• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 60
  • 16
  • 9
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 196
  • 76
  • 62
  • 50
  • 42
  • 34
  • 27
  • 26
  • 26
  • 25
  • 21
  • 21
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Lévy-Type Processes under Uncertainty and Related Nonlocal Equations

Hollender, Julian 17 October 2016 (has links) (PDF)
The theoretical study of nonlinear expectations is the focus of attention for applications in a variety of different fields — often with the objective to model systems under incomplete information. Especially in mathematical finance, advances in the theory of sublinear expectations (also referred to as coherent risk measures) lay the theoretical foundation for modern approaches to evaluations under the presence of Knightian uncertainty. In this book, we introduce and study a large class of jump-type processes for sublinear expectations, which can be interpreted as Lévy-type processes under uncertainty in their characteristics. Moreover, we establish an existence and uniqueness theory for related nonlinear, nonlocal Hamilton-Jacobi-Bellman equations with non-dominated jump terms.
162

Drift estimation for jump diffusions

Mai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.
163

Risques extrêmes en finance : analyse et modélisation / Financial extreme risks : analysis and modeling

Salhi, Khaled 05 December 2016 (has links)
Cette thèse étudie la gestion et la couverture du risque en s’appuyant sur la Value-at-Risk (VaR) et la Value-at-Risk Conditionnelle (CVaR), comme mesures de risque. La première partie propose un modèle d’évolution de prix que nous confrontons à des données réelles issues de la bourse de Paris (Euronext PARIS). Notre modèle prend en compte les probabilités d’occurrence des pertes extrêmes et les changements de régimes observés sur les données. Notre approche consiste à détecter les différentes périodes de chaque régime par la construction d’une chaîne de Markov cachée et à estimer la queue de distribution de chaque régime par des lois puissances. Nous montrons empiriquement que ces dernières sont plus adaptées que les lois normales et les lois stables. L’estimation de la VaR est validée par plusieurs backtests et comparée aux résultats d’autres modèles classiques sur une base de 56 actifs boursiers. Dans la deuxième partie, nous supposons que les prix boursiers sont modélisés par des exponentielles de processus de Lévy. Dans un premier temps, nous développons une méthode numérique pour le calcul de la VaR et la CVaR cumulatives. Ce problème est résolu en utilisant la formalisation de Rockafellar et Uryasev, que nous évaluons numériquement par inversion de Fourier. Dans un deuxième temps, nous nous intéressons à la minimisation du risque de couverture des options européennes, sous une contrainte budgétaire sur le capital initial. En mesurant ce risque par la CVaR, nous établissons une équivalence entre ce problème et un problème de type Neyman-Pearson, pour lequel nous proposons une approximation numérique s’appuyant sur la relaxation de la contrainte / This thesis studies the risk management and hedging, based on the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) as risk measures. The first part offers a stocks return model that we test in real data from NSYE Euronext. Our model takes into account the probability of occurrence of extreme losses and the regime switching observed in the data. Our approach is to detect the different periods of each regime by constructing a hidden Markov chain and estimate the tail of each regime distribution by power laws. We empirically show that powers laws are more suitable than Gaussian law and stable laws. The estimated VaR is validated by several backtests and compared to other conventional models results on a basis of 56 stock market assets. In the second part, we assume that stock prices are modeled by exponentials of a Lévy process. First, we develop a numerical method to compute the cumulative VaR and CVaR. This problem is solved by using the formalization of Rockafellar and Uryasev, which we numerically evaluate by Fourier inversion techniques. Secondly, we are interested in minimizing the hedging risk of European options under a budget constraint on the initial capital. By measuring this risk by CVaR, we establish an equivalence between this problem and a problem of Neyman-Pearson type, for which we propose a numerical approximation based on the constraint relaxation
164

Modelagem de séries temporais financeiras multidimensionais via processos estocásticos e cópulas de Lévy / Multidimensional Financial Time Series Modelling via Lévy Stochastic Processes and Copulas

Santos, Edson Bastos e 16 December 2005 (has links)
O principal objetivo deste estudo é descrever modelos para séries temporais de ativos financeiros que sejam robustos às tradicionais hipóteses: distribuição gaussiana e continuidade. O primeiro capítulo está preocupado em apresentar, de uma maneira geral, os conceitos matemáticos mais importantes relacionadas a processos estocásticos e difusões. O segundo capítulo trata de processos de incrementos independentes e estacionários, i.e., processos de Lévy, suas trajetórias estocásticas, propriedades distribucionais e, a relação entre processos markovianos e martingales. Alguns dos resultados apresentados neste capítulo são: a estrutura e as propriedades dos processos compostos de Poisson, medida de Lévy, decomposição de Lévy-Itô e representação de Lévy-Khinchin. O terceiro capítulo mostra como construir processos de Lévy por meio de transformações lineares, inclinação da medida de Lévy e subordina ção. Uma atenção especial é dada aos processos subordinados, tais como os modelos variância gama, normal gaussiana invertida e hiperbólico generalizado. Neste capítulo também é apresentado um exemplo pragmático com dados brasileiros de estimação de parâmetros por meio do método de máxima Verossimilhança. O quarto capítulo é devotado aos modelos multidimensionais e, introduz os conceito de cópula ordinária e de Lévy. Mostra-se que é possível caracterizar a dependência entre os componentes de um processo de Lévy multidimensional por meio da cópula de Lévy. Entre os resultados apresentados estão as generalizações do teorema de Sklar e a família de cópulas de Arquimedes aos processos de Lévy. Este capítulo também apresenta alguns exemplos que utilizam métodos de Monte Carlo, para simular processos de Lévy bidimensionais. / The main objective of this study is to describe models for financial assets time series that are robust to the traditional hypothesis: gaussian distributed and continuity. The first chapter are devoted to introduce the most important mathematical tools related to difusions and stochastic processes in general. The second chapter is concerned in the study of independent and stationary increments, i.e., Lévy processes, their sample paths behavior, distributional properties, and the relation to Markov and martingales processes. Some of the results presented are the structure and properties of a compound Poisson processes, Lévy measure, Lévy-Itô decomposition and Lévy-Khinchin representation. The third chapter demonstrates how to construct Lévy processes via linear transformation, tempering the Lévy measure and subordination. A special attention is given to several types of subordinated processes, comprising the variance gamma, the normal inverse gaussian and the generalized hyperbolic models. A pragmatic example of parameter estimation for brazilian data using the method of maximum likelihood is also given. Chapter four is devoted to multidimensional models, which introduces the notion of ordinary and Lévy copulas. It is shown that modelling via Lévy copula it is possible to characterize the dependence among components of multidimensional Lévy processes. Some of the results presented are generalizations of the Sklar’s theorem and the Archmedian family of copulas for Lévy processes. This chapter also presents some examples using Monte Carlo methods for simulating bidimensional Lévy processes.
165

Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options / Numerical analysis of the stochastic volatility jump diffusion models : case of options pricing

Jraifi, Abdelilah 03 February 2014 (has links)
Dans le monde économique, les contrats d'options sont très utilisés car ils permettent de se couvrir contre les aléas et les risques dus aux fluctuations des prix des actifs sous-jacents. La détermination du prix de ces contrats est d'une grande importance pour les investisseurs.Dans cette thèse, on s'intéresse aux problèmes d'évaluation des options, en particulier les options Européennes et Quanto sur un actif financier dont le prix est modélisé en multi dimensions par un modèle de diffusion-saut à volatilité stochastique avec sauts (1er cas considère la volatilité sans sauts, dans le 2ème cas les sauts sont pris en compte, finalement dans le 3ème cas, l'actif sous-jacent est sans saut et la volatilité suit un CEV modèle sans saut). Ce modèle permet de mieux prendre en compte certains phénomènes observés dans les marchés. Nous développons des méthodes numériques qui déterminent les valeurs des prix de ces options. On présentera d'abord le modèle qui s'écrit sous la forme d'un système d'équations intégro-différentielles stochastiques "EIDS", et on étudiera l'existence et l'unicité de la solution de ce modèle en fonction de ses coefficients, puis on établira le lien entre le calcul du prix de l'option et la résolution de l'équation Intégro-différentielle partielle (EIDP). Ce lien, qui est basé sur la notion des générateurs infinitésimaux, nous permet d'utiliser différentes méthodes numériques pour l'évaluation des options considérées. Nous introduisons alors l'équation variationnelle associée aux EIDP et démontrons qu'elle admet une unique solution dans un espace de Sobolev avec poids en s'inspirant des travaux de Zhang [106].Nous nous concentrons ensuite sur l'approximation numérique du prix de l'option en considérant le problème dans un domaine borné, et nous utilisons pour la résolution numérique la méthode des éléments finis de type (P1), et un schéma d'Euler-Maruyama, pour se servir, d'une part de la méthode de différences finies en temps, et d'autre part de la méthode de Monté Carlo et la méthode Quasi Monte Carlo. Pour cette dernière méthode nous avons utilisé les suites de Halton afin d'améliorer la vitesse de convergence.Nous présenterons une étude comparative des différents résultats numériques obtenus dans plusieurs cas différents afin d'étudier la performance et l'efficacité des méthodes utilisées. / In the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods.
166

Stochastic Control, Optimal Saving, and Job Search in Continuous Time

Sennewald, Ken 14 November 2007 (has links) (PDF)
Economic uncertainty may affect significantly people’s behavior and hence macroeconomic variables. It is thus important to understand how people behave in presence of different kinds of economic risk. The present dissertation focuses therefore on the impact of the uncertainty in capital and labor income on the individual saving behavior. The underlying uncertain variables are here modeled as stochastic processes that each obey a specific stochastic differential equation, where uncertainty stems either from Poisson or Lévy processes. The results on the optimal behavior are derived by maximizing the individual expected lifetime utility. The first chapter is concerned with the necessary mathematical tools, the change-of-variables formula and the Hamilton-Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of application in order make them appropriate for the analysis of the dynamic stochastic optimization problems occurring in the following chapters and elsewhere. The second chapter considers an optimum-saving problem with labor income, where capital risk stems from asset prices that follow geometric L´evy processes. Chapter 3, finally, studies the optimal saving behavior if agents face not only risk but also uncertain spells of unemployment. To this end, we turn back to Poisson processes, which here are used to model properly the separation and matching process.
167

Some Applications of Markov Additive Processes as Models in Insurance and Financial Mathematics

Ben Salah, Zied 07 1900 (has links)
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes. / This thesis consists mainly of three papers concerned with Markov additive processes, Lévy processes and applications on finance and insurance. The first chapter is an introduction to Markov additive processes (MAP) and a presentation of the ruin problem and basic topics of Mathematical Finance. The second chapter contains the paper "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" written with Manuel Morales and that is published in the European Actuarial Journal. This paper studies the ruin problem for a Markov additive risk process. An expression of the expected discounted penalty function is obtained via identification of the Lévy systems. The third chapter contains the paper "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" that is submitted for publication. This paper presents an extension of the expected discounted penalty function in a setting involving aggregate claims modelled by a subordinator, and Brownian perturbation. This extension involves a sequence of expected discounted functions of successive minima reached by a jump of the risk process after ruin. It has important applications in risk management and in particular, it is used to compute the expected discounted value of capital injection. Finally, the fourth chapter contains the paper "The Minimal Entropy Martingale Measure (MEMM) for a Markov-Modulated Exponential" written with Romuald Hérvé Momeya and that is published in the journal Asia Pacific Financial Market. It presents new results related to the incompleteness problem in a financial market, where the risky asset is driven by Markov additive exponential model. These results characterize the martingale measure satisfying the entropy criterion. This measure is used to compute the price of the option and the portfolio of hedging in an exponential Markov-modulated Lévy model.
168

資產報酬率波動度不對稱性與動態資產配置 / Asymmetric Volatility in Asset Returns and Dynamic Asset Allocation

陳正暉, Chen,Zheng Hui Unknown Date (has links)
本研究顯著地發展時間轉換Lévy過程在最適投資組合的運用性。在連續Lévy過程模型設定下,槓桿效果直接地產生跨期波動度不對稱避險需求,而波動度回饋效果則透過槓桿效果間接地發生影響。另外,關於無窮跳躍Lévy過程模型設定部分,槓桿效果仍扮演重要的影響角色,而波動度回饋效果僅在短期投資決策中發生作用。最後,在本研究所提出之一般化隨機波動度不對稱資產報酬動態模型下,得出在無窮跳躍的資產動態模型設定下,擴散項仍為重要的決定項。 / This study significantly extends the applicability of time-changed Lévy processes to the portfolio optimization. The leverage effect directly induces the intertemporal asymmetric volatility hedging demand, while the volatility feedback effect exerts a minor influence via the leverage effect under the pure-continuous time-changed Lévy process. Furthermore, the leverage effect still plays a major role while the volatility feedback effect just works over the short-term investment horizon under the infinite-jump Lévy process. Based on the proposed general stochastic asymmetric volatility asset return model, we conclude that the diffusion term is an essential determinant of financial modeling for index dynamics given infinite-activity jump structure.
169

厚尾分配在財務與精算領域之應用 / Applications of Heavy-Tailed distributions in finance and actuarial science

劉議謙, Liu, I Chien Unknown Date (has links)
本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。 / The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.
170

Modelagem de séries temporais financeiras multidimensionais via processos estocásticos e cópulas de Lévy / Multidimensional Financial Time Series Modelling via Lévy Stochastic Processes and Copulas

Edson Bastos e Santos 16 December 2005 (has links)
O principal objetivo deste estudo é descrever modelos para séries temporais de ativos financeiros que sejam robustos às tradicionais hipóteses: distribuição gaussiana e continuidade. O primeiro capítulo está preocupado em apresentar, de uma maneira geral, os conceitos matemáticos mais importantes relacionadas a processos estocásticos e difusões. O segundo capítulo trata de processos de incrementos independentes e estacionários, i.e., processos de Lévy, suas trajetórias estocásticas, propriedades distribucionais e, a relação entre processos markovianos e martingales. Alguns dos resultados apresentados neste capítulo são: a estrutura e as propriedades dos processos compostos de Poisson, medida de Lévy, decomposição de Lévy-Itô e representação de Lévy-Khinchin. O terceiro capítulo mostra como construir processos de Lévy por meio de transformações lineares, inclinação da medida de Lévy e subordina ção. Uma atenção especial é dada aos processos subordinados, tais como os modelos variância gama, normal gaussiana invertida e hiperbólico generalizado. Neste capítulo também é apresentado um exemplo pragmático com dados brasileiros de estimação de parâmetros por meio do método de máxima Verossimilhança. O quarto capítulo é devotado aos modelos multidimensionais e, introduz os conceito de cópula ordinária e de Lévy. Mostra-se que é possível caracterizar a dependência entre os componentes de um processo de Lévy multidimensional por meio da cópula de Lévy. Entre os resultados apresentados estão as generalizações do teorema de Sklar e a família de cópulas de Arquimedes aos processos de Lévy. Este capítulo também apresenta alguns exemplos que utilizam métodos de Monte Carlo, para simular processos de Lévy bidimensionais. / The main objective of this study is to describe models for financial assets time series that are robust to the traditional hypothesis: gaussian distributed and continuity. The first chapter are devoted to introduce the most important mathematical tools related to difusions and stochastic processes in general. The second chapter is concerned in the study of independent and stationary increments, i.e., Lévy processes, their sample paths behavior, distributional properties, and the relation to Markov and martingales processes. Some of the results presented are the structure and properties of a compound Poisson processes, Lévy measure, Lévy-Itô decomposition and Lévy-Khinchin representation. The third chapter demonstrates how to construct Lévy processes via linear transformation, tempering the Lévy measure and subordination. A special attention is given to several types of subordinated processes, comprising the variance gamma, the normal inverse gaussian and the generalized hyperbolic models. A pragmatic example of parameter estimation for brazilian data using the method of maximum likelihood is also given. Chapter four is devoted to multidimensional models, which introduces the notion of ordinary and Lévy copulas. It is shown that modelling via Lévy copula it is possible to characterize the dependence among components of multidimensional Lévy processes. Some of the results presented are generalizations of the Sklar’s theorem and the Archmedian family of copulas for Lévy processes. This chapter also presents some examples using Monte Carlo methods for simulating bidimensional Lévy processes.

Page generated in 0.0234 seconds