Spelling suggestions: "subject:"martingales"" "subject:"martingale""
91 |
Espaces de Hardy en probabilités et analyse harmonique quantiquesYin, Zhi 07 June 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique à valeurs operateurs. La thèse est composée des trois parties.Dans la première partie, on démontre la décomposition atomique des espaces de Hardy de martingales non commutatives. On identifie aussi les interpolés complexes et réels entre les versions conditionnelles des espaces de Hardy et BMO de martingales non commutatives.La seconde partie est consacrée à l'étude des espaces de Hardy à valeurs opérateursvia la méthode d'ondellettes. Cette approche est similaire à celle du cas des martingales non commutatives. On démontre que ces espaces de Hardy sont équivalents à ceux étudiés par Tao Mei. Par conséquent, on donne une base explicite complètement inconditionnelle pour l'espace de Hardy H1(R), muni d'une structure d'espace d'opérateurs naturelle. La troisième partie porte sur l'analyse harmonique sur le tore quantique. On établit les inégalités maximales pour diverses moyennes de sommation des séries de Fourier définies sur le tore quantique et obtient les théorèmes de convergence ponctuelle correspondant. En particulier, on obtient un analogue non commutative du théorème classique de Stein sur les moyennes de Bochner-Riesz. Ensuite, on démontre que les multiplicateurs de Fourier complètement bornés sur le tore quantique coïncident à ceux définis sur le tore classique. Finalement, on présente la théorie des espaces de Hardy et montre que ces espaces possèdent les propriétés des espaces de Hardy usuels. En particulier, on établit la dualité entre H1 et BMO.
|
92 |
Etude statistique de séquences biologiques et convergence de martingalesCenac, Peggy 13 June 2006 (has links) (PDF)
Le système dynamique Chaos Game Representation associe une suite de lettres dans un alphabet fini, une mesure empirique sur un ensemble. Fournit-elle plus d'information<br />que les méthodes de comptage de mots classiques ? A<br />partir d'une caractérisation basée sur la CGR, on propose une nouvelle famille de<br />tests donnant l'ordre d'une chaîne de Markov homogène.<br />On définit ensuite une construction d'arbres digitaux de recherche,<br />inspirés par la CGR, en insérant successivement les préfixes retournés d'une chaîne de Markov. On montre que les longueurs des branches critiques se comportent, au premier ordre, comme si les<br />séquences insérées étaient indépendantes entre elles.<br />La dernière partie est consacrée à l'étude de la convergence presque sûre des moments normalisés de tout ordre de martingales vectorielles dans le théorème de la limite centrale<br />presque sûr. Les résultats sont appliqués aux erreurs d'estimation et de prédiction dans les régressions linéaires et les processus de branchement.
|
93 |
Régularité fine de processus stochastiques et analyse 2-microlocaleBalança, Paul 06 February 2014 (has links) (PDF)
Les travaux présentés dans cette thèse s'intéressent à la géométrie fractale de processus stochastiques à travers le prisme d'un outil appelé l'analyse 2-microlocale. Ce dernier est issu d'une autre branche des mathématiques, l'analyse fonctionnelle et l'étude des équations aux dérivées partielles, et s'est avéré être pertinent pour décrire la géométrie fine de fonctions déterministes ou de processus aléatoires, généralisant notamment les exposants de Hölder classiques. Nous envisageons ainsi dans ce manuscrit différentes classes de processus, traitant en premier lieu le cas des martingales continues et de l'intégrale stochastique d'Ito. La régularité 2-microlocale de ces derniers fait notamment apparaître un autre concept, la pseudo frontière 2-microlocale, étroitement lié à son aîné. Nous appliquons également ce formalisme d'étude à une classe de processus gaussiens : le mouvement brownien multifractionnaire. Nous caractérisons ainsi sa régularité 2-microlocale et hölderienne, et déterminons dans un deuxième temps la forme générale de la dimension fractale de ses trajectoires. Dans notre étude portant sur les processus de Lévy, nous combinons le formalisme 2-microlocale à l'analyse multifractale, permettant alors de mettre en évidence des comportements géométriques n'étant pas captés par les outils usuels. Nous obtenons également en corollaire le spectre multifractal des processus fractionnaires de Lévy. Enfin, dans une dernière partie, nous nous intéressons à la définition et aux propriétés de certains processus de Markov multiparamètres, pouvant être plus généralement indicés par des ensembles.
|
94 |
[en] MARTINGALE CENTRAL LIMIT THEOREM / [pt] TEOREMA CENTRAL DO LIMITE PARA MARTINGAISRODRIGO BARRETO ALVES 13 December 2017 (has links)
[pt] Esta dissertação é dedicada ao estudo das taxas de convergência no Teorema Central do Limite para Martingais. Começamos a primeira parte da tese apresentando a Teoria de Martingais, introduzindo o conceito de esperança condicional e suas propriedades. Desta forma poderemos descrever o que é um Martingal, mostraremos alguns exemplos, e exporemos alguns dos seus principais teoremas. Na segunda parte da tese vamos analisar o Teorema Central do Limite para variáveis aleatórias, apresentando os conceitos de função característica e convergência em distribuição, que serão utilizados nas provas de diferentes versões do Teorema Central do Limite. Demonstraremos três formas do Teorema Central do Limite, para variáveis aleatórias independentes e identicamente distribuídas, a de Lindeberg-Feller
e para uma Poisson. Após, apresentaremos o Teorema Central do Limite para Martingais, demonstrando uma forma mais geral e depois enunciaremos uma forma mais específica a qual focaremos o resto da tese. Por fim iremos discutir as taxas de convergência no Teorema Central do Limite, com foco nas taxas de convergência no Teorema Central do Limite para Martingais. Em particular, exporemos o resultado de [4], o qual determina, até uma constante multiplicativa, a dependência ótima da taxa de um certo parâmetro do martingal. / [en] This dissertation is devoted to the study of the rates of convergence in the Martingale Central Limit Theorem. We begin the first part presenting the Martingale Theory, introducing the concept of conditional expectation and its properties. In this way we can describe what a martingale is, present examples of martingales, and state some of the principal theorems and results about them. In the second part we will analyze the Central Limit Theorem for random variables, presenting the concepts of characteristic
function and the convergence in distribution, which will be used in the proof of various versions of the Central Limit Theorem. We will demonstrate three different forms of the Central Limit Theorem, for independent and identically distributed random variables, Lindeberg-Feller and for a Poisson
distribution. After that we can introduce the Martingale Central Limit Theorem, demonstrating a more general form and then stating a more specific form on which we shall focus. Lastly, we will discuss rates of
convergence in the Central Limit Theorems, with a focus on the rates of convergence in the Martingale Central Limit Theorem. In particular, we state results of [4], which determine, up to a multiplicative constant, the optimal dependence of the rate on a certain parameter of the martingale.
|
95 |
Assinaturas dinâmicas de um sistema coerente com aplicações / Dynamic signatures of a coherent system with applications.José Alberto Ramos Flor 27 February 2012 (has links)
O objetivo da dissertação é analisar a assinatura em um contexto geral que considera a dinâmica no tempo e a dependência estocástica, utilizando a teoria de martingais para processos pontuais. / The main goal in this work is to analyse the signature structure in a broader context considering time dynamics and stochastic dependence using the point processes martingale theory.
|
96 |
Calcul fonctionnel non-anticipatif et applications aux processus stochastiques / Non-anticipative functional calculus and applications to stochastic processesLu, Yi 06 December 2017 (has links)
Cette thèse est consacrée à l’étude du calcul fonctionnel non-anticipatif, qui est basé sur la notion de dérivée verticale d'une fonctionelle. Nous étendons le cadre classique de ce calcul à des fonctionnelles ne possédant pas de dérivée directionnelle classique. Dans la première partie, nous montrons comment une classe importante de fonctionelles, définie par une espérance conditionnelle, peuvent être approchées de façon systématique par des fonctionnelles régulières. Dans la deuxième partie, nous introduisons une notion de dérivée verticale faible qui couvre une plus grande classe de fonctionnelles, et notamment toutes les martingales locales. Dans la première partie, nous nous sommes intéressés à la représentation d'une espérance conditionnelle par une fonctionnelle non-anticipative. L'idée est d'approximer ces fonctionnelles par une suite des fonctionnelles régulières dans un certain sens. Cette approche fournit une façon systématique d'obtenir une approximation explicite de la représentation des martingales pour une grande famille de fonctionnelles Browniennes. Nous obtenons également un ordre de convergence explicite. Quelques applications au problème de la couverture dynamique sont données à la fin de cette partie.Dans la deuxième partie, nous étendons la notion de dérivée verticale pour des fonctionnelles qui n'admettent pas nécessairement de dérivée directionnelle. Cette notion nous permet également d'obtenir une caractérisation fonctionnelle d'une martingale locale par rapport à un processus de référence fixé, ce qui donne lieu à une notion de solution faible pour des équations aux dérivées partielles dépendant de la trajectoire. / This thesis focuses on various mathematical questions arising in the non-anticipative functional calculus, which is based on a notion of pathwise directional derivatives for functionals. We extend the scope and results of this calculus to functionals which may not admit such derivatives, either through approximations (Part I) or by defining a notion of weak vertical derivative (Part II). In the first part, we consider the representation of conditional expectations as non-anticipative functionals. We show that it is possible under very general conditions to approximate such functionals by a sequence of smooth functionals in an appropriate sense. This approach provides a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. We also derive explicit convergence rates of the approximations. These results are then applied to the problem of sensitivity analysis and dynamic hedging of (path-dependent) contingent claims. In the second part, we propose a concept of weak vertical derivative for non-anticipative functionals which may fail to possess directional derivatives. The definition of the weak vertical derivative is based on the notion of pathwise quadratic variation and makes use of the duality associated to the associated bilinear form. We show that the notion of weak vertical derivative leads to a functional characterization of local martingales with respect to a reference process, and allows to define a concept of pathwise weak solution for path-dependent partial differential equations.
|
97 |
Contributions to the Theory of Piecewise Deterministic Markov Processes and Applications to Generalized Age Processes and Storage ModelsLöpker, Andreas 09 January 2006 (has links)
Eine Klasse von Markovprozessen mit deterministischem Pfaden und zufälligen Sprüngen wird unter Zuhilfenahme von Martingalen und des erweiterten infinitesimalen Generators untersucht. Dabei steht die Berechnung des Erwartungswertes und der Laplacetransformierten bestimmter Stoppzeiten im Vordergrund. Des weiteren wird die Frage untersucht, wann die in Frage kommenden Prozesse über stationäre Verteilungen verfügen und wie diese im Existenzfall beschaffen sind. Die Methoden werden am Beispiel eines verallgemeinerten Altersprozesses und eines Lager- bzw. Dammprozesses vorgeführt.
|
98 |
[en] ARITHMETIC STRUCTURES IN RANDOM SETS / [pt] ESTRUTURAS ARITMÉTICAS EM CONJUNTOS ALEATÓRIOSMATHEUS SECCO TORRES DA SILVA 08 September 2020 (has links)
[pt] Nesta tese de Doutorado, nós estudamos cotas para as probabilidades de desvio de uma variável aleatória X que conta o número de arestas de um hipergrafo induzido por um subconjunto aleatório de m elementos do seu conjunto de vértices. Nós consideramos dois contextos: o primeiro corresponde a hipergrafos que possuem certo tipo de regularidade, ao passo que o segundo lida com hipergrafos que são, em algum sentido, longe de serem regulares. É possível aplicar estes resultados a estruturas discretas, como o conjunto de progressões aritméticas de tamanho k no grupo aditivo de inteiros módulo um primo e também no conjunto dos N primeiros inteiros positivos. Além disso, também deduzimos resultados para o caso em que o subconjunto aleatório é gerado incluindo cada vértice do hipergrafo independentemente com probabilidade p. / [en] In this Ph.D. thesis, we study bounds for the deviation probabilities of a random variable X that counts the number of edges of a hypergraph induced by a random m–element subset of its vertex set. We consider two contexts: the first corresponds to hypergraphs with some kind of regularity, whereas the second addresses hypergraphs that are in some sense far from being regular. It is possible to apply these results to discrete structures such as the set of k–term arithmetic progressions in the additive group of integers modulo a prime and in the set of the first N positive integers. Furthermore, we also deduce results for the case when the random subset is generated by including each vertex of the hypergraph independently with probability p.
|
99 |
[en] RATE OF CONVERGENCE OF THE CENTRAL LIMIT THEOREM FOR THE MARTINGALE EXPRESSION OF DEVIATIONS OF TRIANGLE-FREE SUBGRAPH COUNTS IN G(N,M) RANDOM GRAPHS / [pt] TAXA DE CONVERGÊNCIA DO TEOREMA CENTRAL DO LIMITE PARA A EXPRESSÃO MARTINGAL DE DESVIO DA CONTAGEM DE SUBGRAFOS LIVRES DE TRIÂNGULOS EM GRAFOS ALEATÓRIOS G(N,M)VICTOR D ANGELO COLACINO 27 May 2021 (has links)
[pt] Nessa dissertação vamos introduzir, elaborar e combinar ideias da Teoria
de martingais, a Teoria de grafos aleatórios e o Teorema Central do Limite.
Em particular, veremos como martingais podem ser usados para representar
desvios de contagem de subgrafos. Usando esta representação e o Teorema
Central do Limite para martingais, conseguiremos demonstrar um Teorema
Central do Limite para a contagem de subgrafos livres de triângulos no grafo
aleatório Erdos-Rényi G(n,m) . Além disso, nossa demonstração também nos
trará informação sobre a taxa de convergência, mostrando que a distribuição
dos desvios converge rapidamente para a distribuição normal. / [en] In this dissertation we shall introduce, elaborate and combine ideas from
martingale Theory, random graph Theory and the Central Limit Theorem. In
particular, we will see how martingales can be used to represent deviations
of subgraph counts. Using this representation and the Central Limit Theorem
for martingales, we will be able to demonstrate a Central Limit Theorem for
the triangle-free subgraph count in the Erdos-Rényi G(n,m) random graph.
Furthermore, our proof also gives us information about the rate of convergence,
showing that the distribution of deviations converges rapidly to the normal
distribution.
|
100 |
[pt] O MÉTODO DE EQUAÇÕES DIFERENCIAIS E CONJUNTOS INDEPENDENTES EM HIPERGRAFOS / [en] THE DIFFERENTIAL EQUATIONS METHOD AND INDEPENDENT SETS IN HYPERGRAPHSIGOR ALBUQUERQUE ARAUJO 18 September 2019 (has links)
[pt] Nesta dissertação, discutiremos o método de equações diferenciais de Wormald, que possui muitas aplicações recentes em Combinatória. Esse método explora a interação entre a matemática discreta e contínua e pode ser usado para provar concentração em uma grande quantidade de processos aleatórios discretos. Em particular, estudaremos o processo livre de H e o algoritmo guloso aleatório para gerar conjuntos independentes em hipergrafos. Esses processos tem sido amplamente estudados nos últimos
anos, culminando com o recente grande avanço de Tom Bohman e Patrick Bennett em 2016, que obtiveram uma cota inferior para hipergrafos com certas condições de densidade. Nós não só reproduzimos sua demonstração mas também obtemos um resultado mais forte (expandindo seu resultado para hipergrafos mais esparsos) e analisamos o caso de hipergrafos lineares, com o intuito de progredir rumo a uma conjectura de Johnson e Pinto sobre o processo livre de Q2 no hipercubo Qd. / [en] In this dissertation, we will discuss Wormald s differential equations method, which has recently had many intriguing applications in Combinatorics. This method explores the interplay between discrete and continuous mathematics and it can be used to prove concentration in a number of discrete random processes. In particular, we will discuss the H-free process and the random greedy algorithm to obtain independent sets in hypergraphs. These processes had been extensively studied through the past few years, culminating in the recent breakthrough of Tom Bohman and Patrick Bennett in 2016, who obtained a lower bound for hypergraphs with certain density conditions. We not only reproduce the proof given by them but also obtain a stronger result (expanding their result to sparser hypergraphs) and we analyze the case of linear hypergraphs, in order to make progress towards a conjecture by Johnson and Pinto concerning the Q2-free process in the hypercube Qd.
|
Page generated in 0.0496 seconds