• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 63
  • 15
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 303
  • 68
  • 66
  • 53
  • 51
  • 29
  • 28
  • 27
  • 25
  • 25
  • 23
  • 23
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 13 October 2016 (has links) (PDF)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.
292

Etude thermodynamique de la sorption de l'uranyle sur la monazite et la magnétite / Thermodynamic study of uranyl sorption onto lanthanum monophosphate (LaPO4) and magnetite (Fe3O4)

Felix, Olivia 10 July 2012 (has links)
Les phénomènes d’adsorption interviennent dans les processus géochimiques gouvernant ainsi le transport des contaminants. Par ailleurs, les variations de température sont susceptibles d’influencer significativement leur comportement vis-à-vis de la surface des minéraux. Aussi, l'influence de la température sur la sorption doit être étudiée afin de mieux appréhender le devenir des éléments dans l'environnement. Dans cette optique, l'interaction entre un ion modèle, l'uranyle et deux minéraux a été étudiée. Dans un premier temps, un composé méthodologique, la monazite, a été choisi afin de déterminer la démarche à suivre pour étudier l'influence de la température sur la sorption de l'uranyle dans trois milieux plus ou moins complexants. Puis, des tests préliminaires ont été réalisés pour étudier la sorption de l'uranyle sur un composé d'intérêt industriel, la magnétite, en appliquant la démarche mise en place. Le solide a d'abord été caractérisé d'un point de vue massif puis les caractéristiques acido-basiques de sa mise en suspension dans les trois électrolytes (NaClO4, NaNO3 et Na2SO4) ont été étudiées en fonction de la température. Les constantes d'équilibre associées aux réactions de déprotonation des sites de surface ont été déterminées entre 25°C et 95°C par modélisation de courbes de titrages potentiométriques. Les simulations ont été effectuées en limitant au maximum le nombre de degrés de liberté du système. Le modèle 1-pK a donc été préféré au modèle 2-pK en raison du nombre de paramètres ajustables plus limité dans ce modèle. Des contraintes expérimentales telles que le pH de point de charge nulle ou les enthalpies déterminées par mesure directe des chaleurs associées par microcalorimétrie de mélange ont été imposées pour déterminer les constantes d'équilibre acido-basiques. La sorption de l'uranyle en fonction du pH sur le même intervalle de température a été étudiée en alliant l'acquisition de données macroscopiques telles que les sauts de sorption et la spéciation en solution à une étude structurale menée par analyse par spectrofluorimétrie laser permettant l'identification des espèces sorbées. La simulation des sauts de sorption permettant d'accéder aux constantes associées aux réactions de sorption a été réalisée en imposant les caractéristiques acido-basiques préalablement déterminées. Des mesures directes, par microcalorimétrie de mélange, des chaleurs mises en jeu lors de la sorption de l'uranyle ont permis de tester la validité de la loi de Van't Hoff sur ce phénomène. La même démarche a été suivie pour étudier l'influence de la température sur la sorption de l'uranyle sur la magnétite en milieu NaClO4 et NaNO3. Cependant, l'étude structurale par spectrofluorimétrie laser n'a pu être réalisée en raison de la couloration noire de la magnétite. / The migration of radiotoxic elements in the geosphere is mainly regulated by chemical parameters which control the partitioning of the elements between mineral phases and aqueous solutions. Variation in temperature may affect the retention properties of a mineral surface and requires a careful investigation in order to understand the radionuclides behavior in the geosphere. In this way, the interaction mechanisms between uranium(VI) and two minerals (LaPO4 and Fe3O4) have been studied. In a first step, the monazite (LaPO4) has been chosen as methodological solid in order to clearly define all the different stages needed to completely characterize the influence of temperature on the sorption phenomena. To reach that goal, three media, more or less complexants towards aqueous uranyl and the mineral surface, have been considered. Physico-chemical as well as surface acid-base properties of the solid surface have been studied by considering three electrolytes (NaClO4, NaNO3 and Na2SO4) and temperatures ranged from 25°C to 95°C. The point of zero charge has been found to be identical for perchlorate and nitrate media (pHPZC=2.1) but it was found to be one pK unit higher for the sulfate medium indicating a sorption of the background electrolyte ions. The reaction heats associated to the hydration of the solid have been measured by using microcalorimetry and the nature of the reactive surface sites has been determined by carrying out Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). On the basis of these experimental constraints, the titration curves obtained for the monazite suspensions were fitted by using the Constant Capacitance Model and the 1-pK model was preferred to characterize the surface charge evolution, due to the limited number of adjustable parameters. The surface protonation constants being determined, the behavior of U(VI) towards the monazite surface in the three electrolytes has been investigated. On the basis of both U(VI) speciation in solution and the results of a structural study carrying out by using TRLFS together with calorimetric measurements, the sorption edges have been modeled and the corresponding sorption constants determined. Since these values take into account a wide number of experimental results (both structural and thermodynamical ones) they appear to be accurate and could be extrapolated more confidently to other physico-chemical conditions. The experimental approach being validated with the methodological solid, preliminary tests have been carried out to study uranyl sorption onto a second substrate, the magnetite, more relevant than monazite in the field of radionuclides migration in the geosphere.
293

(Metallo-)Dendrimers in Catalysis, Nanoparticle Stabilization and Biological Application / (Metallo-)Dendrimere in Katalyse, Nanopartikelstabilisierung und Biologischen Anwendungen

Dietrich, Sascha 06 January 2012 (has links)
(Metallo-)Dendrimers in Catalysis, Nanoparticle Stabilization and Biological Application Technische Universität Chemnitz, Fakultät für Naturwissenschaften Dissertation 2011, 165 Seiten Die vorliegende Dissertationsschrift befasst sich mit der Darstellung, Charakterisierung und Anwendung neuartiger (Metallo-)Dendrimere. Den Schwerpunkt der Arbeit bildet dabei die terminale Funktionalisierung (Poly)amidoamin-basierender Dendrimere kleiner Generationen. Durch Standardpeptid-Knüpfungsreaktionen von 1,1´-(Diphenylphosphino)ferrocen-carbonsäure an dendritische (Poly)amidoamine ist eine Serie entsprechend funktionalisierter Metallodendrimere zugänglich. Die metallorganischen, Dendrimer-immobilisierten Engruppen können durch Zugabe von [Pd(3-C3H5)Cl]2 in heterobimetallische Übergangsmetallkomplexe umgewandelt werden und finden Einsatz als katalytisch aktive Systeme in C,C-Kreuzkupplungsreaktionen nach Heck. Ein weiterer Gegenstand der Arbeit ist die terminale Modifikation von (dendritischen) Ami-nen mit (Sp)-2-(Diphenylphosphino)ferrocen-1-carbonsäure. Nach erfolgter Umsetzung mit [Pd(3-C3H5)Cl]2 werden die erhaltenen planar-chiralen Verbindungen als Katalysatoren in asymmetrischen allylischen Substitutionsreaktionen eingesetzt. Ferner ist die Darstellung (Oligo)ethylenglykolether-terminierter (Poly)amidoamin-Dendrimere beschrieben. Diese werden als Stabilisatoren zur in-situ Generierung von Gold- sowie Magnetit-Nanopartikeln eingesetzt. Der Einfluss der dendritischen Template auf die Kolloidgrößen und Morphologien sowie die Eigenschaften der gebildeten Hybridmaterialien werden aufgezeigt. Darüber hinaus befasst sich die Arbeit mit der Verwendung biokompatibler (Oligo)ethylenglykolether-Dendrimere als Wirkstoffträger für Zytostatika bei der Krebsthera-pie. Die im Rahmen von in vitro Untersuchungen erhaltenen Ergebnisse werden präsentiert.:Table of Contents Bibliografische Beschreibung und Referat ii Selbstständigkeitserklärung iii Table of Contents vii List of Abbreviations xi Präambel xvi A Introduction 1 1. Dendrimers 1 2. Nanomaterials 4 3. References 7 B State of Knowledge 12 1. Dendrimers 12 1.1. Synthesis and Characterization 12 1.2. Functional Dendrimers 15 2. Characterization Techniques for Dendrimer-Nanomaterial Assemblies 24 3. Motivation 26 4. References 27 C Amidoamine-based Dendrimers with End-grafted Pd-Fe Units: Synthesis, Characterization and Their Use in the Heck Reaction 34 1. Introduction 34 2. Results and Discussion 35 2.1. Synthesis of Amidoamine Dendrimers 35 2.2. Synthesis of Metallo- and Selenium-Phosphine Amidoamine Dendrimers 36 2.3. Catalysis with Heterobimetallic Iron-Palladium Amidoamine Dendrimers 39 3. Conclusions 41 4. Experimental 42 4.1. Materials and Methods 42 4.2. Preparation of 2 43 4.3. Preparation of 9-Fe 43 4.4. Preparation of 5-Fe-Pd 44 4.5. Preparation of 6-Fe-Pd 44 4.6. Preparation of 7-Fe-Pd 45 4.7. Preparation of 8-Fe-Pd 46 4.8. Preparation of 9-Fe-Pd 46 4.9. Preparation of 5-Fe-Se 47 4.10. Preparation of 9-Fe-Se 48 4.11. General Procedure for the Heck-Reaction 48 5. Acknowledgement 49 6. References 49 D A Preparation of Planar-Chiral Multidonor Phosphanyl-Ferrocene Carboxamides and Their Application as Ligands for Palladium-Catalyzed Asymmetric Allylic Alkylation 52 1. Introduction 52 2. Results and Discussion 53 2.1. Syntheses and Characterization 53 2.2. Solid-State Structure of (Sp)–2 55 2.3. Catalytic Tests 57 3. Conclusions 58 4. Experimental 59 4.1. Materials and Methods 59 4.2. Preparation of Simple Amides. A General Procedure 59 4.3. Preparation of 6 61 4.4. Preparation of (Sp,Sp)–4 61 4.5. Preparation of 7 62 4.6. Preparation of (Sp,Sp,Sp)–5 62 4.7. Asymmetric Allylic Alkylation. A General Procedure 63 4.8. X-ray Crystallography 63 5. Acknowledgements 64 6. References 64 E Au Nanoparticles Stabilized by PEGylated Low-Generation PAMAM Dendrimers: Design, Characterization and Properties 68 1. Introduction 68 2. Materials and Methods 69 2.1. Synthesis of Stabilizers 69 2.2. Preparation Procedure for Gold Nanoparticles 70 3. Results and Discussion 70 3.1. Dendritic Stabilizers 70 3.2. Dendritic Stabilized Gold Nanoparticles 72 3.3. Physical and Chemical Characterization 73 4. Conclusion 79 5. Acknowledgement 80 6. Supplementary Material 80 7. References 80 F Design, Characterization and Magnetic Properties of Fe3O4-Nanoparticle Arrays Coated with PEGylated-Dendrimers 86 1. Introduction 86 2. Materials and Methods 88 2.1. Materials and Instruments 88 2.2. Synthesis Procedure for Fe3O4 Nanoparticles 89 3. Results and Discussion 91 3.1. Preparation and Characterization of Dendrimer-Surfaced Fe3O4 Nanoparticles 91 3.2. Magnetic Characterization of Dendrimer-Coated Fe3O4 Nanoparticles 96 4. Conclusion 99 5. Acknowledgement 100 6. References 100 G Dendrimer - Doxorubicin Conjugate for Enhanced Therapeutic Effects for Cancer 103 1. Introduction 103 2. Experimental Section 105 2.1. Materials and Methods 105 2.2. Synthesis of OEGylated Poly(amidoamine) Dendrimer 2 106 2.3. Cell Viability Studies 107 2.4. Doxorubicin Loading and Release 107 2.5. In Vitro Cellular Uptake of Dendrimer-DOX Conjugate 109 3. Results and Discussion 109 3.1. Drug Loading and Release 109 3.2. Surface Potential of the Dendrimer-Drug Assembly 110 3.3. Structural Analysis of Dendrimer-DOX Conjugate 111 3.4. In Vitro DOX Release Profile from Dendrimer-Drug Conjugate 114 3.5. Cell Viability Studies of the Dendrimer-DOX Conjugate 117 3.6. Cellular Uptake by the Dendrimer-DOX Conjugate 118 3.7. Protein Adsorption Studies 119 4. Conclusions 119 5. Acknowledgements 120 6. Supplementary Material 120 7. References 121 H Summary 123 1. Summary 123 2. Zusammenfassung 129 Danksagung 136 I Appendix 137 1. Appendix Chapter C 137 2. Appendix Chapter D 139 3. Appendix Chapter E 140 4. Appendix Chapter F 142 5. Appendix Chapter G 144 Lebenslauf 145 Liste der Publikationen, Vorträge und Posterpräsentationen 147 Publikationen 147 Poster 148 Vorträge 149
294

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 16 September 2016 (has links)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.:1. Introduction 2. Theoretical section 2.1. Magnetite Nanoparticles (MNPs) 2.2. Applications of MNPs 2.3. Atom transfer radical polymerization (ATRP) 2.4. Magnetic nanocomposites (MNCs) 2.5. Damage-free structural health monitoring (SHM) using MNPs 3. Objective of the work 4. Materials, methods and characterization 4.1. Materials 4.2. Methods 4.3. Formation of polymeric magnetic nanocomposites 4.4. Characterization 5. Results and discussions 5.1. Unmodified magnetite nanoparticles (Fe3O4 NPs) 5.2. Oleic acid-modified (Fe3O4–OA) NPs 5.3. PGMA-modified NPs by grafting-from approach (Fe3O4-gf-PGMA NPs) 5.4. PGMA-modified NP by grafting-to approach (Fe3O4-gt-PGMA NPs) 5.5. Comparison between grafting-from and grafting-to Fe3O4-PGMA NPs 5.6. Magnetic epoxy nanocomposites (MENCs) 5.7. Fiber-reinforced epoxy nanocomposites 6. Conclusions and outlook 7. Appendix 8. List of figures, schemes and tables 9. References Versicherung Erklaerung List of publications
295

The Per Geijer iron ore deposits: Characterization based on mineralogical, geochemical and process mineralogical methods

Krolop, Patrick 04 April 2022 (has links)
The Per Geijer iron oxide-apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB), which has been continuously mining magnetite/hematite ores in northern Sweden for almost 130 years. The Per Geijer deposits reveal a high phosphorus content and vary from magnetite-dominated to hematite-dominated ores, respectively. The high phosphorus concentration of these ores results from highly elevated content of apatite as gangue mineral. Reliable, robust, and qualitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. The precise mineralogical information obtained by optical microscopy, SEM-MLA and Raman improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. A comprehensive mineral-chemical dataset of magnetite, hematite and apatite obtained by electron microprobe analysis (EPMA) and LA-ICP-MS from representative drill core samples is presented. Magnetite, four different types of hematite and five types of apatite constitute the massive orebodies: Primary and pristine magnetite with moderate to high concentrations of Ti (∼61–2180 ppm), Ni (∼11–480 ppm), Co (∼5–300 ppm) and V (∼553–1831 ppm) indicate a magmatic origin for magnetite. The presence of fluorapatite and associated monazite inclusions and disseminated pyrite enclosed by magnetite with high Co:Ni ratios (> 10) in massive magnetite ores are consistent with a high temperature (∼ 800°C) genesis for the deposit. The different and abundant types of hematite, especially hematite type I, state subsequent hydrothermal events. Chromium, Ni, Co and V in both magnetite and hematite have low concentrations in terms of current product regulations and thus no effect on final products in the future. In terms of a possible future hematite product, titanium seems to be the most critical trace element due to very high concentrations in hematite types I and IV, of which type I is most abundant in zones dominated by hematite. Further interest on other products is generated due to the high variability of hematite and apatite in some of these ores. Information obtained from comminution test works in the laboratory scale can be utilized to characterize ore types and to predict the behavior of ore during comminution circuit in the industrial scale. Comminution tests with a laboratory rod and ball mill of 13 pre-defined ore types from the Per Geijer iron-oxide apatite deposits were conducted in this study. The highest P80 values were obtained by grinding in the rod mill for 10 minutes only (step A). Grinding steps B (25 min ball mill) and C (35 min ball mill) reveal very narrow P80 values. Ore types dominated by hematite have significantly higher P80 values after the primary grinding step (A), which indicates different hardness of the ore types. P80 values are generally lowest after the secondary grinding step C ranging between 26 µm (ore type M1a) and 80 µm (ore type H2a). Generally, Fe content increases in the finer particle size classes while CaO and P contents decrease. The influence of silica or phosphorus seems to be dependent on the dominant iron oxide. Magnetite-dominated ore types are more likely to be affected in their comminution behavior by the presence of the silicates. Contrary, hematite-dominant ore types are rather influenced by the presence of apatite. The difference in the degree of liberation of magnetite and hematite between ore types depends rather on size fractions than the amount of gangue in the ore. Davis tube data indicates that magnetite can be separated from gangue quite efficiently in the magnetite-dominated ore types. Contrary to magnetite ore, hematite-dominated ore types cannot be processed by DT. It is favored to use strong magnetic separation in order to achieve a desirable hematite concentrate. The magnetic material recovered by DT is most efficiently separated at an intensity current of 0.2 A, whereas above 0.5 A the separation process is neglectable. Based on comminution and magnetic separation tests a consolidation to eight ore types is favored which supports possible future mining of the Per Geijer deposits.:Contents ABSTRACT ……………………………………………………………………… I CONTENTS ……………………………………………………………………… II LIST OF FIGURES AND TABLES ……………………………………………… IV LIST OF ABBREVIATIONS ……………………………………………… V 1 INTRODUCTION ……………………………………………………… 1 1.1 Background and motivation of study ……………………………… 2 1.2 Previous and current work on the Per Geijer deposits ……………… 3 1.3 The need for mineral processing and in-situ ore description ……………… 4 1.4 General and generic aspects on iron oxide apatite deposits ……………… 5 Chapter A 2 REGIONAL GEOLOGY ………………………………………………. 7 2.1 Local geology of the Kiruna area ……………………………………… 7 2.2 Geology of the Per Geijer deposits ……………………………………… 9 3 METHODOLOGY ……………………………………………………… 12 3.1 Core sampling and preparation ……………………………………… 12 3.2 SEM – MLA in-situ ore ……………………………………………… 14 3.3 Electron Probe Microanalyses (EPMA) ……………………………… 15 3.3.1 Iron oxide measurements ……………………………………… 15 3.3.2 Apatite measurements ……………………………………… 15 3.4 In-situ LA-ICP-MS ……………………………………………………… 16 3.5 Whole-rock geochemistry ……………………………………………… 18 3.5.1 Exploration drill core assays ……………………………… 18 3.5.2 Chemical assays of rock chips ……………………………… 18 4 RESULTS ……………………………………………………………… 19 4.1 Pre-definition of ore types ………………………………...……………. 19 4.2 Mineralogy of in situ ore ……………………………………………… 21 4.2.1 Ore Type M1a ……………………………………………… 21 4.2.2 Ore Type M1b ……………………………………………… 22 4.2.3 Ore Type M2a ……………………………………………… 23 4.2.4 Ore Type M2b ……………………………………………… 25 4.2.5 Ore Type HM1b ……………………………………………… 26 4.2.6 Ore Type HM2a ……………………………………………… 27 4.2.7 Ore Type HM2b ……………………………………………… 28 4.2.8 Ore Type H1a ……………………………………………… 29 4.2.9 Ore Type H1b ……………………………………………… 30 4.2.10 Ore Type H2a ……………………………………………… 31 4.2.11 Ore Type H2b ……………………………………………… 32 4.2.12 Comparison of ore types ……………………………………… 33 4.3 Geochemistry of in situ ore types ……………………………… 36 4.3.1 Whole-rock chemical assays of drill cores ……………………… 36 4.3.2 Whole-rock geochemistry of rock chips ……………………… 39 4.4 Mineral chemistry of iron oxides ……………………………………… 42 4.4.1 Iron oxides and associated minerals ……………………………… 42 4.4.2 Mineral chemistry of magnetite from Per Geijer ……………… 43 4.4.3 Mineral chemistry of hematite from Per Geijer ……………… 47 4.5 Mineral chemistry of apatite ……………………………………… 51 4.5.1 Apatite and associated minerals ……………………………… 51 4.5.2 Mineral chemistry of apatite from Per Geijer ……………… 53 Chapter B 5 COMMINUTION TESTS ……………………………………………… 58 5.1 Methodology of comminution tests ……………………………………… 59 5.1.1 Sampling for comminution tests ……………………………… 59 5.1.2 Comminution circuit ……………………………………………… 61 5.1.3 Energy consumption calculation ……………………………… 62 5.1.4 SEM – MLA ……………………………………………………… 64 6 MAGNETIC SEPARATION TESTS ……………………………… 65 6.1 Methodology of magnetic separation by Davis magnetic tube ……… 66 6.2 Davis magnetic tube tests for characterization of the Per Geijer ore types 66 6.3 Separation analysis based on the Henry-Reinhard charts .……………... 67 7 RESULTS OF COMMINUTION OF ORE TYPES ……………………… 69 7.1 General characteristics of magnetite-dominated ore types ……………… 69 7.2 General characteristics of hematite-dominated ore types ……………… 72 7.3 General characteristics of magnetite/hematite-mixed ore types ……… 75 7.4 General characteristics of low-grade ore types ……………………… 77 7.5 Mineral liberation characteristics of magnetite-dominated ore types 79 7.6 Mineral liberation characteristics of hematite-dominated ore types 83 7.7 Mineral liberation characteristics of magnetite/hematite-mixed ore types 87 7.8 Mineral liberation characteristics of low-grade ore types ……………… 90 7.9 Total energy consumption of ore types from the Per Geijer deposits 94 8 RESULTS OF MAGNETIC SEPARATION OF ORE TYPES ……… 95 8.1 Magnetic separation of magnetite-dominated ore types ……………… 95 8.2 Magnetic separation of hematite-dominated ore types ……………… 96 8.3 Magnetic separation of magnetite/hematite-mixed ore types ……………… 97 8.4 Magnetic separation of low-grade ore types ……………………………… 98 8.5 Henry-Reinhard charts ……………………………………………… 99 9 DISCUSSION ……………………………………………………… 101 9.1 Mineralogy of the in-situ ore types from the Per Geijer deposits ……… 101 9.2 Geochemistry of the in-situ ore types from the Per Geijer deposits ……… 103 9.3 Mineral chemistry of iron oxides from the Per Geijer deposits ……… 105 9.4 Mineral chemistry of apatite from the Per Geijer deposits ……………… 114 9.5 Comminution of ore types from Per Geijer ……………………… 119 9.6 Magnetic separation of ore types from Per Geijer ……………………… 120 9.7 Issues with process mineralogy of in-situ and grinded ore types ……… 121 10 CONCLUSIONS ……………………………………………………… 128 11 IMPLICATIONS FOR FUTURE WORK ……………………………… 131 12 REFERENCES ……………………………………………………………… 134
296

Epitaktisches Wachstum und Charakterisierung ultradünner Eisenoxidschichten auf Magnesiumoxid(001)

Zimmermann, Bernd Josef 17 September 2010 (has links)
Since many years, the importance of thin layers increases for lots of technical uses. Beginning in the field of microelectronics, the use of thin layers spread increasingly to other areas. Coatings for surface refining and optimisation of the mechanical properties for material engineering, customisation of the surface chemistry in catalysts, as well influencing of the transmission and reflection characteristics of surfaces in optics are only some examples of the high scientific and economic weight of the thin layer technology. Thin magnetic layers are the basis of many known storage media ranging from the tape recorder to the hard disk up to the credit card. Nowadays, these thin layers again gain interest in the research field of nanoelectronics as ultrathin layers. So-called spinvalve-read/write heads being already installed in actual hard disks use the Tunnel Magneto Resistance effect for a significant rise in memory density synonymous capacity. Such read/writeheads consist of a magnetic layersystem. This use of the magnetic as well as the electric characteristics of the electrons is called spintronics. The iron oxide magnetite exhibits a high iron portion, is strong antiferrimagnetic and has a high Curie-temperature. Since many years, it is used as a magnetic pigment on already mentioned magnetic tapes. Literature [1, 2, 3, 4] considers ultrathin epitaxial layers of magnetite on magnesium oxide for uses in the spintronics as a most promising candidate, because it inheres a complete spin polarisation at Fermi-level. Moreover, thin magnetite layers serve in the chemical industry as a catalyst in the Haber- Bosch-procedure and to the dehydration of ethylbenzene to styrene. Being already used and considered to be of ongoing interest, ultrathin magnetite layers offer a wide range of technological applications in many modern industrial and scientific fields. Because there is, nevertheless, a variety of other iron oxide (cf. chapter 4), it is a matter to determine the special growth conditions of magnetite. These ultrathin iron oxide layers were grown reactively on the (001)-surfaces of the magnesium oxide substrate by molecular beam epitaxy. Besides, the surface is examined by the diffraction of low-energy electrons concerning its crystalline structure. X-ray photo electron spectroscopy approaching the stochiometry completes these first characterisations. Other investigations are carried out at HASYLAB / DESY in Hamburg by X-ray reflectivity and X-ray diffraction. The exact thickness of the layers, its crystal properties in bulk, as well as the thickness of the crystalline portion of the layers can be determined among other features of the system. The evaluation of XRR-and XRD-investigations is done via simulations with in chapter 5 introduced software packages. The reader finds the theoretical backgrounds to the used techniques in chapter 3. The experimental setups in Osnabr¨uck and Hamburg as well as the backgrounds to the preparation are presented in chapter 5. Because the formation of the different iron oxides is described in literature [5, 6, 7, 8] as mostly depending on annealing temperatures, the experimental results in chapter 6 are graded accordingly. The dependence on temperature, layer thickness and annealing time should be examined for the iron oxides possible on this substrate. The aim of this work is the preparation of ultrathin epitaxial iron oxide layers with thicknesses up to few nanometers. The main goal is to find the growth parameters for ultrathin crystalline magnetite layers.
297

Der historische Eisenerzbergbau im Osterzgebirge und Elbtalschiefergebirge – eine geographisch-geologische Landschaftsanalyse

Pflug, Norbert 21 November 2013 (has links)
Im Osterzgebirge sowie im nordöstlich daran angrenzenden Elbtalschiefergebirge wurde mit Unterbrechungen über mehrere Jahrhunderte Bergbau auf Eisen betrieben. Für die Besiedlung, den Bergbau auf andere Metalle, die Landwirtschaft und das Handwerk in der Region hatte der Eisenerzbergbau eine gewisse Bedeutung. Im Gegensatz zum Silber- und Buntmetallbergbau ist über den Eisenerzbergbau allerdings nur relativ wenig bekannt. Das Ziel dieser Diplomarbeit bestand deshalb darin, eine zusammenfassende geologisch-geographische Darstellung, die sowohl den historischen Eisenerzbergbau im Osterzgebirge als auch den historischen Eisenerzbergbau im Elbtalschiefergebirge beinhaltet, zu erarbeiten. Um ein hohes Maß an Vollständigkeit zu gewährleisten, wurden die Erkenntnisse aus Archiven, Bibliotheken und Sammlungen zusammengetragen. Überdies wurde auch auf das Fachwissen von Heimatvereinen, Bergbaumuseen und Hobbyhistorikern zurückgegriffen. Ferner wird im Rahmen dieser Arbeit untersucht, welche Typen von Eisenerzlagerstätten es im Osterzgebirge und im Elbtalschiefergebirge gab, wie diese entstanden sind, um welche Mineralisation und um welche Art von Eisenerztypen es sich dabei handelt. Mit den gegenwärtig zur Verfügung stehenden Methoden der Analytik (REM-EDX) werden zudem die Mineralparagenese und die chemische Zusammensetzung von historischen und neuen Eisenerzproben aus dem Osterz- und Elbtalschiefergebirge untersucht. Ferner wird den Fragestellungen nachgegangen, wann diese Eisenerzlagerstätten erschlossen wurden, über welchen Zeitraum sie unter Abbau standen und wie viel Eisenerz aus den jeweiligen Gruben gefördert wurde. Hierfür erfolgte eine detaillierte Dokumentation der wichtigsten ehemaligen Eisenerzlagerstätten mit den dazugehörigen Zeugnissen des historischen Eisenerzbergbaus. Darauf aufbauend werden die Bedeutung des Eisenerzbergbaus und des daran angeschlossenen Eisenhüttenwesens für die wirtschaftliche und kulturelle Entwicklung des Gebietes untersucht. Des Weiteren werden die regionalen Beziehungen zu anderen Bergbau- und Wirtschaftszweigen aufgezeigt. Der Prozess des Aufbrechens der regionalen Wirtschaftsstrukturen im Zuge der Industrialisierung wird eingehend erläutert. Und die Gründe für den Niedergang des Eisenerzbergbaus und Eisenhüttenwesens werden ebenfalls genannt. Danach erfolgt eine Betrachtung darüber, welche bergbauhistorischen Zeugnisse heute im Gelände noch auffindbar bzw. welche Nachfolgenutzungen an den Standorten des historischen Eisenerzbergbaus und des Eisenhüttenwesens gegenwärtig vorhanden sind. Abschließend wird erläutert welche Schlussfolgerungen für die Nutzung des geotouristischen Potenzials sich daraus ergeben.
298

Der historische Eisenerzbergbau im Osterzgebirge und Elbtalschiefergebirge – eine geographisch-geologische Landschaftsanalyse

Pflug, Norbert 08 January 2014 (has links) (PDF)
Im Osterzgebirge sowie im nordöstlich daran angrenzenden Elbtalschiefergebirge wurde mit Unterbrechungen über mehrere Jahrhunderte Bergbau auf Eisen betrieben. Für die Besiedlung, den Bergbau auf andere Metalle, die Landwirtschaft und das Handwerk in der Region hatte der Eisenerzbergbau eine gewisse Bedeutung. Im Gegensatz zum Silber- und Buntmetallbergbau ist über den Eisenerzbergbau allerdings nur relativ wenig bekannt. Das Ziel dieser Diplomarbeit bestand deshalb darin, eine zusammenfassende geologisch-geographische Darstellung, die sowohl den historischen Eisenerzbergbau im Osterzgebirge als auch den historischen Eisenerzbergbau im Elbtalschiefergebirge beinhaltet, zu erarbeiten. Um ein hohes Maß an Vollständigkeit zu gewährleisten, wurden die Erkenntnisse aus Archiven, Bibliotheken und Sammlungen zusammengetragen. Überdies wurde auch auf das Fachwissen von Heimatvereinen, Bergbaumuseen und Hobbyhistorikern zurückgegriffen. Ferner wird im Rahmen dieser Arbeit untersucht, welche Typen von Eisenerzlagerstätten es im Osterzgebirge und im Elbtalschiefergebirge gab, wie diese entstanden sind, um welche Mineralisation und um welche Art von Eisenerztypen es sich dabei handelt. Mit den gegenwärtig zur Verfügung stehenden Methoden der Analytik (REM-EDX) werden zudem die Mineralparagenese und die chemische Zusammensetzung von historischen und neuen Eisenerzproben aus dem Osterz- und Elbtalschiefergebirge untersucht. Ferner wird den Fragestellungen nachgegangen, wann diese Eisenerzlagerstätten erschlossen wurden, über welchen Zeitraum sie unter Abbau standen und wie viel Eisenerz aus den jeweiligen Gruben gefördert wurde. Hierfür erfolgte eine detaillierte Dokumentation der wichtigsten ehemaligen Eisenerzlagerstätten mit den dazugehörigen Zeugnissen des historischen Eisenerzbergbaus. Darauf aufbauend werden die Bedeutung des Eisenerzbergbaus und des daran angeschlossenen Eisenhüttenwesens für die wirtschaftliche und kulturelle Entwicklung des Gebietes untersucht. Des Weiteren werden die regionalen Beziehungen zu anderen Bergbau- und Wirtschaftszweigen aufgezeigt. Der Prozess des Aufbrechens der regionalen Wirtschaftsstrukturen im Zuge der Industrialisierung wird eingehend erläutert. Und die Gründe für den Niedergang des Eisenerzbergbaus und Eisenhüttenwesens werden ebenfalls genannt. Danach erfolgt eine Betrachtung darüber, welche bergbauhistorischen Zeugnisse heute im Gelände noch auffindbar bzw. welche Nachfolgenutzungen an den Standorten des historischen Eisenerzbergbaus und des Eisenhüttenwesens gegenwärtig vorhanden sind. Abschließend wird erläutert welche Schlussfolgerungen für die Nutzung des geotouristischen Potenzials sich daraus ergeben.
299

Structural and magnetic properties of ultrathin Fe3O4 films: cation- and lattice-site-selective studies by synchrotron radiation-based techniques

Pohlmann, Tobias 19 August 2021 (has links)
This work investigates the growth dynamic of the reactive molecular beam epitaxy of Fe3O4 films, and its impact on the cation distribution as well as on the magnetic and structural properties at the surface and the interfaces. In order to study the structure and composition of Fe3O4 films during growth, time-resolved high-energy x-ray diffraction (tr-HEXRD) and time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) measurements are used to monitor the deposition process of Fe3O4 ultrathin films on SrTiO3(001), MgO(001) and NiO/MgO(001). For Fe3O4\SrTiO3(001) is found that the film first grows in a disordered island structure, between thicknesses of 1.5nm to 3nm in FeO islands and finally in the inverse spinel structure of Fe3O4, displaying (111) nanofacets on the surface. The films on MgO(001) and NiO/MgO(001) show a similar result, with the exception that the films are not disordered in the early growth stage, but form islands which immediately exhibit a crystalline FeO phase up to a thickness of 1nm. After that, the films grown in the inverse spinel structure on both MgO(001) and NiO/MgO(001). Additionally, the tr-HAXPES measurements of Fe3O4/SrTiO3(001) demonstrate that the FeO phase is only stable during the deposition process, but turns into a Fe3O4 phase when the deposition is interrupted. This suggests that this FeO layer is a strictly dynamic property of the growth process, and might not be retained in the as-grown films. In order to characterize the as-grown films, a technique is introduced to extract the cation depth distribution of Fe3O4 films from magnetooptical depth profiles obtained by fitting x-ray resonant magnetic reflectivity (XRMR) curves. To this end, x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra are recorded as well as XRMR curves to obtain magnetooptical depth profiles. To attribute these magnetooptical depth profiles to the depth distribution of the cations, multiplet calculations are fitted to the XMCD data. From these calculations, the cation contributions at the three resonant energies of the XMCD spectrum can be evaluated. Recording XRMR curves at those energies allows to resolve the magnetooptical depth profiles of the three iron cation species in Fe3O4. This technique is used to resolve the cation stoichiometry at the surface of Fe3O4/MgO(001) films and at the interfaces of Fe3O4/MgO(001) and Fe3O4/NiO. The first unit cell of the Fe3O4(001) surface shows an excess of Fe3+ cations, likely related to a subsurface cation-vacancy reconstruction of the Fe3O4(001) surface, but the magnetic order of the different cation species appears to be not disturbed in this reconstructed layer. Beyond this layer, the magnetic order of all three iron cation species in Fe3O4/MgO(001) is stable for the entire film with no interlayer or magnetic dead layer at the interface. For Fe3O4/NiO films, we unexpectedly observe a magnetooptical absorption at the Ni L3 edge in the NiO film corresponding to a ferromagnetic order throughout the entire NiO film, which is antiferromagnetic in the bulk. Additionally, the magnetooptical profiles indicate a single intermixed layer containing both Fe2+ and Ni2+ cations.
300

Magnetit-Nanokomposite als Funktionspartikeln für die Bioseparation

Tchanque Kemtchou, Valéry 29 October 2014 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung von funktionellen Magnetit-Nanokompositen durch Sprühtrocknung für die Anwendung in der Bioseparation. Dabei liegen die Schwerpunkte auf der Anwendung von Polyelektrolyten als Ionenaustauscher sowie auf der Nachhaltigkeit des Herstellungsprozesses. Basierend auf einem existierenden Herstellungsprozess wurde die Aufgabenstellung konkretisiert. Es wurden Möglichkeiten zur nachhaltigen Prozessgestaltung der Synthese von kationischen bzw. anionischen magnetischen Funktionspartikeln zur Proteinabtrennung vorgestellt. Als magnetische Komponente wurde Magnetit verwendet. Aufgrund seines pseudo-amphiphilen Charakters und seiner besonderen Eigenschaften in Bezug auf die Stabilisierung von Magnetit-Kolloiden wurde Polyvinylbutyral (Mowital B 30T) als Matrixpolymer bei der Sprühtrocknung benutzt. Für die nachhaltige Prozessgestaltung wurden Isopropanol und Tetrahydrofuran als Dichlormethan-Ersatz bei der Sprühtrocknung verwendet. Bei der Synthese kationischer Magnetic Beads wurden verzweigtes Polyethylenimin und lineares Poly(Allyamin) als Anionenaustauscher verwendet. Beide Polykationen sind schwache Polyelektrolyte mit Aminogruppen. Für die Verarbeitung der Polykationen als funktionelle Liganden in magnetischen Funktionspartikeln wurde zwei Herstellungsmethoden vorgestellt: eine Synthese ohne Oberflächenmodifizierung, wobei die mechanische und chemische Stabilität der Funktionspartikeln einzig von der chemischen Struktur der eingesetzten Materialien bzw. vom Matrixpolymer abhängt, und eine Synthese mit Oberflächenmodifizierung. Die Synthese mit Oberflächenmodifizierung ist gekennzeichnet durch die kovalente Bindung von Polyethylenimin bzw. Poly(Allyamin) an der Oberfläche der Funktionspartikeln (Polyvinylbutyral). Dafür wurde 1,1’-Carbonyldiimidazol als „zero length“-Crosslinker benutzt. Die nach beiden Methoden hergestellten Funktionspartikeln wurden charakterisiert, um ihre technische Eignung beurteilen zu können. Für die Charakterisierung der sorptiven Eigenschaften wurde unter anderem der Bowman-Birk Inhibitor (BBI) verwendet. Das Protein ist ein Sojaprodukt und für seine krebsvorbeugende Wirkung bekannt. Um die Selektivität der Abtrennung zu untersuchen, wurden BBI-Produkte mit unterschiedlichen Reinheitsgraden benutzt. Durch die zwei vorgestellten Methoden konnten kationische magnetische Funktionspartikeln erfolgreich hergestellt werden. Alle Funktionspartikeln sind superparamagnetisch, und der Medianwert ihrer Partikelgrößenverteilung liegt im einstelligen Mikrometerbereich. Aufgrund eines höheren Polykationanteils ist die Bindungskapazität der Funktionspartikeln ohne Oberflächenmodifizierung um den Faktor 2,4 größer als die BBI-Bindungskapazität der Funktionspartikeln mit Oberflächenmodifizierung (Qmax=322 mg/g). Das Fehlen eine feste Anbindung des funktionellen Liganden an den Funktionspartikeln ohne Oberflächenmodifizierung verleiht jedoch diesen eine sehr schlechte chemische Stabilität in Lösungen. Es wurde auch gezeigt, dass oberflächenmodifizierte Funktionspartikeln mit ähnlichen Eigenschaften durch den Einsatz von Dichlormethan bzw. Tetrahydrofuran als Lösungsmittelersatz während der Sprühtrocknung hergestellt werden können. Durch den Einsatz von mit Poly(allylamin) oberflächenmodifizierten Funktionspartikeln konnte BBI von technischen Sojamolken unterschiedlicher Reinheitsgrade erfolgreich abgetrennt werden. Anionische Magnetic Beads wurden mit Kationenaustauscherharz als funktionellem Ligand hergestellt. Dabei wurde Isopropanol als organisches Lösungsmittel während der Sprühtrocknung verwendet. Die Synthese wurde analog zur Synthese der kationischen Magnetic Beads ohne Oberflächenmodifizierung durchgeführt. Es wurde auch hier gezeigt, dass anionische magnetische Funktionspartikeln mit guten sorptiven Eigenschaften durch den Einsatz von Isopropanol als organisches Lösungsmittel hergestellt werden können. Die anionischen Funktionspartikeln besitzen im Vergleich zu Literaturwerten höhere Bindungskapazitäten (bis 280 mg/g; ermittelt mit Lysozym). Im letzten Kapitel wird der kritische Prozessschritt des Lösungsmittelaustausches behandelt. Nach dem Lösungsmittelaustausch sollten die Magnetitnanopartikeln in der organischen Phase stabil sein. Dies ermöglicht sowohl eine homogene Verteilung der Nanopartikeln in der Matrix als auch deren bessere Verkapselung während der Sprühtrocknung. Es wurde festgestellt, dass sich eine vollständige Abtrennung von Dichlormethan durch die angewendete Destillationsmethode nicht erreichen lässt. Anhand von zwei Modellsystemen — Rizinolsäure- und Ölsäure-beschichteten Magnetitnanopartikeln — und Lösungsmittelgemischen wurde die Stabilität von sterisch stabilisierten Magnetitpartikeln in binären Lösungsmittelgemischen untersucht. Der Fokus bei dieser Untersuchung lag auf der Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einer möglichst Dichlormethan- bzw. Isooktan-freien organischen Phase. Als zweites Lösungsmittel (als Lösungsmittelersatz betrachtet) wurden neben Tetrahydrofuran und Isopropanol technisch verbreitete Lösungsmittel wie Isooktan und 1-Butanol eingesetzt. Die Untersuchungsergebnisse zeigen, dass die Anwendung der technischen Rizinolsäure bzw. Ölsäure einen zusätzlichen Einfluss auf die Stabilität der Magnetitpartikeln hat, da diese aus anderen Fettsäuren mit unterschiedlichen chemischen Strukturen bestehen. Die Diskrepanz zwischen der berechneten HANSEN-Distanzen und der Stabilität der Magnetitnanopartikeln mit reinen Fettsäuren lässt vermutet, dass die Zusammensetzung der Lösungsmittelgemische an der fest/flüssig-Grenzfläche anders ist als im freien Volumen. Ein Modell zur Beschreibung der Stabilität der Nanopartikeln, das auf einer Anreicherung des Ausgangslösungsmittels an der Grenzfläche basiert, wurde postuliert. Solange die Diffusion des zweiten Lösungsmittels in die Adsorptionsschicht nicht ausreichend genug ist, um die Löslichkeit der Fettsäureketten entscheidend zu reduzieren und somit einen Abfall der Abstoßungskräfte zwischen der Partikeln hervorzurufen, bleiben alle beschichteten Magnetitnanopartikeln stabil im Lösungsmittelgemisch. Dies ist der Fall für die mit der reinen Rizinolsäure beschichteten Magnetitnanopartikeln in allen verwendeten Lösungsmittelgemischen mit 0,5 Vol. % DCM in der kontinuierlichen Phase. Durch die vorgestellten Herstellungsmethoden wurde gezeigt, dass magnetische Funktionspartikeln sowohl mit festen partikelförmigen Ionenaustauschern als auch mit flüssigen schwachen Polyelektrolyten erfolgreich synthetisiert werden können. Eine nachhaltige Prozessgestaltung durch die Reduzierung der Dichlormethanmenge im Sprühtrocknungsprozess ist auch möglich. Für eine erfolgreiche industrielle Anwendung der Funktionspartikeln müssen aber ihre chemischen sowie mechanischen Eigenschaften deutlich verbessert werden. Dies könnte z.B. durch die Verwendung eines anderen Matrixpolymers oder durch die Entfernung von nicht gebundenen Bestandteilen durch gezielte Waschung der Funktionspartikeln erfolgen. Die Bindungskapazität sowie die Selektivität der oberflächenmodifizierten Funktionspartikeln sollte ebenfalls verbessert werden. Dafür wurde einen Ansatz durch die Quaternisierung der Aminogruppen präsentiert. Schließlich würde die Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einphasigen reinen Lösungsmitteln nähere Erkenntnisse über das postulierte Modell der Anreicherung von Dichlormethan in der Adsorptionsschicht erbringen. Dabei könnte die Dichlormethanmenge durch mehrstufige Destillation bzw. Rektifikation beim Lösungsmittelaustausch entfernt werden. Eine vollständige Untersuchung dieses Effekts würde zusätzlich eine Antwort auf zahlreiche Fragestellungen der Kolloidchemie in Bezug auf das Stabilitätsverhalten von Pigmentdispersionen (Lacke) oder von beschichteten Nanopartikeln in Polymerlösungen erbringen.

Page generated in 0.0345 seconds