• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 1
  • Tagged with
  • 27
  • 27
  • 14
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie / Stochastic and deterministic kinetic equations in the context of mathematics applied to biology

Caillerie, Nils 05 July 2017 (has links)
Cette thèse étudie des modèles mathématiques inspirés par la biologie. Plus précisément, nous nous concentrons sur des équations aux dérivées partielles cinétiques. Les champs d'application des équations cinétiques sont nombreux mais nous nous concentrons ici sur des phénomènes de propagation d'espèces invasives, notamment la bactérie Escherichia coli et le crapaud buffle Rhinella marina.La première partie de la thèse ne présente pas de résultats mathématiques. Nous construisons plusieurs modélisations pour la dispersion à grande échelle du crapaud buffle en Australie. Nous confrontons ces mêmes modèles à des données statistiques multiples (taux de fécondité, taux de survie, comportements dispersifs) pour mesurer leur pertinence. Ces modèles font intervenir des processus à sauts de vitesses et des équations cinétiques.Dans la seconde partie, nous étudions des phénomènes de propagation dans des modèles cinétiques plus simples. Nous illustrons plusieurs méthodes pour établir mathématiquement des formules de vitesse de propagation dans ces modèles. Cette partie nous amène à établir des résultats de convergence d'équations cinétiques vers des équations de Hamilton-Jacobi par la méthode de la fonction test perturbée. Nous montrons également comment le formalisme Hamilton-Jacobi permet de trouver des résultats de propagation et enfin, nous construisons des solutions en ondes progressives pour un modèle de transport-réaction. Dans la dernière partie, nous établissons un résultat de limite de diffusion stochastique pour une équation cinétique aléatoire. Pour ce faire, nous adaptons la méthode de la fonction test perturbée sur la formulation d'une EDP stochastique en terme de générateurs infinitésimaux.La thèse comporte également une annexe qui expose les données trajectorielles des crapauds dont nous nous servons en première partie." / In this thesis, we study some biology inspired mathematical models. More precisely, we focus on kinetic partial differential equations. The fields of application of such equations are numerous but we focus here on propagation phenomena for invasive species, the Escherichia coli bacterium and the cane toad Rhinella marina, for example. The first part of this this does not establish any mathematical result. We build several models for the dispersion of the cane toad in Australia. We confront those very models to multiple statistical data (birth rate, survival rate, dispersal behaviors) to test their validity. Those models are based on velocity-jump processes and kinetic equations. In the second part, we study propagation phenomena on simpler kinetic models. We illustrate several methods to mathematically establish propagation speed in this models. This part leads us to establish convergence results of kinetic equations to Hamilton-Jacobi equations by the perturbed test function method. We also show how to use the Hamilton-Jacobi framework to establish spreading results et finally, we build travelling wave solutions for reaction-transport model. In the last part, we establish a stochastic diffusion limit result for a kinetic equation with a random term. To do so, we adapt the perturbed test function method on the formulation of a stochastic PDE in term of infinitesimal generators. The thesis also contains an annex which presents the data on toads’ trajectories used in the first part."
22

Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées / Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles

Herda, Maxime 20 September 2017 (has links)
Cette thèse est consacrée à l'étude mathématique de quelques modèles d'équations aux dérivées partielles issues de la physique des plasmas. On s'intéresse principalement à l'analyse théorique de différents régimes asymptotiques de systèmes d'équations cinétiques de type Vlasov-Poisson-Fokker-Planck. Dans un premier temps, en présence d'un champ magnétique extérieur on se concentre sur l'approximation des électrons sans masse fournissant des modèles réduits lorsque le rapport me{mi entre la masse me d'un électron et la masse mi d'un ion tend vers 0 dans les modèles. Suivant le régime considéré, on montre qu'à la limite les solutions vérifient des modèles hydrodynamiques de type convection-diffusion ou sont données par des densités de type Maxwell-Boltzmann-Gibbs, suivant l'intensité des collisions dans la mise à l'échelle. En utilisant les propriétés hypocoercives et hypoelliptiques des équations, on est capable d'obtenir des taux de convergence en fonction du rapport de masse. Dans un second temps, par des méthodes similaires, on montre la convergence exponentielle en temps long vers l'équilibre des solutions du système de Vlasov-Poisson-Fokker-Planck sans champ magnétique avec des taux explicites en les paramètres du modèles. Enfin, on conçoit un nouveau type de schéma volumes finis pour des équations de convection-diffusion non-linéaires assurant le bon comportement en temps long des solutions discrètes. Ces propriétés sont vérifiées numériquement sur plusieurs modèles dont l'équation de Fokker-Planck avec champ magnétique / This thesis is devoted to the mathematical study of some models of partial differential equations from plasma physics. We are mainly interested in the theoretical study of various asymptotic regimes of Vlasov-Poisson-Fokker-Planck systems. First, in the presence of an external magnetic field, we focus on the approximation of massless electrons providing reduced models when the ratio me{mi between the mass me of an electron and the mass mi of an ion tends to 0 in the equations. Depending on the scaling, it is shown that, at the limit, solutions satisfy hydrodynamic models of convection-diffusion type or are given by Maxwell-Boltzmann-Gibbs densities depending on the intensity of collisions. Using hypocoercive and hypoelliptic properties of the equations, we are able to obtain convergence rates as a function of the mass ratio. In a second step, by similar methods, we show exponential convergence of solutions of the Vlasov-Poisson-Fokker-Planck system without magnetic field towards the steady state, with explicit rates depending on the parameters of the model. Finally, we design a new type of finite volume scheme for a class of nonlinear convection-diffusion equations ensuring the satisfying long-time behavior of discrete solutions. These properties are verified numerically on several models including the Fokker-Planck equation with magnetic field
23

Nonlinear Optical Effects in Pure and N-Doped Semiconductors

Donlagic, Nias Sven 02 November 2000 (has links)
No description available.
24

Existence, unicité, approximations de solutions d'équations cinétiques et hyperboliques / Non disponible

Broizat, Damien 11 July 2013 (has links)
Les travaux de cette thèse s’inscrivent dans le contexte des systèmes de particules. Nous considérons différents systèmes physiques, décrits de manière continue, et dont la dynamique est modélisée par des équations aux dérivées partielles décrivant l’évolution temporelle de certaines quantités macroscopiques ou microscopiques, selon l’échelle de description envisagée. Dans une première partie, nous nous intéressons à une équation de type coagulation-fragmentation cinétique. Nous obtenons un résultat d’existence globale en temps, dans le cadre des solutions renormalisées de DiPerna-Lions, pour toute donnée initiale vérifiant les estimations naturelles et possédant une norme L1 et une norme Lp (p > 1) finies. La deuxième partie traite de méthodes de moments. L’objectif de ces méthodes est d’approcher un modèle cinétique par un nombre fini d’équations portant sur des quantités dépendant uniquement de la variable d’espace, et la question est de savoir comment fermer le système obtenu pour obtenir une bonne approximation de la solution du modèle cinétique. Dans un cadre linéaire, nous obtenons une méthode de fermeture explicite conduisant à un résultat de convergence rapide. Enfin, dans une troisième partie, nous travaillons sur la modélisation du trafic routier avec prise en compte de la congestion à l’aide d’un système hyperbolique avec contraintes, issu de la dynamique des gaz sans pression. En modifiant convenablement ce système, nous parvenons à modéliser des phénomènes de trafic routier "multi-voies", comme l’accélération, et la création de zones de vide. Un résultat d’existence et de stabilité des solutions de ce modèle modifié est démontré. / The context of this thesis is particle systems. We deal with different physical systems, described continuously, whose dynamics are modeled by partial differential equations. These equations follow the evolution in time of macroscopic or microscopic quantities, according to scale description. In the first part, we consider a kinetic model for coagulation-fragmentation. We obtain a global existence result, using the notion of DiPerna-Lions renormalized solutions, for initial data satisfying the natural physical bounds, and assumptions of finite L1 and Lp norm (for some p > 1). The second part deals with methods of moments. The aim of these methods is to approximate a kinetic model by a finite number of equations whose unknowns depend only on the space variable. The question is : how to close this system to get a good approximation of the solution of the kinetic model ? In a linear setting, we obtain an explicit method with linear closure relations, which leads to a fast convergence result. In the last part, we work on modeling of traffic jam taking into account the congestion, using a hyperbolic system with constraints, which occurs in the dynamics of a pressureless gas. By suitably modifying this system, we can model "multi-lane" phenomena, like acceleration, and creation of vacuum. An existence and stability result is proved on this new model.
25

Analyse spectrale et calcul numérique pour l'équation de Boltzmann / Spectral analysis and numerical calculus for the Bomtzmann equation

Jrad, Ibrahim 27 June 2018 (has links)
Dans cette thèse, nous étudions les solutions de l'équation de Boltzmann. Nous nous intéressons au cadre homogène en espace où la solution f(t; x; v) dépend uniquement du temps t et de la vitesse v. Nous considérons des sections efficaces singulières (cas dit non cutoff) dans le cas Maxwellien. Pour l'étude du problème de Cauchy, nous considérons une fluctuation de la solution autour de la distribution Maxwellienne puis une décomposition de cette fluctuation dans la base spectrale associée à l'oscillateur harmonique quantique. Dans un premier temps, nous résolvons numériquement les solutions en utilisant des méthodes de calcul symbolique et la décomposition spectrale des fonctions de Hermite. Nous considérons des conditions initiales régulières et des conditions initiales de type distribution. Ensuite, nous prouvons qu'il n'y a plus de solution globale en temps pour une condition initiale grande et qui change de signe (ce qui ne contredit pas l'existence globale d'une solution faible pour une condition initiale positive - voir par exemple Villani Arch. Rational Mech. Anal 1998). / In this thesis, we study the solutions of the Boltzmann equation. We are interested in the homogeneous framework in which the solution f(t; x; v) depends only on the time t and the velocity v. We consider singular crosssections (non cuto_ case) in the Maxwellian case. For the study of the Cauchy problem, we consider a uctuation of the solution around the Maxwellian distribution then a decomposition of this uctuation in the spectral base associated to the quantum harmonic oscillator At first, we solve numerically the solutions using symbolic computation methods and spectral decomposition of Hermite functions. We consider regular initial data and initial conditions of distribution type. Next, we prove that there is no longer a global solution in time for a large initial condition that changes sign (which does not contradict the global existence of a weak solution for a positive initial condition - see for example Villani Arch. Rational Mech. Anal 1998).
26

Analyse mathématique et numérique de modèles gyrocinétiques / Mathematical and numerical analysis of gyro-kinetic models

Caldini-Queiros, Céline 15 November 2013 (has links)
Cette thèse porte sur les équations gyro-cinétiques et traite un développement rigoureux deslimites de l'équation de Vlasov avec différents opérateurs de collision dans un champ magnétiquefort, ainsi que du développement de méthodes numériques.On commence par une étude de l'opérateur de moyenne. L'opérateur de moyenne a été développé parM. Bostan dans le cadre général d'une équation pour laquelle une partie du transport estfortement pénalisée. Puis, on applique ces résultats généraux aux deux régimes limites que nousétudions : le régime du rayon de Larmor fini et le régime centre-guide.On s'intéresse au calcul précis et explicite de la moyenne de l'opérateur de Fokker-Planck-Landau. On se place pour cela dans le cas du régime du rayon de Larmor fini. Avant de réaliserles calculs sur l'opérateur de Fokker-Planck-Landau, qui contient des convolutions et des termesde diffusion, il semble raisonnable de calculer la moyenne de l'opérateur de relaxation deBoltzmann, dont l'expression est plus simple.On se place ensuite dans le cas du régime centre-guide et on présente un schéma numérique basésur une décomposition micro-macro de la fonction de distribution des particules qui provientd'un travail en collaboration avec N. Crouseilles et M. Lemou. On obtient un schéma uniformémentconsistant avec le modèle continu, pour tout ordre du champ magnétique. Des simulationsnumériques, basées sur cette approche, ont été réalisées à l'aide d'un code de calcul 2D quel'on a développé durant cette thèse.On présente ensuite un projet réalisé dans le cadre du Cemracs 2012, consacré à la modélisationdes écoulements sanguins dans le réseau veineux cérébral. / The main subject of this thesis is the gyro-kinetic equation. We present a rigourousdeveloppement of the Vlasov equation limits with different collision operator in a strongmagnetic field and numerical methods.We start with a study of the gyro-average operator. The average operator has been introduced byM. Bostan in the case of an equation where part of the transport is highly penalised. Then weapply our results at the two approximation we study : the finite Larmor radius approximation andthe guiding-center approximation.We first focus on the precise and explicit computation of the Fokker-Planck-Landau operatoraverage in the finite Larmor radius approximation. The Fokker-Planck-Landau operator containsconvolution and diffusion terms, it is then reasonable to first compute the average of theBoltzmann relaxation operator.We then focus on the guiding-center approximation and present a numerical scheme based on amicro-macro decomposition of the particles distribution fonction which comes from a joint workwith N. Crouseilles and M. Lemou. We obtain a scheme which is uniformly consistant with thecontinuous model for any order of the magnetic field. Numerical simulation based on thisapproach are presented.The last chapter of this thesis presents a project which was realised during the Cemracs 2012concerning the modelisation of blood flow in cerebral veins.
27

Stabilité pour des modèles de réseaux de neurones et de chimiotaxie / Stability for the models of neuronal network and chemotaxis

Weng, Qilong 29 September 2017 (has links)
Cette thèse vise à étudier certains modèles biologiques dans le réseau neuronal et dans la chimiotaxie avec la méthode d’analyse spectrale. Afin de traiter les principaux problèmes, tels que l’existence et l’unicité des solutions et des états stationnaires ainsi que les comportements asymptotiques, le modèle linéaire ou linéarisé associé est considéré par l’aspect du spectre et des semi-groupes dans les espaces appropriés, puis la stabilité de modèle non linéaire suit. Plus précisément, nous commençons par une équation de courses-et-chutes linéaire dans la dimension d≥1 pour établir l’existence d’un état stationnaire unique, positif et normalisé et la stabilité exponentielle asymptotique dans l’espace L¹ pondéré basé sur la théorie de Kerin-Rutman avec quelques estimations du moment de la théorie cinétique. Ensuite, nous considérons le modèle du temps écoulé sous les hypothèses générales sur le taux de tir et nous prouvons l’unicité de l’état stationnaire et sa stabilité exponentielle non linéaire en cas sans ou avec délai au régime de connectivité faible de la théorie de l’analyse spectrale pour les semi-groupes. Enfin, nous étudions le modèle sous une hypothèse de régularité plus faible sur le taux de tir et l’existence de la solution ainsi que la même stabilité exponentielle sont généralement établies n’importe la prise en compte du délai ou non, au régime de connectivité faible ou forte. / This thesis is aimed to study some biological models in neuronal network and chemotaxis with the spectral analysis method. In order to deal with the main concerning problems, such as the existence and uniqueness of the solutions and steady states as well as the asymptotic behaviors, the associated linear or linearized model is considered from the aspect of spectrum and semigroups in appropriate spaces then the nonlinear stability follows. More precisely, we start with a linear runs-and-tumbles equation in dimension d≥1 to establish the existence of a unique positive and normalized steady state and the exponential asymptotic stability in weighted L¹ space based on the Krein-Rutman theory together with some moment estimates from kinetic theory. Then, we consider time elapsed model under general assumptions on the firing rate and prove the uniqueness of the steady state and its nonlinear exponential stability in case without or with delay in the weak connectivity regime from the spectral analysis theory for semigroups. Finally, we study the model under weaker regularity assumption on the firing rate and the existence of the solution as well as the same exponential stability are established generally no matter taking delay into account or not and no matter in weak or strong connectivity regime.

Page generated in 0.0743 seconds