido número mínimo de 10 células CD34+/mm3 no sangue periférico para realização de leucaférese. De acordo com análise univariada, os fatores associados com o insucesso foram: diagnóstico (P < 0,0001), tempo de doença (P < 0,0001), número prévio de ciclos de quimioterapia (P = 0,0001), exposição prévia a agentes alquilantes (P = 0.0003) e a mitoxantrone (P = 0,0006), contagem de plaquetas pré-mobilização <150.000/mm3 (P = 0,0006) e intervalo entre o início da mobilização e o pico de células CD 34+ no sangue periférico (P < 0,0001). Idade, sexo, atividade da doença e envolvimento medular ao início da mobilização, tratamento prévio com radioterapia e exposição a análogos da platina não mostraram correlação significativa na resposta à mobilização. Após análise multivariada, as variáveis que permaneceram associadas com insucesso na mobilização foram: diagnóstico (P = 0,0232), número prévio de ciclos da quimioterapia (P = 0,0167), tratamento prévio com mitoxantrone (P = 0,0285) e contagem de plaquetas pré-mobilização < 150.000/mm3 (P = 0,0423). Conclusão: A carga cumulativa de quimioterapia administrada, exposição prévia à mitoxantrone, contagem de plaquetas pré-mobilização e diagnóstico foram os fatores independentes relacionados com a falha na resposta à mobilização. Os achados obtidos podem auxiliar no reconhecimento de pacientes de risco para resposta ruim à mobilização e permitir um planejamento alternativo ou mais agressivo no regime de mobilização para este grupo de pacientes. / Inadequate stem cells mobilization is seen in 10-30% of patients undergoing autotransplantation for hematologic malignancies. Factors affecting peripheral blood progenitor cell (PBSC) mobilization have not been clearly established. We retrospectively reviewed the data of patients treated by autologous bone marrow transplantation (BMT) with the aim to identify factors associated with poor PBSC mobilization. Design and Methods: We evaluated 307 patients with different diagnoses, submitted to autologous BMT between April 2001 and April 2007. PBSC were collected following mobilization with cyclophosphamide (60-120 mg/kg of weight IV) and granulocyte-colony stimulating factor (G-CSF) (dose of 6-17 ug/kg of weight/day SC). Success in mobilization was defined when > ou = a 2,0x10(6) CD34+ cells/(kg weight) could be collected from the peripheral blood with a maximum of three leukapheresis procedures. Clinical and laboratory parameters at the time of mobilization were analyzed for correlations with the number of CD34+ cells collected. Results: Two hundred and sixty patients (84.7%) presented success in mobilization. In this group, a median of 3.67 (2.0-46.0) CD34+ cells/(kg weight) was collected per patient in a median of 1(1-3) leukapheresis procedure. Poor response to mobilization was observed in 47 patients (15.3%): 24 (7.8%) were submitted to PBSC collection but didn\'t collected at least 2.0 x 106 CD34+ cells/(kg weight) with three leukapheresis procedures and 23 (7.5%) didn\'t reach an absolute number count of 10 CD34+ cells/mm3 in the peripheral blood to start collection by leukapheresis. In univariate analysis poorer PBSC mobilization was associated with diagnosis (Pp < 0.0001), time interval from the diagnosis to mobilization (P < 0.0001), number of cycles of previous chemotherapy (P = 0.0001), previous treatment with alkylating agents (P = 0.0003) and mitoxantrone (P = 0.0006), platelet count <150.000/mm3 before mobilization (P = 0.0006) and interval between mobilization and peak of CD34+ cells in peripheral blood (P < 0.0001). No significant correlation was found with age, gender, disease status, marrow involvement at mobilization, prior radiation therapy and exposition to platin analogues. In the stepwise regression model, diagnosis (P = 0.0232), number of cycles of previous chemotherapy (P = 0.0167), previous treatment with mitoxantrone (P = 0.0285) and platelet count <150.000/mm3 before mobilization (P = 0.0423) were found to be independent negative predictive factors for CD34+ cells mobilization. Conclusion: Cumulative load of chemotherapy, exposition to Mitoxantrone, platelet count just prior to mobilization and diagnosis were independent factors related to poor progenitor cells mobilization. These results could help in the previously recognition of patients at risk for poor or no response to mobilization and allow to plan an alternative or more aggressive regimen for this group of patients.
|
23 |
Studies of the Mechanisms of Myelopoiesis in Goldfish (Carassius auratus L.)Katzenback, Barbara A Unknown Date
No description available.
|
24 |
ESTUDO DE MÉTODOS CROMATOGRÁFICOS PARA AVALIAÇÃO DE POTÊNCIA DE FILGRASTIMA E CORRELAÇÃO COM ENSAIO BIOLÓGICO / STUDY OF CHROMATOGRAPHYC METHODS FOR THE POTENCY EVALUATION OF FILGRASTIM AND CORRELATION WITH BIOLOGICAL ASSAYMasiero, Silvia Maria Krug 23 June 2006 (has links)
The granulocyte-colony stimulating factor (G-CSF) is a hematopoietic cytokine that stimulates and regulates the proliferation and differentiation of neutrophil precursor cells of the bone marrow. The recombinant hormone (rhG-CSF) non-glycosylated, filgrastim, is used to treat the neutropenia induced by chemotherapy and bone marrow transplantion. The identification and characterization was carried out by electrophoresis and western blotting, showing the typical band in the region of 18.8 kDa. The neutropenia mouse bioassay was standardized with the BALB/c strain, previously treated with ifosfamide and used for the potency assessment of pharmaceutical products. A gradient reversed-phase liquid chromatography (RP-LC) was validated for the analysis of rhG-CSF in pharmaceutical formulations. The LC method was carried out on a Jupiter C4 column 300 Å (250 mm x 4.6 mm i.d.), maintained at ambient temperature. The mobile phase A consisted of water:acetonitrila (90:10, v/v) with 0.1% trifluoroacetic acid and the mobile phase B was water:acetonitrile (20:80, v/v) with 0.1% trifluoroacetic acid, run at a flow rate of 0.5 mL/min with detection at 280 nm. The chromatographic separation was obtained with the retention time of 31.9 minutes and the method was linear in the range of 10 300 μg/mL. Validation parameters such as sensitivity, precision, accuracy, detection limit, quantitation limit and robustness were evaluated giving results in the acceptable range. The specificity was evaluated by the peak purity of the rhG-CSF biological reference preparation subjected to oxidative conditions. The proposed method was applied for the analysis of filgrastim pharmaceutical products, evaluating the sulphoxides and deamidates forms as well. Moreover, the size-exclusion chromatography (SE-LC) was performed for the potency evaluation of 7 filgrastim, dimers and high-molecular-mass forms. Samples of pharmaceutical formulations were subjected to aggregation, degradation and than each one evaluated by the neutropenia mouse bioassay giving biological activities of 14.60%, 13.47% and 15.63%, for the dimers, high-molecular-mass substances and the sulphoxides/deamidates, respectively. The pharmaceutical samples were analysed by the chromatographyc methods and compared to the bioassay showing mean difference between the estimated potencies of 2.04% lower for the RP-LC, and 4.03% lower for the SE-LC, with significant correlation (p>0.05). Due to the reduced bioactivity of the rhG-CSF-related proteins, the SE-LC is proposed in combination
with the RP-LC as an alternative to the bioassay for the potency assessment of filgrastim in pharmaceutical dosage forms. The alternative established represents a contribution towards the replacement of the animals improving the quality control and assuring the safety and efficacy of the biological product. / O fator estimulador da colônia de granulócitos humanos é uma citocina hematopoiética que estimula e regula a proliferação e diferenciação de células precursoras de neutrófilos da medula óssea. O hormônio recombinante (rhG-CSF) sob a forma nãoglicosilada, filgrastima, é usado para o tratamento de neutropenias. Realizou-se a identificação de filgrastima em produtos farmacêuticos por eletroforese, transferência e
detecção com anticorpos específicos, demonstrando-se banda única na região de peso molecular de, aproximadamente, 18,8 kDa. Avaliou-se a atividade pelo ensaio biológico da neutropenia em camundongos da linhagem BALB/c, pré-tratados com ifosfamida. Desenvolveu-se e validou-se o método por cromatografia líquida em fase reversa (CL-FR), utilizando coluna Júpiter C4 300 Å (250 mm x 4,6 mm, i.d.), mantida a temperatura ambiente. A fase móvel A foi constituída de água/acetonitrila (90:10, V/V)/ 0,1% ácido trifluoroacético e a fase móvel B de água/acetonitrila (20:80, V/V)/ 0,1% ácido trifluoroacético, eluída em gradiente na vazão de 0,5 mL/min com detecção no ultravioleta a 280 nm. A análise cromatográfica viabilizou a separação da filgrastima no tempo de retenção de 31,9 min, sendo linear na faixa de concentração de 10 300 μg/mL. Avaliaram-se os parâmetros de precisão, exatidão, limite de detecção, limite de quantificação e robustez. Estudou-se também a especificidade, através da determinação da pureza do pico da Substância biológica de referência de rhG-CSF, submetida à degradação sob condições oxidativas. O método proposto
foi utilizado para análise de filgrastima em produtos farmacêuticos, determinando-se as formas de sulfóxidos e desamidados. Paralelamente, efetuaram-se avaliações de potência por cromatografia líquida por exclusão molecular (CL-EM), determinando as formas diméricas e de alta massa molecular. Amostras de produtos farmacêuticos foram submetidas a condições de agregação e degradação e, então, avaliadas pelo bioensaio da neutropenia em 5 camundongos, obtendo-se atividades biológicas de 14,60%, 13,47% e 15,63%, para os dímeros, substâncias de alta massa molecular e sulfóxidos/desamidados, respectivamente.
Estudou-se a correlação entre métodos e demonstrou-se que as análises dos produtos farmacêuticos forneceram diferenças médias 2,04% menor por CL-FR, e significativa de 4,03% menor por CL-EM, em relação ao ensaio biológico. Devido à reduzida bioatividade das formas alteradas, conclui-se sugerindo a adoção do método por CL-EM para a avaliação
de potência de filgrastima, em combinação com CL-FR. Desse modo, estabeleceu-se alternativa no contexto da substituição do uso de animais, contribuindo para aprimorar o controle da qualidade, garantindo a segurança e eficácia terapêutica do produto biológico.
|
25 |
Estudo do efeito do fator estimulador de colônia de granulócitos associado a metilprednisolona na lesão medular aguda experimental em ratos / Study of the effect of granulocyte colony-stimulating factor associated with methylprednisolone in experimental acute spinal cord injury in ratsWilliam Gemio Jacobsen Teixeira 29 August 2017 (has links)
Introdução: Várias são as propostas descritas para tratar farmacologicamente a lesão traumática da medula espinal. A metilprednisolona já foi padronizada para uso clínico. O fator estimulador de colônia de granulócitos (G-CSF) tem sido promissor em estudos experimentais e clínicos. Não há pesquisas quanto ao efeito da associação dos dois fármacos. Objetivo: Avaliar o efeito do tratamento com o fator estimulador de colônia de granulócitos associado a metilprednisolona na lesão medular aguda experimental em ratos. Material e métodos: Foram avaliados 40 ratos Wistar submetidos a lesão medular moderada com o NYU-Impactor. Os animais foram divididos em quatro grupos de 10 ratos. O Grupo Controle não recebeu tratamento; o Grupo G-CSF, foi tratado com G-CSF no momento da lesão e diariamente ao longo dos cinco dias subsequentes; o Grupo Metilprednisolona, com metilprednisolona durante 24 horas; e o Grupo G-CSF/Metilprednisolona, com metilprednisolona durante 24 horas e G-CSF no momento da lesão e ao longo de cinco dias. Os animais foram mantidos vivos durante 42 dias; a avaliação funcional foi realizada com a aplicação da escala funcional de Basso, Beattie e Bresnahan (BBB) nos dias 2, 7, 14, 21, 28, 35 e 42 subsequentes à lesão. A avaliação dos potenciais evocados motores foi realizada no dia 42 e a avaliação histológica da lesão da região da medula espinal lesada, realizada logo após a eutanásia ocorrida no dia 42. Resultados e conclusões: A associação de metilprednisolona e G-CSF no tratamento do traumatismo medular contuso experimental em ratos promoveu melhora neurológica avaliada pela escala BBB superior à melhora promovida pela metilprednisolona e G-CSF quando utilizadas isoladamente. A associação teve também efeito sinérgico que resultou em melhora nos parâmetros histológicos no local da lesão. Não houve diferença entre os grupos quanto à avaliação neurofisiológica / Introduction: There are several proposals to pharmacologically treat traumatic spinal cord injury. Methylprednisolone has already been standardized for clinical use. Granulocyte colony stimulating factor (G-CSF) has been promising in experimental and clinical studies. There is no research on the effect of the association of the two drugs. Objective: to evaluate the effect of combined treatment of the granulocyte colony-stimulating factor (G-CSF) associated with methylprednisolone in experimental acute spinal cord injury in rats. Material and methods: Forty male Wistar rats were submitted to a moderate spinal cord injury with the NYU-Impactor. The animals were divided into four groups of ten rats each. The Control Group was not treated; the G-CSF Group was treated with G-CSF at the time of injury and daily over the next five days; the Methylprednisolone Group was treated with methylprednisolone for 24 hours; the G-CSF/methylprednisolone Group, was treated with methylprednisolone for 24 hours and G-CSF at the time of injury and daily over the next five days. The animals were kept alive for 42 days; Functional evaluation was performed using the Basso, Beattie and Bresnahan (BBB) score on days 2, 7, 14, 21, 28, 35 and 42 following the spinal cord injury. Evaluation of motor evoked potentials was held and histological examination of the lesion of the spinal cord was done immediately after euthanasia on day 42. Results and conclusions: The combination of methylprednisolone and G-CSF in the treatment of experimental spinal cord injury in rats promoted neurological improvement as assessed by BBB scale with greater improvement than with methylprednisolone or G-CSF when used alone. The combination of treatment had also a synergistic effect resulting in improvement in histological parameters at the injury site. There was no difference between groups regarding neurophysiological evaluation
|
26 |
Efeito da administração do G-CSF nos mecanismos efetores e imunorreguladores na neurite experimental autoimune induzida em ratos Lewis = Effect of the administration of the G-CSF onto the effector and immuneregulatory mechanisms of the experimental autoimmune neuritis induced in Lewis rats / Effect of the administration of the G-CSF onto the effector and immuneregulatory mechanisms of the experimental autoimmune neuritis induced in Lewis ratsPradella, Fernando, 1987- 03 November 2013 (has links)
Orientadores: Alessandro dos Santos Farias, Leonilda Maria Barbosa dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-23T01:58:27Z (GMT). No. of bitstreams: 1
Pradella_Fernando_M.pdf: 4468527 bytes, checksum: 63d6760bd0ea06c5fcab94d1421da291 (MD5)
Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Mestrado / Imunologia / Mestre em Genética e Biologia Molecular
|
27 |
Multi-fonctionnalisation par synthèse supportée de nanoparticules de silice pour des applications biomédicales / Silica nanoparticle multifunctionalization by solid phase synthesis for biomedical applicationsDe Crozals, Gabriel 11 December 2015 (has links)
Les nanomatériaux combinant des fonctions de ciblage, d'imagerie, de thérapie et de détection font l'objet de nombreuses recherches dans le domaine de la santé. Les travaux présentés dans cette thèse concernent la multi‐fonctionnalisation de nanoparticules (NPs) par un procédé de synthèse supportée. Le support solide développé dans cette étude est constitué d'un matériau poreux en verre sur lequel sont greffées de manière temporaire des nanoparticules de silice. La fonctionnalisation de la surface des nanoparticules a été réalisée de façon automatisée par une chimie de synthèse dite aux phosphoramidites. Dans un premier temps, cette technique a permis d'obtenir des densités de greffage de l'ordre de 5000 à 7000 oligonucléotides par nanoparticule, ce qui représente une fonctionnalisation 10 à 20 fois supérieure à celles obtenues par des méthodes de greffage en solution. Les brins d'ADN synthétisés sur les NPs ont montré une bonne accessibilité pour l'hybridation avec un brin d'ADN complémentaire, ouvrant la voie à des applications thérapeutiques ou à l'intégration de ces objets dans des systèmes de détection. La deuxième partie de ces travaux est consacrée à la vectorisation d'une protéine thérapeutique, le G‐CSF (facteur de croissance de colonies de granulocytes), par des nanoparticules présentant également des propriétés d'imagerie. Ces nanovecteurs thérapeutiques ont montré des propriétés de stimulation cellulaire in vitro et de ciblage de la rate, organe réservoir de neutrophiles, in vivo. Enfin il a été démontré que la modification de NPs sur support ouvre des perspectives intéressantes pour la préparation d'assemblages complexes de nanoparticules (dimères et NPs dissymétriques) / Nanomaterials combining targeting, imaging, therapy and sensing properties are of growing interest for biomedical applications. The work reported in this thesis concerns nanoparticle (NP) multifunctionalization by solid phase synthesis. The solid support developed in this study is composed of a porous glass material on which silica NPs are temporarily grafted. Nanoparticle surface functionalization was performed by automated synthesis using phosphoramidite chemistry. Firstly, high surface loadings from 5000 to 7000 oligonucleotides per NP were achieved, representing a functionalization 10 to 20‐fold greater than those obtained by coupling methods in solution. DNA strands synthesized on NPs showed a good accessibility for hybridization with a complementary DNA strand, paving the way for therapeutic applications or integration of these objects in detection systems. The second part of this work was devoted to the vectorization of a therapeutic protein, GCSF (Granulocyte‐Colony Stimulating Factor) by nanoparticles that also exhibited imaging properties. These therapeutic nanocarriers showed cell stimulating properties in vitro and spleen targeting, which is a reservoir of neutrophils, in vivo. Finally, it was demonstrated that the solid phase modification of NPs opens interesting perspectives for the production of complex nanoparticle assemblies (dimers and asymmetric NPs)
|
28 |
Le rôle du granulocyte colony-stimulating factor (G-CSF) et des neutrophiles dans les infections à Streptococcus suisBleuzé, Marêva 08 1900 (has links)
Streptococcus suis est un pathogène porcin et un agent de zoonose en émergence causant des maladies invasives graves. Lorsque la bactérie envahit l’hôte et se retrouve dans le sang, des neutrophiles se mobilisent rapidement pour tenter d’éliminer la menace grâce à de nombreux mécanismes anti-microbiens. Ces cellules sont régulées par le granulocyte colony-stimulating factor (G-CSF) produit lors de l’infection. Il pourrait être un acteur clé du contrôle de l’infection par S. suis mais rien n’est connu sur la production et le rôle du G-CSF dans les infections à S. suis. De plus, le recrutement et l’activation des neutrophiles demeurent peu documentés. L’hypothèse de ce projet est que S. suis induit la production du G-CSF par les cellules de l’immunité innée suite à l’infection, et que le facteur module le recrutement et l’activation des neutrophiles. Cependant, S. suis limite l’activation des cellules immunitaires et se soustrait à l’élimination par les neutrophiles grâce à ses facteurs de virulence.
Le 1er objectif consistait à caractériser le recrutement et l’activation des neutrophiles en réponse à S. suis dans un modèle d’infection murin (souris C57BL/6). Nous avons démontré que S. suis cause une mobilisation rapide des neutrophiles de la moelle osseuse vers le sang et la rate. Dans le sang, les neutrophiles présentent un phénotype activé. En parallèle, l’infection cause une élévation spectaculaire du G-CSF systémique, selon un patron similaire à celui des neutrophiles, suggérant un rôle du facteur dans la mobilisation de ces cellules.
Le 2e objectif visait à comprendre les mécanismes moléculaires de production de G-CSF. Nous avons donc quantifié le G-CSF produit par différentes cellules immunitaires primaires de souris et démontré que les cellules dendritiques et les macrophages produisent du G-CSF en réponse à S. suis. Les cellules reconnaissent la bactérie par l’intermédiaire de leur Toll-like receptor (TLR) 2 et de récepteurs intracellulaires, ce qui engage des voies de signalisation clés pour la production de médiateurs pro-inflammatoires.
Le 3e objectif consistait à élucider le rôle du G-CSF dans le recrutement et l’activation des neutrophiles lors de l’infection par S. suis, et les conséquences sur la pathogenèse. Dans unmodèle d’infection murin, nous avons démontré que le G-CSF cause la sortie des neutrophiles de la moelle osseuse vers le sang, sans que cela augmente l’élimination de la bactérie et la réponse inflammatoire. In vitro, S. suis active peu les neutrophiles porcins, et le G-CSF ne permet pas d’augmenter leurs fonctions.
Le 4e objectif avait pour but de déterminer si certains facteurs bactériens de S. suis modulent la production de G-CSF et l’activation des neutrophiles. En utilisant des mutants et des composants bactériens purifiés, nous avons démontré que pour produire le G-CSF, les cellules dendritiques et les macrophages murins reconnaissent les lipoprotéines de S. suis. Cependant, celles-ci sont partiellement masquées par la capsule qui entoure la bactérie, limitant la production de la cytokine. De la même manière, la capsule gêne l’activation optimale des neutrophiles porcins ce qui empêche leur effet bactéricide.
Une meilleure compréhension de la pathogenèse des infections à S. suis pourrait orienter de nouvelles stratégies thérapeutiques en lien avec les neutrophiles pour lutter contre la bactérie. Par exemple, le G-CSF couplé à des d’autres immunomodulateurs pourra être envisagé comme traitement métaphylactique dans les élevages porcins pour prévenir d’éventuelles éclosions. / Streptococcus suis is a porcine pathogen and an emerging zoonotic agent causing severe invasive diseases. When the bacterium invades the host and enters the bloodstream, neutrophils quickly mobilize to try to eliminate the threat through various antimicrobial mechanisms. These cells are regulated by granulocyte colony-stimulating factor (G-CSF), which is produced during the infection. It could be a key player in controlling S. suis infection, but nothing is known about the production and role of G-CSF in S. suis infections. Furthermore, neutrophil recruitment and activation remain poorly documented. The hypothesis of this project is that S. suis induces G-CSF production by innate immune cells following infection, and the factor modulates the recruitment and activation of neutrophils. Nevertheless, S. suis prevents immune cells activation and evades elimination by neutrophils due to its virulence factors.
The first objective was to characterize the recruitment and activation of neutrophils in response to S. suis in a murine infection model (C57BL/6). We demonstrated that S. suis infection causes a rapid release of neutrophils from the bone marrow to the blood and spleen. In the blood, neutrophils exhibit an activated phenotype. Simultaneously, the infection causes a dramatic increase in systemic G-CSF, following a pattern similar to that of neutrophils, suggesting a role for the factor in the mobilization of these cells.
The second objective aimed to understand the molecular mechanisms of G-CSF production. We quantified G-CSF produced by different primary mouse immune cells and showed that dendritic cells and macrophages produce G-CSF in response to S. suis. Cells recognize the bacterium through their Toll-like receptor (TLR) 2 and intracellular receptors, engaging key signaling pathways for pro-inflammatory mediator production.
The third objective was to elucidate the role of G-CSF in the recruitment and activation of neutrophils during S. suis infection, and its consequences for pathogenesis. In a murine model, we demonstrated that G-CSF causes the release of neutrophils from the bone marrow into the blood, without increasing bacterial clearance and inflammatory response. In vitro, S. suis weakly activates porcine neutrophils, and G-CSF does not enhance the cellular functions.
The fourth objective aimed to determine if certain bacterial factors of S. suis modulate G-CSF production and neutrophil activation. Using mutants and purified bacterial components, we demonstrated that dendritic cells and murine macrophages recognize S. suis lipoproteins to produce G-CSF. However, these lipoproteins are partially masked by the bacterium's capsule, limiting cytokine production. Similarly, the capsule hinders optimal activation of porcine neutrophils, preventing their bactericidal effect.
A better understanding of the pathogenesis of S. suis infections could guide new therapeutic strategies related to neutrophils to combat the bacterium. For example, G-CSF combined with other immunomodulators could be considered as a metaphylactic treatment in pig farming to prevent potential outbreaks.
|
29 |
Fatores que influenciaram nos resultados das coletas de células progenitoras hematopoéticas em crianças portadoras de neuroblastoma avançado / Factors influencing results of peripheral hematologic progenitor cells harvesting in children with advanced NeuroblastomaBorba, Claudio Carneiro 10 May 2016 (has links)
Objetivos: Avaliar os resultados das coletas de células hematopoéticas CD34+, por aférese, em crianças portadoras de neuroblastoma tratadas no Serviço de Oncologia e Hematologia do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo; estudar os fatores (idade, peso, estimulação com quimioterapia, dose do G-CSF, uso terapêutico de 131I-MIBG e tempo entre exposição à quimioterapia prévia) que influenciaram na mobilização e no rendimento da coleta de células CD34+ no sangue periférico e associar a quantidade de células CD34+ obtidas com a evolução clínica do paciente. Métodos: Trata-se de um estudo retrospectivo de pacientes com neuroblastoma submetidos à coleta de células-tronco hematopoéticas entre janeiro de1989 e junho 2012. Resultados: Avaliados 45 prontuários de crianças com idade mediana de 3,1 anos (0-12 anos), 26 (57%) apresentavam metástase em medula óssea ao diagnóstico. O tempo entre diagnóstico e o início da mobilização foi em média 19,7 ± 12 meses (mediana de 15,8 meses). Dos pacientes estudados, 11/45 (24,4%) receberam 131I-MIBG terapêutico antes da mobilização. Somente cinco pacientes (11,1%) receberam quimioterapia associada ao G-CSF para mobilização; as demais 40 crianças (88,9%) receberam exclusivamente G-CSF na dose média 26,5 ± 5,3 ug/kg/dia (mediana 28 ug/kg/dia). Não houve correlação entre o número máximo de células CD34+ no sangue periférico com a idade (p=0,9), com o peso (p=0,63), com a dose do G-CSF (p=0,46) ou com o intervalo entre o diagnóstico e o início da mobilização (p=0,09). A mediana da quantificação de células CD34+/uL no sangue periférico foi de 36,6 células, média de 45,2 ± 42,6 (mínimo 1,7 e máximo 236,3). Pacientes que haviam recebido 131I-MIBG previamente à mobilização apresentaram menor número de células CD34+/uL no sangue periférico (p=0,04). Em 26 pacientes (57,8%) foi possível coletar mais de 2,0x106 células CD34+/Kg na primeira coleta e em 19 pacientes (42,2%) foram necessárias mais de uma coleta, sendo que, oito pacientes (17,8%) apresentaram falha de mobilização. Os pacientes que apresentaram menor quantidade de células CD34+/uL no sangue periférico (<= 12) não conseguiram número maior ou igual a 2,0x106 células CD34+/Kg em 81,8% das coletas. O número mediano de células infundidas foi de 2,66 x106 células CD34+/Kg (média 3,38 ±1,6; mínimo 1,8; máximo 8,74 x106 CD34+/Kg). Os pacientes apresentaram contagem de leucócitos maior que 1000/mm3 e de plaquetas maior 50000/mm3 por dois dias consecutivos em média, no dia 13 ± 10 e no dia 46 ± 33, respectivamente, após infusão. Conclusões: A coleta de células-tronco hematopoéticas por aférese foi factível em todos os pacientes do estudo. Não houve influência significativa da idade, do peso, da dose do G-CSF e do tempo entre diagnóstico e inicio da mobilização, no número máximo de células. O uso prévio à coleta de 131I-MIBG terapêutico parece influenciar negativamente no pico de células CD34+ no sangue periférico (p=0,04). A contagem de células CD34+ no sangue periférico é importante fator preditivo do resultado das coletas de células progenitoras hematopoéticas CD34+ por aférese / Objectives: To evaluate the results of peripheral hematopoietic CD34+ stem cells harvesting in children with neuroblastoma treated at Serviço de Oncologia e Hematologia do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo; regarding age, weight, stimulation with chemotherapy, G-CSF dose, time between diagnosis and the mobilization beginning and therapeutic 131I-MIBG use and the influence in mobilization and peripheral harvesting of autologous hematopoietic stem cells and to associate the amount of CD34+ cells obtained with the patient\'s clinical evolution. Methods: Between January 1989 and June 2012, children with neuroblastoma underwent to mobilization and peripheral hematopoietic stem cell harvesting and were retrospectively analyzed. Results: The charts of 45 children were reviewed. Median age was 3.1 years (0-12years), and 26 (57%) had metastases in bone marrow at diagnosis. Average time between diagnosis and mobilization was 19.7 ± 12 months (median, 15.8 months). 11/45 (24.4%) received therapeutic 131I-MIBG prior to mobilization. The average G-CSF dose was 26.5 ± 5.3mg/kg/day (mean 28mg/kg/day). There was no correlation between the absolute number of peripheral CD34+ cells and age (p=0.9), weight (p=0.63), G-CSF dose (p=0.46) or the range between diagnosis and early mobilization (p=0.09). The median quantification of CD34+ cells/uL in peripheral blood was 36.6, average 45.2 ±42.6 (minimum 1.7 and maximum 236.3 CD34+ cells/uL). Patients who had received therapeutic 131I-MIBG prior to mobilization, showed fewer absolute amount of CD34+/uL cells in peripheral blood (p=0.04). In 26 patients (57.8%) it was possible to harvest more than 2.0 x106 CD34+ cells/kg at first apheresis and in 19 patients (42.2%) more than one collection were necessary, and eight patients (17.8 %) failure to mobilize. Patients presenting less than 12 CD34+ cells/uL in peripheral blood on the harvesting day failed to reach more then 2.0x106 cells CD34+/kg in 81.8% of the apheresis procedures. It was infused a median number of 2.66 x106 CD34+ cells/kg (mean 1.6 ± 3.38; min 1.8; max 8.74 x106 CD34+ cells/kg). After the stem cells infusion, patients had white blood cells count greater than 1000/mm3 and platelet greater than 50,000/mm3 for two consecutive days on average after 13 ±10 and 46 ± 33 days, respectively. Conclusions: The hematopoietic stem cells harvesting was feasible in all patients included in this report. The G-CSF dose, age, weight and the period between harvesting and diagnosis showed no influence in mobilization and harvesting of autologous hematopoietic stem cells, however the absolute number of peripheral blood CD34+ cells/uL is an important predictive factor for the harvesting outcome. Additionally our findings support for the first time the notion that the use of therapeutic 131I-MIBG could have a negative impact in mobilization of peripheral blood stem cells in children with neuroblastoma
|
30 |
Fatores que influenciaram nos resultados das coletas de células progenitoras hematopoéticas em crianças portadoras de neuroblastoma avançado / Factors influencing results of peripheral hematologic progenitor cells harvesting in children with advanced NeuroblastomaClaudio Carneiro Borba 10 May 2016 (has links)
Objetivos: Avaliar os resultados das coletas de células hematopoéticas CD34+, por aférese, em crianças portadoras de neuroblastoma tratadas no Serviço de Oncologia e Hematologia do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo; estudar os fatores (idade, peso, estimulação com quimioterapia, dose do G-CSF, uso terapêutico de 131I-MIBG e tempo entre exposição à quimioterapia prévia) que influenciaram na mobilização e no rendimento da coleta de células CD34+ no sangue periférico e associar a quantidade de células CD34+ obtidas com a evolução clínica do paciente. Métodos: Trata-se de um estudo retrospectivo de pacientes com neuroblastoma submetidos à coleta de células-tronco hematopoéticas entre janeiro de1989 e junho 2012. Resultados: Avaliados 45 prontuários de crianças com idade mediana de 3,1 anos (0-12 anos), 26 (57%) apresentavam metástase em medula óssea ao diagnóstico. O tempo entre diagnóstico e o início da mobilização foi em média 19,7 ± 12 meses (mediana de 15,8 meses). Dos pacientes estudados, 11/45 (24,4%) receberam 131I-MIBG terapêutico antes da mobilização. Somente cinco pacientes (11,1%) receberam quimioterapia associada ao G-CSF para mobilização; as demais 40 crianças (88,9%) receberam exclusivamente G-CSF na dose média 26,5 ± 5,3 ug/kg/dia (mediana 28 ug/kg/dia). Não houve correlação entre o número máximo de células CD34+ no sangue periférico com a idade (p=0,9), com o peso (p=0,63), com a dose do G-CSF (p=0,46) ou com o intervalo entre o diagnóstico e o início da mobilização (p=0,09). A mediana da quantificação de células CD34+/uL no sangue periférico foi de 36,6 células, média de 45,2 ± 42,6 (mínimo 1,7 e máximo 236,3). Pacientes que haviam recebido 131I-MIBG previamente à mobilização apresentaram menor número de células CD34+/uL no sangue periférico (p=0,04). Em 26 pacientes (57,8%) foi possível coletar mais de 2,0x106 células CD34+/Kg na primeira coleta e em 19 pacientes (42,2%) foram necessárias mais de uma coleta, sendo que, oito pacientes (17,8%) apresentaram falha de mobilização. Os pacientes que apresentaram menor quantidade de células CD34+/uL no sangue periférico (<= 12) não conseguiram número maior ou igual a 2,0x106 células CD34+/Kg em 81,8% das coletas. O número mediano de células infundidas foi de 2,66 x106 células CD34+/Kg (média 3,38 ±1,6; mínimo 1,8; máximo 8,74 x106 CD34+/Kg). Os pacientes apresentaram contagem de leucócitos maior que 1000/mm3 e de plaquetas maior 50000/mm3 por dois dias consecutivos em média, no dia 13 ± 10 e no dia 46 ± 33, respectivamente, após infusão. Conclusões: A coleta de células-tronco hematopoéticas por aférese foi factível em todos os pacientes do estudo. Não houve influência significativa da idade, do peso, da dose do G-CSF e do tempo entre diagnóstico e inicio da mobilização, no número máximo de células. O uso prévio à coleta de 131I-MIBG terapêutico parece influenciar negativamente no pico de células CD34+ no sangue periférico (p=0,04). A contagem de células CD34+ no sangue periférico é importante fator preditivo do resultado das coletas de células progenitoras hematopoéticas CD34+ por aférese / Objectives: To evaluate the results of peripheral hematopoietic CD34+ stem cells harvesting in children with neuroblastoma treated at Serviço de Oncologia e Hematologia do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo; regarding age, weight, stimulation with chemotherapy, G-CSF dose, time between diagnosis and the mobilization beginning and therapeutic 131I-MIBG use and the influence in mobilization and peripheral harvesting of autologous hematopoietic stem cells and to associate the amount of CD34+ cells obtained with the patient\'s clinical evolution. Methods: Between January 1989 and June 2012, children with neuroblastoma underwent to mobilization and peripheral hematopoietic stem cell harvesting and were retrospectively analyzed. Results: The charts of 45 children were reviewed. Median age was 3.1 years (0-12years), and 26 (57%) had metastases in bone marrow at diagnosis. Average time between diagnosis and mobilization was 19.7 ± 12 months (median, 15.8 months). 11/45 (24.4%) received therapeutic 131I-MIBG prior to mobilization. The average G-CSF dose was 26.5 ± 5.3mg/kg/day (mean 28mg/kg/day). There was no correlation between the absolute number of peripheral CD34+ cells and age (p=0.9), weight (p=0.63), G-CSF dose (p=0.46) or the range between diagnosis and early mobilization (p=0.09). The median quantification of CD34+ cells/uL in peripheral blood was 36.6, average 45.2 ±42.6 (minimum 1.7 and maximum 236.3 CD34+ cells/uL). Patients who had received therapeutic 131I-MIBG prior to mobilization, showed fewer absolute amount of CD34+/uL cells in peripheral blood (p=0.04). In 26 patients (57.8%) it was possible to harvest more than 2.0 x106 CD34+ cells/kg at first apheresis and in 19 patients (42.2%) more than one collection were necessary, and eight patients (17.8 %) failure to mobilize. Patients presenting less than 12 CD34+ cells/uL in peripheral blood on the harvesting day failed to reach more then 2.0x106 cells CD34+/kg in 81.8% of the apheresis procedures. It was infused a median number of 2.66 x106 CD34+ cells/kg (mean 1.6 ± 3.38; min 1.8; max 8.74 x106 CD34+ cells/kg). After the stem cells infusion, patients had white blood cells count greater than 1000/mm3 and platelet greater than 50,000/mm3 for two consecutive days on average after 13 ±10 and 46 ± 33 days, respectively. Conclusions: The hematopoietic stem cells harvesting was feasible in all patients included in this report. The G-CSF dose, age, weight and the period between harvesting and diagnosis showed no influence in mobilization and harvesting of autologous hematopoietic stem cells, however the absolute number of peripheral blood CD34+ cells/uL is an important predictive factor for the harvesting outcome. Additionally our findings support for the first time the notion that the use of therapeutic 131I-MIBG could have a negative impact in mobilization of peripheral blood stem cells in children with neuroblastoma
|
Page generated in 0.1231 seconds