Spelling suggestions: "subject:"hipersuperfícies"" "subject:"hipersuperfíıcies""
31 |
Hipersuperfícies de rotação com curvatura escalar constante em Rn e Hn / Rotational hypersupersurfaces with scalar curvature constant in Rn e HnCarvalho, Marcos Túlio Alves de 25 February 2014 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-08-29T18:40:14Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
DissertaçãofinalMarcostulio.pdf: 1325302 bytes, checksum: 282aebfee90d1ca1fcbbe83021300b0f (MD5) / Made available in DSpace on 2014-08-29T18:40:14Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
DissertaçãofinalMarcostulio.pdf: 1325302 bytes, checksum: 282aebfee90d1ca1fcbbe83021300b0f (MD5)
Previous issue date: 2014-02-25 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Inthiswork,basedonthearticlesMariaLuízaLeiteandOscasPalmas,wepresentedthe
classificationofthecompleterotationhypersurfaceswithconstantscalarcurvature,inRn
eHn withn>3. / Neste trabalho, baseado nos artigos de Maria Luíza Leite e Oscas Palmas, classificamos
as hipersuperfícies de rotação completas, com curvatura escalar constante, emRn eHn
comn>3.
|
32 |
Hipersuperfícies mínimas de R4 com curvatura de Gauss-Kronecker nula. / Minimum hypersurfaces of R4 with zero Gauss-Kronecker curvature.Pereira, José Ilhano da Silva 25 August 2017 (has links)
PEREIRA, José Ilhano da Silva. Hipersuperfícies mínimas de R4 com curvatura de Gauss-Kronecker nula. 2017. 44 f. Dissertação (Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-02T15:01:31Z
No. of bitstreams: 1
2017_dis_jispereira.pdf: 596580 bytes, checksum: 3c2c1a16d4ce273bfb7c246f7926c01a (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
Estou devolvendo a Dissertação de JOSÉ ILHANO DA SILVA PEREIRA, pois há alguns erros a serem corrigidos. Os mesmos seguem listados a seguir.
1- FOLHA DE APROVAÇÃO (substitua a folha de aprovação, por outra que não contenha as assinaturas dos membros da banca examinadora)
2- NUMERAÇÃO INDEVIDA (a numeração indevida de página que aparece na folha de aprovação deve ser retirada)
3- RESUMO (retire o recuo de parágrafo presente no resumo e no abstract)
4- PALAVRAS-CHAVE (apenas o primeiro elemento de cada palavra-chave deve começar com letra maiúscula, assim reescreva as palavras-chave como no exemplo a seguir: Hipersuperfícies mínimas)
5- SUMÁRIO (Os títulos dos capítulos principais, que aparecem no sumário e no interior do trabalho, devem estar em caixa alta (letra maiúscula).
Ex.: 2 PRELIMINARES
2.1 Tensores
6 – REFERÊNCIAS (retire o conjunto de “citações” à autores que aparece no final das referências bibliográficas, pois elas fogem ao padrão ABNT para a página das referências)
Atenciosamente,
on 2017-10-04T17:50:58Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-23T19:57:28Z
No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-11-01T12:35:13Z (GMT) No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5) / Made available in DSpace on 2017-11-01T12:35:13Z (GMT). No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5)
Previous issue date: 2017-08-25 / This work does study the complete minimal hypersurfaces in the Euclidean space R4 , with Gauss-Kronecker curvature identically zero. Our main result is to prove that if f: M3 → R4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature boun-ded from below, then f(M3) splits as a Euclidean product L2 × R , where L2 is a complete minimal surface in R3 with Gaussian curvature bounded from below. Moreover, we show a result about the Gauss-Kronecker curvature of f, without any assumption on the scalar curvature. / Este trabalho tem como objetivo estudar as hipersuperfícies mínimas em R4, com curvatura de Gauss-Kronecker identicamente zero. Como resultado principal provamos que se f : M3 → R4 é uma hipersuperfície mínima com curvatura de Gauss-Kronecker identicamente zero, segunda forma fundamental não se anulando em nenhum ponto e curvatura escalar limitada inferiormente, então f(M3) se decompõe como um produto euclidiano do tipo L2 × R , onde L2 é uma superfície mínima de R3 com curvatura Gaussiana limitada inferiormente. Finalmente, apresentamos um resultado sobre a curvatura de Gauss-Kronecker de f sem nenhuma hipótese sobre a curvatura escalar.
|
33 |
Uma resposta parcial para a conjectura CPE, estimativas de diâmetro e variedades com energia constante / A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energyBenjamim Filho, Francisco de Assis January 2015 (has links)
BENJAMIM FILHO, Francisco de Assis. A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy. 2015. 50 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2015-07-30T16:00:21Z
No. of bitstreams: 1
2015_tese_fabenjamimfilho.pdf: 1331915 bytes, checksum: d86d3d6fbbc1ba72cb62c715c153573c (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-07-30T16:01:04Z (GMT) No. of bitstreams: 1
2015_tese_fabenjamimfilho.pdf: 1331915 bytes, checksum: d86d3d6fbbc1ba72cb62c715c153573c (MD5) / Made available in DSpace on 2015-07-30T16:01:04Z (GMT). No. of bitstreams: 1
2015_tese_fabenjamimfilho.pdf: 1331915 bytes, checksum: d86d3d6fbbc1ba72cb62c715c153573c (MD5)
Previous issue date: 2015 / This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy. / Esta tese está dividida em quatro partes. Na primeira delas estudaremos pontos críticos do funcional curvatura escalar total restrito ao espaço das métricas de curvatura escalar constante e volume unitário. Provaremos que sob certas condições integrais convenientes os pontos críticos de tal funcional são variedades de Einstein provando assim a conjectura dos pontos críticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diâmetro de hipersuperfícies mínimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfície considerada. Para superfícies imersas na esfera de dimensão três, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensão alta. Na última parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro são as únicas superfícies que têm energia constante. Em dimensão mais alta a situação é bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condição sobre a curvatura de Ricci, é possível caracterizar a esfera também neste caso. Em seguida, aplicamos as informações obtidas ao estudo de hipersuperfícies da esfera provando alguns resultados de rigidez desde que a hipersuperfície tenha energia constante.
|
34 |
O número de Milnor de uma singularidade isoladaOréfice, Bruna 24 November 2011 (has links)
Made available in DSpace on 2016-06-02T20:27:39Z (GMT). No. of bitstreams: 1
3945.pdf: 746734 bytes, checksum: 759f0299b121e175c4c8fc136f294b23 (MD5)
Previous issue date: 2011-11-24 / Financiadora de Estudos e Projetos / Given (X; 0) C (CN; 0) a weighted homogeneous germ of hypersurface with isolated singularity and f : (CN; 0) - C a germ of function finitely determined with respect to X, we show that UBR(f;X) = U(f) + U(X; f), where U(f) and U(X; f) denote the Milnor numbers of f and of the fiber X \ f��1(0), respectively, and UBR(f;X) is the Bruce-Roberts number of f with respect to X. We show that the logarithmic characteristic subvariety, LC(X), is Cohen-Macaulay and we get relations between the Bruce-Roberts number and the Euler obstruction. Given F : (CN; 0) ! Mm;n(C) a holomorphic function germ, let (X; 0) be the isolated determinantal singularity given by X = F-1(Ms m;n(C)) where Ms m;n(C) is the set of the complex matrices with rank less then s, with s an integer number between 0 and minfm; ng such that N < (m - s + 2)(n - s + 2), we will define the vanishing Euler characteristic of (X; 0) and the Milnor number of a holomorphic function germ with an isolated singularity at X, f : (X; 0) - C. / Dados (X; 0) C (CN; 0) um germe de hipersuperfície quase homogêneo com singularidade isolada e f : (CN, 0) - C um germe de função finitamente determinado com respeito a X, mostramos que UBR(f;X) = U(f) + U(X; f), onde U(f) e U(X; f) denotam o número de Milnor de f e da fibra X \ f-1(0), respectivamente, e _BR(f;X) é o número de Bruce-Roberts de f com respeito a X. Mostramos que a variedade logarítmica característica LC(X) é Cohen-Macaulay e obtemos relações entre o número de Bruce-Roberts e a obstrução de Euler. Dado F : (CN; 0) ! Mm;n(C) um germe de função holomorfa, seja (X; 0) a singularidade determinantal isolada dada por X = F-1(Ms m;n(C)) onde Ms m;n(C) é o conjunto das matrizes complexas com posto menor que s, com s um número inteiro entre 0 e minfm; ng tal que N < (m-s+2)(n-s+2), definimos a característica de Euler evanescente de (X; 0) e o número de Milnor de um germe de função holomorfa com uma singularidade isolada em X, f : (X; 0) - C.
|
35 |
G-variedades riemannianas como hipersuperfícies de formas espaciais.Gonçalves, Ion Moutinho 20 February 2006 (has links)
Made available in DSpace on 2016-06-02T20:27:41Z (GMT). No. of bitstreams: 1
TeseIMG.pdf: 456482 bytes, checksum: a58b8dfb4176a393cdde2eceb2d840e7 (MD5)
Previous issue date: 2006-02-20 / Financiadora de Estudos e Projetos / (See full text for download)
It is proved that an isometric immersion f: Mn ! Qn+1
c of a compact Riemannian mani-fold of dimension n ¸ 3 into a space form of dimension n + 1 is equivariant with respect
to a Lie group homomor¯sm ©: Iso0(Mn) ! Iso(Qn+1
c ), where Iso0(Mn) denotes the identity component of the isometry group Iso(Mn) of Mn. For the case Qn+1
c = Rn+1, it is shown that © takes every closed connected subgroup of Iso(Mn) acting locally polarly on Mn into a group that acts polarly on Rn+1. Moreover, compact Euclidean rotation hypersurfaces of dimension n ¸ 3 are characterized by their underlying warped product structure. Besides, isometric immersions f: Mn ! Qn+1 c of a complete Riemannian manifold Mn under a locally polar action of a closed connected subgroup of Iso(Mn) with umbilical principal orbits are studied. / (Ver texto completo para download)
Prova-se que uma imersão isométrica f: Mn ! Qn+1
c de uma variedade Riemanniana compacta de dimensão n ¸ 3 numa forma espacial de dimensão n + 1 ¶e equivariante com relação a um homomor¯smo de grupos de Lie ©: Iso0(Mn) ! Iso(Qn+1 c ) da componente conexa da identidade Iso0(Mn) do grupo de isometrias Iso(Mn) of Mn. Para o caso em
que Qn+1 c = Rn+1, obt¶em-se que © leva todo subgrupo fechado e conexo de Iso(Mn) que age de modo localmente polar sobre Mn num subgrupo que age polarmente sobre Rn+1.
Mostra-se tamb¶em que as hipersuperf¶³cies de rotação compactas do espa»co Euclideano de dimensão n ¸ 3 são caracterizadas por sua estrutura intr¶³nseca de produto warped. Desenvolve-se ainda um estudo das imersões isom¶etricas f: Mn ! Qn+1 c em uma forma espacial de uma variedade Riemanniana completa sobre a qual age de modo localmente polar e com ¶orbitas principais umb¶³licas um subgrupo fechado e conexo de Iso(Mn) .
|
36 |
O problema de Dirichlet para a equação da hipersuperfícies mínimas em domínios limitadosNascimento, Antonio Carlos do 22 July 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study the classical results of existence and non-existence of solutions for the Dirichlet problem for the minimal hypersurfaces equation in bounded domains of Rn due to Jenkins-Serrin [8]. / Neste trabalho estudamos os clássicos resultados de existência e não existência de soluções para o problema de Dirichlet para a equação das hipersuperfícies mínimas em domínios limitados de Rn devido a Jenkins-Serrin [8].
|
37 |
Invariante de Makar-Limanov de certas hipersuperfícies algébricasDiniz., Renato dos Santos 29 August 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:07Z (GMT). No. of bitstreams: 1
ArquivoTotalRenato.pdf: 567179 bytes, checksum: f04648306a82585dcc8b5e2b63f00126 (MD5)
Previous issue date: 2014-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Makar-Limanov invariant ML(B) of an a-ne k-algebra B (with k a -eld, which will be typically assumed to be of characteristic zero) is a very important invariant, defined
in terms of the kernels of suitable derivations of B called locally nilpotent derivations. The theme has connections to various central problems in Commutative Algebra, for
instance, the Jacobian Conjecture, the Fourteenth Hilbert's Problem, and the Cancellation Problem, and has been investigated by many authors. In this work, after the presentation of basic concepts and results, our main goal is the explicit obtainment of the structure of ML(B) (as a k-algebra) when B is the coordinate ring of certain special a-ne algebraic hypersurfaces, to wit, the so-called Danielewski surfaces, as well as the famous Makar-Limanov 3-fold defined by x + x2y + z2 + t3 = 0. / O invariante de Makar-Limanov ML(B) de uma k-álgebra afim B (com k corpo, que tipicamente será assumido de característica zero) é um invariante bastante importante, definido em termos dos núcleos de certas derivações especiais de B chamadas derivações localmente nilpotentes. O tema possui conexões com vários problemas centrais em Álgebra Comutativa, por exemplo, a Conjectura Jacobiana, o Décimo Quarto Problema de Hilbert, e o Problema do Cancelamento, e tem sido investigado por diversos autores. Neste trabalho, após a apresentação de conceitos e resultados básicos, nossa principal meta é a obtenção explícita da estrutura de ML(B) (como álgebra) quando B é o anel de coordenadas de certas hipersuperfícies algébricas afins especiais, a saber, as chamadas superfícies de Danielewski, bem como o famoso 3-fold de Makar-Limanov definido por x + x^2y + z^2 + t^3 = 0.
|
38 |
Um estudo das hipersuperfícies maximais tipo espaço no espaço anti-de Sitter / A study of spacelike maximal hypersurfaces in the anti-de Sitter spaceBruno Mascaro 07 June 2017 (has links)
Este trabalho apresenta a demonstração de dois teoremas sobre a caracterização de hipersuperf ícies maximais no espaço anti-de Sitter. Ambos os Teoremas 4.0.1 e 4.0.2 caracterizam hipersuperf ícies maximais isométricamente imersas no espaço anti-de Sitter Hn+1 1 com (n-1) curvaturas principais de mesmo sinal, com curvatura escalar constante e curvatura de Gauss-Kronecker constante não-nula, respectivamente, como sendo isométricas ao cilindro hiperbólico H1(c1)Hn1(c2). Também é feito um breve estudo do artigo [17], onde o Teorema 3.0.3 é ferramenta chave para a obtenção dos resultados demonstrados nos Teoremas 4.0.1 e 4.0.2. / This work presents, the demonstration of two theorems about the characterization of maximal hypersurfaces on the anti-de Sitter space. Both Theorems 4.0.1 and 4.0.2 characterize maximal hypersurfaces isometrically immersed in the anti-de Sitter space Hn+1 1 with (n-1) principal curvatures with the same sign, with constant scalar curvature and nonzero constant Gauss-Kronecker curvature, respectively, as being isometric to the hyperbolic cylinder H1(c1) Hn1(c2). Is also done a brief study of the article [17], where the Theorem 3.0.3 is key piece to obtain the results demonstrated in Theorems 4.0.1 and 4.0.2.
|
39 |
Hipersuperfícies regradas e de Weingarten no espaço hiperbólico / Ruled and Weingarten hypersurfaces in hyperbolic space.Alexandre Lymberopoulos 16 June 2009 (has links)
Neste trabalho apresentamos uma classificação das hipersuperfícies regradas e de Weingarten no espaço hiperbólico. / In this work we provide a classification for ruled and Weingarten hypersurfaces in hyperbolic space.
|
40 |
Teoremas de Rigidez no espaço hiperbólico. / Theorems of Stiffness in hyperbolic space.ROCHA, Jamilly Lourêdo. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:38:25Z
No. of bitstreams: 1
JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) / Made available in DSpace on 2018-08-09T17:38:25Z (GMT). No. of bitstreams: 1
JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5)
Previous issue date: 2014-08 / Capes / Com uma aplicação adequada do conhecido princípio do máximo generalizado de
Omori-Yau, obtemos resultados de rigidez com relação a hipersuperfícies imersas completascomcurvaturamédiadelimitadanoespaçohiperbólicoHn+1 (n+1)-dimensional. Em nossa abordagem exploramos a existência de uma dualidade natural entreHn+1 e a metade Hn+1 do espaço de SitterSn+11 , cujo modelo é chamado de steady state space. / As a suitable application of the well known generalized maximum principle of
Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed
with bounded mean curvature in the (n+1)-dimensional hyperbolic spaceHn+1. In
our approach, we explore the existence of a natural duality betweenHn+1 and the half
Hn+1 of the de Sitter spaceSn+11 , which models the so-called steady state space.
|
Page generated in 0.0522 seconds