Spelling suggestions: "subject:"green\'s function"" "subject:"creen\'s function""
61 |
Invariants asymptotiques en géométrie conforme et géométrie CR / Asymptotic invariants in conformal and CR geometryMichel, Benoît 08 November 2010 (has links)
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct. / In this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies.
|
62 |
Problemas de valores de contorno envolvendo o operador biharmônico / Boundary value problems involving the biharmonic operatorFerreira Junior, Vanderley Alves 25 February 2013 (has links)
Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade / We study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivity
|
63 |
1-D And 3-D Analysis Of Multi-Port Muffler Configurations With Emphasis On Elliptical Cylindrical Chamber Mimani, Akhilesh 30 March 2012 (has links) (PDF)
The flow-reversal elliptical cylindrical end chamber mufflers of short length are used often in the modern day automotive exhaust systems. The conventional 1-D axial plane wave theory is not able to predict their acoustical attenuation performance in view of the fact that the chamber length is not enough for the evanescent 3-D modes generated at the junctions to decay sufficiently for frequencies below the cut-off frequency. Also, due to the large area expansion ratio at the inlet, the first few higher order modes get cut on even in the low frequency regime. This necessitates a 3-D FEM or 3-D BEM analysis, which is cumbersome and time consuming. Therefore, an ingenious 1-D transverse plane wave theory is developed by considering plane wave propagation along the major-axis of the elliptical section, whereby a 2-port axially short elliptical and circular chamber muffler is characterized by means of the transfer matrix [T] or impedance matrix [Z]. Two different approaches are followed: (1) a numerical scheme such as the Matrizant approach, and (2) an analytical approach based upon the Frobenius series solution of the Webster’s equation governing the transverse plane wave propagation. The convective effects of mean flow are neglected; however the dissipative effects at the ports are taken into account. The TL predicted by this 1-D transverse plane wave analysis is compared with that obtained by means of the 3-D analytical approach and numerical (FEM/BEM) methods. An excellent agreement is observed between this simplified 1-D approach and the 3-D approaches at least up to the cut-on frequency of the (1, 1) even mode in the case of elliptical cylindrical chambers, or the (1, 0) mode in the case of circular cylindrical chambers, thereby validating this 1-D transverse plane wave theory. The acoustical attenuation characteristics of such short chamber mufflers for various configurations are discussed, qualitatively as well as quantitatively. Moreover, the Frobenius series solution enables one to obtain non-dimensional frequencies for determining the resonance peak and trough in the TL graph. The use of this theory is, however, limited to configurations in which both the ports are located along the major axis in the case of elliptical chambers and along the same diameter for circular chambers.
The method of cascading the [T] matrices of the 2-port elements cannot be used to analyze a network arrangement of 2-port elements owing to the non-unique direction of wave propagation in such a network of acoustic elements. Although, a few papers are found in the literature reporting the analysis of a network of 2-port acoustic elements, no work is seen on the analysis of a network of multi-port elements having more than two external ports. Therefore, a generalized algorithm is proposed for analyzing a general network arrangement of linear multi-port acoustic elements having N inlet ports and M outlet ports. Each of these multi-port elements constituting the network may be interconnected to each other in an arbitrary manner. By appropriate book-keeping of the equations obtained by the [Z] matrix characterizing each of the multi-port and 2-port elements along with the junction laws (which imply the equality of acoustic pressure and conservativeness of mass velocity at a multi-port junction), an overall connectivity matrix is obtained, whereupon a global [Z] matrix is obtained which characterizes the entire network. Generalized expressions are derived for the evaluation of acoustic performance evaluation parameters such as transmission loss (TL) and insertion loss (IL) for a multiple inlet and multiple outlet (MIMO) system. Some of the characteristic properties of a general multi-port element are also studied in this chapter. The 1-D axial and transverse plane wave analysis is used to characterize axially long and short chambers, respectively, in terms of the [Z] matrix. Different network arrangements of multi-port elements are constructed, wherein the TL performance of such MIMO networks obtained on the basis of either the 1-D axial or 1-D transverse plane wave theory are compared with 3-D FEA carried on a commercial software. The versatility of this algorithm is that it can deal with more than two external or terminal ports, i.e., one can have multiple inlets and outlets in a complicated acoustic network.
A generalized approach/algorithm is presented to characterize rigid wall reactive multi-port chamber mufflers of different geometries by means of a 3-D analytical formulation based upon the modal expansion and the uniform piston-driven model. The geometries analyzed here are rectangular plenum chambers, circular cylindrical chamber mufflers with and without a pass tube, elliptical cylindrical chamber mufflers, spherical and hemispherical chambers, conical chamber mufflers with and without a co-axial pass tube and sectoral cylindrical chamber mufflers of circular and elliptical cross-section as well as sectoral conical chamber mufflers. Computer codes or subroutines have been developed wherein by choosing appropriate mode functions in the generalized pressure response function, one can characterize a multi-port chamber muffler of any of the aforementioned separable geometrical shapes in terms of the [Z] matrix, subsequent to which the TL performance of these chambers is evaluated in terms of the scattering matrix [S] parameters by making use of the relations between [Z] and [S] matrices derived earlier. Interestingly, the [Z] matrix approach combined with the uniform piston-driven model is indeed ideally suited for the 3-D analytical formulation inasmuch as regardless of the number of ports, one deals with only one area discontinuity at a time, thereby making the analysis convenient for a multi-port muffler configuration with arbitrary location of ports.
The TL characteristics of SISO chambers corresponding to each of the aforementioned geometries (especially the elliptical cylindrical chamber) are analyzed in detail with respect to the effect of chamber dimensions (chamber length and transverse dimensions), and relative angular and axial location of ports. Furthermore, the analysis of SIDO (i.e., single inlet and double outlet) chamber mufflers is given special consideration. In particular, we examine
(1) the effect of additional outlet port (second outlet port),
(2) variation in the relative angular or axial location of the additional or second outlet port (keeping
the location of the inlet port and the outlet ports of the original SISO chamber to be constant) and (3) the effect of interchanging the location of the inlet and outlet ports
on the TL performance of these mufflers. Thus, design guidelines are developed for the optimal location of the inlet and outlet ports keeping in mind the broadband attenuation characteristics for a single inlet and multiple outlet (SIMO) system.
The non-dimensional limits up to which a flow-reversal elliptical (or circular) cylindrical end chamber having an end-inlet and end-outlet configuration is acoustically short (so that the 1-D transverse plane wave theory is applicable) and the limits beyond which it is acoustically long (so that the 1-D axial plane wave theory is applicable) is determined in terms of the ratio or equivalently, in terms of the ratio. Towards this end, two different configurations of the elliptical cylindrical chamber are considered, namely,
(1) End-Offset Inlet (located along the major-axis of the ellipse) and End-Centered Outlet
(2) End-Offset Inlet and End-Offset Outlet (both the ports located on the major-axis of the
ellipse and at equal offset distance from the center).
The former configuration is analyzed using 3-D FEA simulations (on SYSNOISE) while the 3-D analytical uniform piston-driven model is used to analyze the latter configuration. The existence of the higher order evanescent modes in the axially long reversal chamber at low frequency (before the cut-on frequency of the (1, 1) even mode or (1, 0) mode) causes a shift in the resonance peak predicted by the 1-D axial plane wave theory and 3-D analytical approach. Thus, the 1-D axial plane wave analysis is corrected by introducing appropriate end correction due to the modified or effective length of the elliptical cylindrical chamber. An empirical formulae has been developed to obtain the average non-dimensional end correction for the aforementioned configurations as functions of the expansion ratio, (i.e., ), minor-axis to major-axis ratio, (i.e., ) and the center-offset distance ratio, (i.e., ). The intermediate limits between which the chamber is neither short nor long (acoustically) has also been obtained. Furthermore, an ingenious method (Quasi 1-D approach) of combining the 1-D transverse plane wave model with the 1-D axial plane wave model using the [Z] matrix is also proposed for the end-offset inlet and end-centered outlet configuration. A 3-D analytical procedure has also been developed which also enables one to determine the end-correction in axially long 2-port flow-reversal end chamber mufflers for different geometries such as rectangular, circular and elliptical cylindrical as well as conical chambers, a priori to the computation of TL. Using this novel analytical technique, we determine the end correction for arbitrary locations on the two end ports on the end face of an axially long flow-reversal end chamber. The applicability of this method is also demonstrated for determination of the end corrections for the 2-port circular cylindrical chamber configuration without and with a pass tube, elliptical cylindrical chambers as well as rectangular and conical chambers.
|
64 |
Electron transport in quantum point contacts : A theoretical studyGustafsson, Alexander January 2011 (has links)
Electron transport in mesoscopic systems, such as quantum point contacts and Aharonov-Bohm rings are investigated numerically in a tight-binding language with a recursive Green's function algorithm. The simulation reveals among other things the quantized nature of the conductance in point contacts, the Hall conductance, the decreasing sensitivity to scattering impurities in a magnetic field, and the periodic magnetoconductance in an Aharonov-Bohm ring. Furthermore, the probability density distributions for some different setups are mapped, making the transmission coefficients, the quantum Hall effect, and the cyclotron radius visible, where the latter indicates the correspondance between quantum mechanics and classical physics on the mesoscopic scale.
|
65 |
Analytical time domain electromagnetic field propagators and closed-form solutions for transmission linesJeong, Jaehoon 15 May 2009 (has links)
An analytical solution for the coupled telegrapher’s equations in terms of the
voltage and current on a homogeneous lossy transmission line and multiconductor
transmission line is presented. The resulting telegrapher’s equation solution is obtained
in the form of an exact time domain propagator operating on the line voltage and current.
It is shown that the analytical equations lead to a stable numerical method that can be
used in the analysis of both homogeneous and inhomogeneous transmission lines. A
numerical dispersion relation is derived proving that this method has no numerical
dispersion down to the two points per wavelength Nyquist limit. Examples are presented
showing that exceptionally accurate results are obtained for lossy single and
multiconductor transmission lines. The method is extended to represent the general
solution to Maxwell’s differential equations in vector matrix form. It is shown that,
given the electromagnetic field and boundary conditions at a given instant in time, the
free space time domain propagator and corresponding dyadic Green’s functions in 1-, 2-,
and 3-dimensions can be used to calculate the field at all subsequent times.
|
66 |
Structural health monitoring of a high speed naval vessel using ambient vibrationsHuston, Steven Paul 19 March 2010 (has links)
Traditional naval vessels with steel structures have the benefit of large safety factors and
a distinct material endurance limit. However, as performance requirements and budget
constraints rise, the demand for lighter weight vessels increases. Reducing the mass of
vessels is commonly achieved by the use of aluminum or composite structures, which
requires closer attention to be paid to crack initiation and propagation. It is rarely
feasible to require a lengthy inspection process that removes the vessel from service for
an extended amount of time. Structural health monitoring (SHM), involving continuous
measurement of the structural response to an energy source, has been proposed as a step
towards condition-based maintenance. Furthermore, using a passive monitoring system
with an array of sensors has several advantages: monitoring can take place in real-time
using only ambient noise vibrations and neither deployment of an active source nor visual
access to the inspected areas are required.
Passive SHM on a naval vessel is not without challenge. The structures of ships are
typically geometrically complex, causing scattering, multiple reflections, and mode
conversion of the propagating waves in the vessel. And rather than a distinct and
predictable input produced by controlled active sources, the vibration sources are hull
impacts, smaller waves, and even onboard machinery and activity. This research
summarizes findings from data collected onboard a Navy vessel and presents
recommendations data processing techniques. The intent is to present a robust method of
passive structural health monitoring for such a vessel using only ambient vibrations
recordings.
|
67 |
A note on correlated and non-monotone Anderson modelsTautenhahn, Martin, Veselic', Ivan 17 January 2008 (has links) (PDF)
We prove exponential decay for a fractional power
of the Green's function for some correlated
Anderson models using the fractional moment
method.
|
68 |
Divisors on graphs, binomial and monomial ideals, and cellular resolutionsShokrieh, Farbod 27 August 2014 (has links)
We study various binomial and monomial ideals arising in the theory of divisors, orientations, and matroids on graphs.
We use ideas from potential theory on graphs and from the theory of Delaunay decompositions for lattices to describe their minimal polyhedral cellular free resolutions. We show that the resolutions of all these ideals are closely related and that their Z-graded Betti tables coincide.
As corollaries, we give conceptual proofs of conjectures and questions posed by Postnikov and Shapiro, by Manjunath and Sturmfels, and by Perkinson, Perlman, and Wilmes. Various other results related to the theory of chip-firing games on graphs also follow from our general techniques and results.
|
69 |
Vliv neurčitosti rychlostního modelu při studiu zemětřesného zdroje / Influence of velocity model uncertainty in earthquake source inversionsHalló, Miroslav January 2018 (has links)
Title: Influence of velocity model uncertainty in earthquake source inversions Author: Miroslav Halló Department: Department of Geophysics Supervisor: doc. RNDr. František Gallovič, Ph.D., Department of Geophysics Abstract: Earthquake ground motions originate from rupture processes on faults in Earth. Constraints on earthquake source models are important for better un- derstanding of earthquake physics and for assessment of seismic hazard. The source models are inferred from observed waveforms by inverse modeling, which is subject to uncertainty. For large tectonic earthquakes the major source of un- certainty is an imprecise knowledge of crustal velocity model. The research topic of this Thesis is the influence of the velocity model uncertainty on the inferred source models. We perform Monte-Carlo simulations of Green's functions (GFs) in randomly perturbed velocity models to reveal the effects of the imprecise veloc- ity model on the synthetic waveforms. Based on the knowledge gained, we derive closed-form formulas for approximate covariance functions to obtain fast and effective characterization of the GFs' uncertainty. We demonstrate that approxi- mate covariances capture correctly the GF variability as obtained by the Monte- Carlo simulations. The proposed approximate covariance functions are...
|
70 |
Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes / Light localization within nano-scale roughness of metallic surfaces treated by surface integrals and waveletsMaxime, Camille 27 January 2012 (has links)
Le cadre de cette thèse est la simulation numérique de l'interaction de la lumière avec des surfaces métalliques rugueuses pouvant être à l'origine de fortes localisation du champ électromagnétique du à des résonances plasmoniques. Les profils accidentés de ces surfaces ont des tailles caractéristiques de quelques nanomètres de largeur et de quelques dizaines de nanomètres de hauteur. La principale difficulté dans la simulation de tels phénomènes réside dans la diff'erence d'échelle entre la longueur d'onde de l'onde incidente et la taille des rugosités ainsi que les variations brutales du champ magnétique à la surface. Une méthode de simulation adaptée est la résolution numérique d'équations intégrales de surface ayant un profil périodique. Cette méthode a été implémentée en C++ et la part principale de ce travail a été le calcul de la fonction de Green pseudo-périodique. L'intensité du faisceau réfracté ainsi que les cartes de champ proche peuvent être calculées rigoureusement à partir de la solution obtenue. A l'aide de cette méthode, on a montré que des résonances plasmoniques situées dans les cavités d'un réseaux ayant des rainures de forme Gaussienne de taille nanométrique ont un comportement électrostatique similaire à celles des cavités rectangulaires, notamment une réflectivité spéculaire très faible en condition de résonance. Les performances actuelles des ordinateurs limitent cependant les études à des réseaux de petite période. Afin de dépasser ces limitations, on a fait appel à des bases de fonctions permettant de décomposer une fonction en ses parties de résolutions différentes: les ondelettes. Ce travail se conclue par une discussion sur le potentiel de deux utilisations différentes des ondelettes pour la résolution d'équation intégrales. / The framework of this thesis is the numerical simulation of the interaction of light with rough metallic surfaces which can be the origin of giant enhancements of the electromagnetic field due to plasmonic resonances. The abrupt profile of these surfaces have characteristic sizes of a few nanometers of width and a few tens of nanometers of height. The main difficulty in the simulation of such phenomena is in the scale difference of the wavelength of the incident wave and the size of the roughness as well as the abrupt variations of the magnetic field at the surface. A suited method of simulation is the numerical resolution of surface integral equations for periodic profile of the surface. This method was implemented in C++ and the main part of this work was the calculation of the pseudo-periodic Green function. The intensity of the refracted beam and that of the electromagnetic field maps are rigorously calculated from the obtained solution. We showed by applying this method that plasmonic resonances situated in the cavity of gratings with Gaussian shaped grooves of nanometric sizes have an electrostatic behaviour similar to that of the rectangular grooves, in particular, a very low specular reflectivity at the resonance. The current performances of computers limit the studies to gratings with a small period. In order to overcome these limitations, we considered a function basis enabling to decompose a functions into its components of different resolutions: the wavelets. This work ends with a discussion on the potential of two different applications of the wavelets to the resolution of integral equations.
|
Page generated in 0.0631 seconds