191 |
Scandia And Ceria Stabilized Zirconia Based Electrolytes And Anodes For Intermediate Temperature Solid Oxide Fuel Cells: Manufacturing And PropertiesChen, Yan 01 January 2013 (has links)
Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in complex media. Dynamical and structural information from complex fluids—such as colloidal suspensions and biological fluids—was obtained by controlling the size of the interaction volume with low coherence interferometry. With this information, material properties such as particle sizes, optical transport coefficients, and viscoelastic characteristics of polymer solutions and blood were determined in natural, realistic conditions that are inaccessible to conventional techniques. The same framework also enabled the development of new, scale-dependent models for several important physical and biological systems. These models were then used to explain the results of some unique measurements. For example, the transport of light in disordered photonic lattices was interpreted as a scale-dependent, diffusive process to explain the anomalous behavior of photon path length distributions through these complex structures. In addition, it was demonstrated how specialized optical measurements and models at the mesoscale enable solutions to fundamental problems in cell biology. Specifically, it was found for the first time that the nature of cell motility changes markedly with the curvature of the substrate that the cells iv move on. This particular work addresses increasingly important questions concerning the nature of cellular responses to external forces and the mechanical properties of their local environment. Besides sensing of properties and modeling behaviors of complex systems, mesoscale optics encompasses the control of material systems as a result of the light-matter interaction. Specific modifications to a material’s structure can occur due to not only an exchange of energy between radiation and a material, but also due to a transfer of momentum. Based on the mechanical action of multiply scattered light on colloidal particles, an optically-controlled active medium that did not require specially tailored particles was demonstrated for the first time. The coupling between the particles and the random electromagnetic field affords new possibilities for controlling mesoscale systems and observing nonequilibrium thermodynamic phenomena
|
192 |
DEVELOPMENT OF FLUORESCENCE-DETECTED PHOTOTHERMAL MICROSCOPY METHODS FOR MAPPING CHEMICAL COMPOSITIONAleksandr Razumtcev (18097990) 04 March 2024 (has links)
<p dir="ltr">The beautiful complexity of our world is manifested in how macro- and even planetary-scale processes are essentially completely determined and regulated by chemical and physical transformations happening at the micro- and nanoscale. The introduction and subsequent development of optical microscopy methods have provided us with a unique opportunity to visualize, probe, and sometimes even control these processes that are too small to be seen by the human eye by their nature.</p><p dir="ltr">Among the great variety of truly impressive advances in microscopy instrumentation, two techniques stand out in their widespread and usefulness. First of them, fluorescence imaging has completely revolutionized the study of biological specimens and living systems due to its unprecedented single-molecule sensitivity and resolution combined with video-rate imaging capability. On the other hand, chemical imaging in the mid-infrared region provides an unmatched amount of chemical information enabling label-free mapping of the spatial distribution of various classes of biological molecules. However, each of these techniques falls short where the other excels. For example, despite its high resolution and sensitivity, fluorescence imaging does not carry direct chemical information and relies on labeling specificity, while infrared microscopy is diffraction-limited at the resolution of several micrometers and suffers from low penetration depth in aqueous solutions.</p><p dir="ltr">This dissertation introduces a novel imaging method designed to combine the advantages of fluorescence imaging and infrared spectroscopy. Fluorescence-detected photothermal mid-IR (F-PTIR) microscopy is presented in <b>chapter 1</b> as a technique enabling sub-diffraction chemically-specific microscopy by detecting local temperature-induced fluctuations in fluorescence intensity to inform on localized mid-infrared absorption. F-PTIR applications in targeted biological microspectroscopy (<b>chapter 1</b>) and pharmaceutical materials (<b>chapters 2 and 3</b>) analysis are demonstrated to highlight the potential of this new method. Furthermore, instrumentation developments relying on modern radiation sources such as dual-comb quantum cascade laser and synchrotron infrared radiation are shown to improve spectral acquisition speed (<b>chapter 4</b>) and spectral coverage (<b>chapter 5</b>), respectively, to extend the application range of F-PTIR.</p>
|
193 |
Implementation of Neutron Diffraction Characterization Techniques for Direct Energy Deposition of Ni-Based SuperalloysOzcan, Burak 28 February 2023 (has links)
In recent years, additive manufacturing (AM) has been one of the essential production techniques in the engineering community. Rapid integration of this technique drew a bead on the reliability of the microstructural and mechanical properties of engineering components. However, due to the nature of the layer-by-layer approach of AM, complex thermal gradients can cause inhomogeneous microstructure and significant residual stresses (RS). These, expectedly, can lead to a dramatic reduction in material performance. Therefore, especially for alloys like Ni-based Inconel 718 (IN718) used in critical applications, the characterization and later optimization of the DED process on material properties become essential. Nevertheless, empirical and conventional approaches are needed to improve, or new techniques should be introduced. In this regard, this study aims to understand better the evolution of the mechanical and microstructural properties of IN718 during and post-DED processes. For this purpose, an in-situ 2D neutron diffraction strain monitoring was carried out during the DED of IN718. The strain contributions originated from microstructural, thermal, and stress-based events during deposition and cooling periods at different positions concerning melt pool were investigated. Stabilization of different positions and processing regions on the sample as a function of the temperature profile, build height, and microstructural events are examined. Laboratory-scale microstructural studies were performed on wire-DED parts to observe the process parameter dependency of precipitation, composition, and morphology of microstructural constituents. Moreover, these findings were benchmarked with neutron powder diffraction measurements to relate the crystallographic behavior with macroscopic ones. Solidification under different cooling rates and heat treatments was carried out using the neutron powder diffraction technique to comprehend the precipitation dynamics and explain the microstructural events during and after the DED process. Laboratory scale and neutron diffraction tensile characterization tests were performed to observe and relate the mechanical response of wire- DED IN718 at different temperatures and microstructural conditions.:Keywords i
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xvii
List of Abbreviations xix
Acknowledgments xxi
Chapter 1: Introduction 1
1.1 Residual Stress in Polycrystalline Materials 1
1.1.1 Residual Stress Determination 3
1.2 Neutron Scattering 5
1.2.1 Neutron-Matter Interaction 6
1.2.2 Strain Measurement by Neutron Diffraction 7
1.2.3 SALSA Neutron Strain Diffractometer 14
1.2.4 Neutron Powder Diffraction 16
1.2.5 D20 Neutron Powder Diffractometer 17
1.2.6 Peak Analysis in Diffraction Measurements 18
1.3 Nickel Superalloys 22
1.3.1 Physical Metallurgy of IN718 23
1.4 Metal Additive Manufacturing 33
1.4.1 Direct Energy Deposition (DED) 34
1.4.2 Process Monitoring in Metal AM 36
1.5 Context and Aim of the Study 40
Chapter 2: Materials and Experimental Methods 43
2.1 IN718 Feedstock Material 43
2.2 Fabrication Process by wire-DED Method 43
2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47
2.2.2 Preparation of Tensile Specimens 48
2.3 Microstructural Characterization 49
2.3.1 Electron Microscopy Studies 49
2.3.2 Differential Scanning Calorimetry Analysis 50
2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52
2.3.3.1 Data Reduction for Phase Analysis 54
2.4 Mechanical Characterization 57
2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57
2.4.1.1 Temperature Data Treatment and Processing Regions 61
2.4.1.2 Neutron Data Acquisition and Analysis 64
2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69
2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71
2.4.4 Neutron Diffraction Tensile Characterization Testing 72
2.4.4.1 Neutron Data Processing Procedure 77
Chapter 3: Results and Discussion 79
3.1 Microstructural Characterization of Feedstock Wire 79
3.1.1 Metallography of IN718 Feedstock Wire 79
3.1.2 Simulation of Phase Precipitations in IN718 80
3.1.3 Thermal Stability of IN718 Feedstock Wire 82
3.1.3.1 Differential Scanning Calorimetry 82
3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83
3.1.4 Discussion 91
3.2 Microstructure of IN718 wire-DED Parts 94
3.2.1 IN718-DED Cylindrical Walls 94
3.2.2 IN718 -DED Prisms 103
3.2.3 Discussion 108
3.3 Heat Treatments of IN718 Wire-DED Parts 112
3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112
3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115
3.3.3 Discussion 118
3.4 Mechanical Characterization of IN718 wire-DED 122
3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122
3.4.1.1 Bragg Angle Evolution 122
3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123
3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126
3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129
3.4.2 Discussion 131
3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135
3.4.3 Reference (d0) Approaches for Strain Calculations 136
3.4.3.1 Stable processing regime reference 136
3.4.3.2 Neutron powder diffraction reference 137
3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140
3.4.4.1 Strain Evolution in MP Processing Region 141
3.4.4.2 Strain Evolution in NMP Processing Region 143
3.4.4.3 Strain Evolution in FF Processing Region 145
3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148
3.4.6 Discussion 151
3.4.7 Tensile Characterization 153
3.4.7.1 Macro-scale Tensile Behavior 153
3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155
3.4.7.3 Lattice-scale Tensile Behavior 158
3.4.8 Discussion 169
3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169
3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169
3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175
Chapter 4: Summary Discussion 182
4.1 Microstructural Considerations 182
4.1.1 Comparison of Materials and Extrapolation of Properties 182
4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183
4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183
4.2.2 Heat Treatments of IN718 DED materials 184
4.3 Fabrication and Neutron Strain Monitoring Considerations 185
4.3.1 Temperature Gradients and Regions of Interest 185
4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185
4.3.3 2D Strain Evolution 186
4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189
4.4.1 Macro-scale Characterization 189
4.4.2 Lattice-scale Neutron Diffraction Characterization 189
Chapter 5: Conclusions 191
Bibliography 196 / In den letzten Jahren hat sich die additive Fertigung (AM) zu einer der wichtigsten Produktionstechniken in der Ingenieurwelt entwickelt. Die schnelle Integration dieser Technik hat die Zuverlässigkeit der mikrostrukturellen und mechanischen Eigenschaften von technischen Komponenten deutlich verbessert. Aufgrund des schichtweisen Ansatzes der AM können jedoch komplexe thermische Gradienten eine inhomogene Mikrostruktur und erhebliche Eigenspannungen (RS) verursachen. Diese können erwartungsgemäß zu einer dramatischen Verringerung der Materialleistung führen. Daher sind insbesondere bei Legierungen wie Inconel 718 (IN718) auf Ni-Basis, die in kritischen Anwendungen eingesetzt werden, die Charakterisierung und spätere Optimierung des DED-Prozesses auf die Materialeigenschaften von entscheidender Bedeutung. Dennoch müssen empirische und konventionelle Ansätze verbessert werden, oder es sollten neue Techniken eingeführt werden. In diesem Zusammenhang zielt diese Studie darauf ab, die Entwicklung der mechanischen und mikrostrukturellen Eigenschaften von IN718 während und nach dem DED-Prozess besser zu verstehen. Zu diesem Zweck wurde während des DED-Prozesses von IN718 eine in-situ 2D-Neutronenbeugungsmessung der Dehnung durchgeführt. Die Dehnungsbeiträge, die von mikrostrukturellen, thermischen und spannungsbasierten Ereignissen während der Abscheidungs- und Abkühlungsperioden an verschiedenen Positionen des Schmelzbades herrühren, wurden untersucht. Die Stabilisierung verschiedener Positionen und Verarbeitungsbereiche auf der Probe als Funktion des Temperaturprofils, der Aufschmelzhöhe und der mikrostrukturellen Ereignisse wurde untersucht. Im Labormaßstab wurden mikrostrukturelle Studien an Draht-DED-Teilen durchgeführt, um die Abhängigkeit der Prozessparameter von der Ausscheidung, Zusammensetzung und Morphologie der mikrostrukturellen Bestandteile zu beobachten. Darüber hinaus wurden diese Ergebnisse mit Neutronenpulverbeugungsmessungen verglichen, um das kristallographische Verhalten mit dem makroskopischen Verhalten in Beziehung zu setzen. Die Erstarrung unter verschiedenen Abkühlungsraten und Wärmebehandlungen wurde mit Hilfe der Neutronenpulverbeugungstechnik durchgeführt, um die Ausscheidungsdynamik zu verstehen und die mikrostrukturellen Ereignisse während und nach dem DED-Prozess zu erklären. Es wurden Zugversuche im Labormaßstab und mit Neutronenbeugung durchgeführt, um die mechanische Reaktion von IN718 bei verschiedenen Temperaturen und Mikrostrukturbedingungen zu beobachten und in Beziehung zu setzen.:Keywords i
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xvii
List of Abbreviations xix
Acknowledgments xxi
Chapter 1: Introduction 1
1.1 Residual Stress in Polycrystalline Materials 1
1.1.1 Residual Stress Determination 3
1.2 Neutron Scattering 5
1.2.1 Neutron-Matter Interaction 6
1.2.2 Strain Measurement by Neutron Diffraction 7
1.2.3 SALSA Neutron Strain Diffractometer 14
1.2.4 Neutron Powder Diffraction 16
1.2.5 D20 Neutron Powder Diffractometer 17
1.2.6 Peak Analysis in Diffraction Measurements 18
1.3 Nickel Superalloys 22
1.3.1 Physical Metallurgy of IN718 23
1.4 Metal Additive Manufacturing 33
1.4.1 Direct Energy Deposition (DED) 34
1.4.2 Process Monitoring in Metal AM 36
1.5 Context and Aim of the Study 40
Chapter 2: Materials and Experimental Methods 43
2.1 IN718 Feedstock Material 43
2.2 Fabrication Process by wire-DED Method 43
2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47
2.2.2 Preparation of Tensile Specimens 48
2.3 Microstructural Characterization 49
2.3.1 Electron Microscopy Studies 49
2.3.2 Differential Scanning Calorimetry Analysis 50
2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52
2.3.3.1 Data Reduction for Phase Analysis 54
2.4 Mechanical Characterization 57
2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57
2.4.1.1 Temperature Data Treatment and Processing Regions 61
2.4.1.2 Neutron Data Acquisition and Analysis 64
2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69
2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71
2.4.4 Neutron Diffraction Tensile Characterization Testing 72
2.4.4.1 Neutron Data Processing Procedure 77
Chapter 3: Results and Discussion 79
3.1 Microstructural Characterization of Feedstock Wire 79
3.1.1 Metallography of IN718 Feedstock Wire 79
3.1.2 Simulation of Phase Precipitations in IN718 80
3.1.3 Thermal Stability of IN718 Feedstock Wire 82
3.1.3.1 Differential Scanning Calorimetry 82
3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83
3.1.4 Discussion 91
3.2 Microstructure of IN718 wire-DED Parts 94
3.2.1 IN718-DED Cylindrical Walls 94
3.2.2 IN718 -DED Prisms 103
3.2.3 Discussion 108
3.3 Heat Treatments of IN718 Wire-DED Parts 112
3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112
3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115
3.3.3 Discussion 118
3.4 Mechanical Characterization of IN718 wire-DED 122
3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122
3.4.1.1 Bragg Angle Evolution 122
3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123
3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126
3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129
3.4.2 Discussion 131
3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135
3.4.3 Reference (d0) Approaches for Strain Calculations 136
3.4.3.1 Stable processing regime reference 136
3.4.3.2 Neutron powder diffraction reference 137
3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140
3.4.4.1 Strain Evolution in MP Processing Region 141
3.4.4.2 Strain Evolution in NMP Processing Region 143
3.4.4.3 Strain Evolution in FF Processing Region 145
3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148
3.4.6 Discussion 151
3.4.7 Tensile Characterization 153
3.4.7.1 Macro-scale Tensile Behavior 153
3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155
3.4.7.3 Lattice-scale Tensile Behavior 158
3.4.8 Discussion 169
3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169
3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169
3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175
Chapter 4: Summary Discussion 182
4.1 Microstructural Considerations 182
4.1.1 Comparison of Materials and Extrapolation of Properties 182
4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183
4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183
4.2.2 Heat Treatments of IN718 DED materials 184
4.3 Fabrication and Neutron Strain Monitoring Considerations 185
4.3.1 Temperature Gradients and Regions of Interest 185
4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185
4.3.3 2D Strain Evolution 186
4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189
4.4.1 Macro-scale Characterization 189
4.4.2 Lattice-scale Neutron Diffraction Characterization 189
Chapter 5: Conclusions 191
Bibliography 196
|
194 |
Étude du champ magnétique interne de deux matériaux magnétiques et d'un supraconducteur sans symétrie d'inversionDesilets-Benoit, Alexandre 08 1900 (has links)
Cette thèse est divisée en trois parties. Une première section présente les résultats de l'étude de la formation de polarons magnétiques liés (BMP) dans le ferroaimant EuB6 par diffusion de neutrons à petits angles (SANS). La nature magnétique du système ferromagnétique est observée sous une température critique de 15K. La signature des BMP n'apparaît pas dans la diffusion de neutrons, mais ces mesures permettent de confirmer une limite inférieure de 100\AA à la longueur de cohérence des BMP (xi_{Lower}).
Dans un second temps, l'étude du LaRhSi3, un supraconducteur sans symétrie d'inversion, par muSR et ZF-muSR nous permet de sonder le comportement magnétique du système dans la phase supraconductrice. Aucun champ magnétique interne n'a été détecté en ZF-muSR sous la température critique (T_c = 2.2K). Cela indique que la phase supraconductrice ne porte pas de moment cinétique intrinsèque. L'analyse du spectre d'asymétrie sous l'application d'un champ magnétique externe nous apprend que le système est faiblement type II par l'apparition de la signature de domaines magnétiques typique d'un réseau de vortex entre H_{c1}(0) et H_{c2}(0), respectivement de 80+/- 5 et 169.0 +/- 0.5 G.
Finalement, la troisième section porte sur l'étude du champ magnétique interne dans l'antiferroaimant organique NIT-2Py. L'observation d'une dépendance en température des champs magnétiques internes aux sites d'implantation muonique par ZF-muSR confirme la présence d'une interaction à longue portée entre les moments cinétiques moléculaires. Ces valeurs de champs internes, comparées aux calculs basés sur la densité de spins obtenue par calculs de la théorie de la fonctionnelle de la densité, indiquent que la moitié des molécules se dimérisent et ne contribuent pas à l'ordre antiferromagnétique. La fraction des molécules contribuant à l'ordre antiferromagnétique sous la température critique (T_c = 1.33 +/- 0.01K) forme des chaines uniformément polarisées selon l'axe (1 0 -2). Ces chaines interagissent antiferromagnétiquement entre elles le long de l'axe (0 1 0) et ferromagnétiquement entre les plan [-1 0 2]. / This thesis is divided in three sections. The first section presents the results from a small angle neutron scattering (SANS) investigation of the formation of bound magnetic polarons in the ferromagnet EuB6. While the magnetic nature of the system was observed below 15K, we could not resolve the q dependent signature of the polarons, thus putting a lower limit of 100\AA to the coherence length of the phenomenon (xi_{Lower}).
Secondly, we investigated the non-centrosymmetric superconductor LaRhSi3 by muSR. The absence of an internal field below T_c = 2.2 K in ZF-muSR, indicates that the superconducting wave function does not carry an intrinsic magnetic moment. The asymmetry spectrum taken under external magnetic field shows the magnetic signature associated with vortices between H_{c1}(0) and H_{c2}(0), respectively 80 +/- 5 and 169.0 +/- 0.5 G, suggesting the system is weakly type-II.
Finally, the third section presents the zero field muSR study of internal magnetic fields in the organic antiferromagnet NIT-2Py. The temperature dependent oscillating signal in the ZF-muSR spectrum confirms the presence of a long-range magnetic interaction between the molecules. By comparing the measured internal magnetic fields to calculated values based on density fonctional theory calculations, we confirm that half the molecules dimerizes while the other half forms the antiferromagnetic order under the critical temperature (T_c = 1.33 +/- 0.01K). In this antiferromagnetic order, the moments on the magnetic molecules are uniformly aligned along the (1 0 -2) axis. They interact antiferromagnetically along the (0 1 0) axis and ferromagnetically between the [-1 0 2] planes.
|
195 |
Evolution structurale des céramiques (Si)-B-C sous sollicitations thermomécaniques / Structural changes of CVD (Si)-B-C ceramics under thermomechanical treatmentsPallier, Camille 13 November 2012 (has links)
Les matrices céramiques autocicatrisantes sont constituées d’une alternance de couches de SiC, B-C et Si-B-C, déposées par voie gazeuse (CVD). Les couches borées (Si)-B-C sont amorphes après élaboration et leur structure évolue à haute température (T ≥ 1000 °C). Diverses caractérisations (XRD, spectroscopie Raman, NMR, diffusion des neutrons, XANES) ont permis de préciser la structure locale des céramiques brutes d'élaboration. Celle-ci a par la suite été validée par des simulations par dynamique moléculaire ab initio. Elle est constituée de motifs icosaédriques, similaires à ceux de B4C, mais fautés et reliés entre eux par des environnements tétravalents CB4-xCx et trivalents BC3. Dans le cas des matériaux Si-B-C, cette même phase amorphe forme un continuum incluant des clusters de SiC. L’évolution structurale de ces céramiques sous atmosphère inerte a été étudiée en fonction de la température (1100°C ≤ T ≤ 1400 °C) et du temps (t ≤ 1 h). Le caractère métastable des matériaux induit une cinétique de réorganisation rapide. L'évolution structurale se traduit successivement, à T et t croissants, par l’apparition de carbone libre sp2, la cristallisation de B4C, ainsi que la croissance de nanocristallites de SiC dans les matériaux Si-B-C. Les propriétés mécaniques ont également été caractérisées à haute température à l’aide d’essais sur microcomposites Cf/(Si)-B-Cm. Les matériaux font preuve d’un comportement transitoire complexe et fortement dépendant de la température du fait de leur évolution structurale. / Self-healing matrices are composed of SiC, B-C and Si-B-C multilayers deposited by chemical vapour deposition (CVD). The boron-rich layers (Si)-B-C are amorphous in their as-deposited state but crystallize at high temperature (T ≥ 1000 °C). Various analyses (XRD, Raman spectroscopy, NMR, neutron diffraction, XANES) were used to characterize the local structure of the as-processed and heat-treated ceramics. The local structure of heat-treated ceramics was also confirmed by molecular dynamic ab initio simulations. The structure consists of icosahedral units as in B4C but faulted and connected with each other through tetrahedral CB4-XCX and trigonal BC3 sites. In Si-B-C ceramics, the same amorphous phase forms a continuum embedding SiC clusters. The structural evolution of the ceramics in inert atmosphere were studied as a function of temperature (1100°C ≤ T ≤ 1400 °C) and time (t ≤ 1 h). The metastability of the materials leads to fast kinetics of reorganization. When T and t increase, one observes successively the formation free-sp2 carbon, the crystallization of B4C and, in Si-B-C ceramics, the coarsening of the SiC nanocrystallites. The high temperature mechanical properties have also been assessed by tensile tests on Cf/(Si)-B-Cm microcomposites. The materials undergo a complex transient behaviour which is strongly temperature dependent due to the structural changes.
|
196 |
Propriétés et structures d’hydrures et de composés magnétocaloriques à base de terres rares / Structures and properties of hydridesTencé, Sophie Marie-Hélène 30 September 2009 (has links)
Les structures magnétiques de deux familles de composés sont déterminées et discutées : (i) celles des hydrures RTXH (R = terre rare, T = métal de transition et X = Si, Ge) cristallisant dans la structure de type ZrCuSiAs et obtenus par insertion d’hydrogène dans les intermétalliques quadratiques de type CeFeSi. L’hydrogénation induit des transitions magnétiques variées engendrées par la compétition entre la dilatation anisotrope de la maille cristalline causée par l’absorption d’hydrogène et l’apparition de la liaison chimique R-H; (ii) celles des siliciures ternaires R6T1.67Si3 (R = Ce, Nd, Gd, Tb et T = Co, Ni) présentant des propriétés magnétocaloriques significatives autour de leur température de Curie, en particulier ceux à base de gadolinium Gd6T1.67Si3. Les composés à base de Ce, Nd et Tb présentent des comportements magnétiques originaux qui sont expliqués par la détermination de leurs structures magnétiques. La nature complexe de ces propriétés résulte en partie de la présence de deux sites magnétiques pour R et d’un désordre atomique de l’élément T dans la structure cristallographique. / Magnetic structures of two families of compounds are determined and discussed : (i) those of the hydrides RTXH (R = Rare earth, T = transition metal and X = Si, Ge) crystallizing in the ZrCuSiAs-type structure and obtained by hydrogen insertion in the intermetallics adopting the tetragonal CeFeSi-type structure. Hydrogenation induces various magnetic transitions governed by the competition between the anisotropic unit cell expansion linked to hydrogen absorption and the occurrence of the R-H chemical bonding ; (ii) those of the ternary silicides R6T1.67Si3 (R = Ce, Nd, Gd, Tb and T = Co, Ni) which show significant magnetocaloric properties around their Curie temperature, especially those based on gadolinium Gd6T1.67Si3. The compounds based on Ce, Nd and Tb present original magnetic behaviors which are explained by their magnetic structures determination. The origin of these complex properties results especially from the presence of two magnetic sites for R and from an atomic disorder of the T element in the crystallographic structure.
|
197 |
Precision tube production : influencing the eccentricity, residual stresses and texture developments : experiments and multiscale simulation / Production de tubes de précision : influence de l'excentricité, des contraintes résiduelles et de l’évolution de la texture : expériences et simulation multi-échelleFoadian, Farzad 09 February 2018 (has links)
Le but principal de ce travail était d'optimiser le processus standard d'étirage des tubes de manière à contrôler l'excentricité, qui peut être la réduction ou l'augmentation de l'excentricité. Pour cette raison, l'inclinaison et / ou le déplacement ont été introduits respectivement dans le matrice et / ou le tube. Plusieurs tubes de matériaux différents - tels que le cuivre, l'aluminium, le laiton et l'acier - de différentes dimensions ont été étudiés. L’effet sur l'excentricité a été analysé en utilisant divers angles d'inclinaison, valeurs de déplacement ou combinaison d'inclinaison et de décalage. Tout en influençant et en contrôlant l'excentricité, l'évolution des contraintes résiduelles et de la texture due à l'inclinaison et / ou au décalage introduits ont été étudiées. L'autre objectif de ce travail était de développer un modèle FEM universel, afin d'obtenir les paramètres d'entrée requis, liés au matériau ou au processus ou aux deux. Ce modèle FEM a été utilisé pour accomplir la simulation du processus de formage du métal défini par l'utilisateur et pour analyser des situations plus complexes. À cet égard, un modèle de simulation multi-échelle a été développé à l'aide d'une méthode de simulation multi-échelle avec l'approche Integrated Computational Material Engineering. / The main and foremost aim of this work was to optimize the standard tube drawing process in a way that the eccentricity can be controlled, which can be the reduction or increase of eccentricity. For this reason, tilting and/or shifting was introduced to the die and/or tube, respectively. Different tubes of varied materials, such as copper, aluminum, brass, and steel with different dimensions were investigated by various tilting angles, shifting values, or combination of tilting and shifting and their effect on the eccentricity was analyzed. Along influencing and controlling the eccentricity, the evolution of the residual stresses and texture due to the introduced tilting and /or shifting were investigated. The other aim of this work was to develop a universal FEM model, which can get the required or desired input parameters, which can be material-related or process related or both, and perform the simulation of the user-defined metal forming process and therewith analyze more complex situations. In this regard, a simulation model was developed using a multiscale simulation method with Integrated Computational Material Engineering approach.
|
198 |
Dynamics and thermal behaviour of films of oriented DNA fibres investigated using neutron scattering and calorimetry techniquesValle Orero, Jessica 26 June 2012 (has links) (PDF)
The majority of structural studies on DNA have been carried out using fibre diffraction, while studies of its dynamics and thermal behaviour have been mainly performed in solution. When the DNA double helix is heated, it exhibits local separation of the two strands that grow in size with temperature and lead to their complete separation. This work has investigated various aspects of this phenomenon. The experiments reported in this thesis were carried out on films of oriented fibres of DNA prepared with the Wet Spinning Apparatus. Thus, sample preparation and characterisation are essential parts of the research. The structures of two forms of DNA, A and B, have been explored as a function of relative humidity at fixed ionic conditions. A method to eliminate traces of ever-present B-form contamination in A-form samples was established. The high orientation of the DNA molecules within the samples allowed us to investigate dynamical fluctuations and the melting transition of DNA using neutron scattering, which can provide the spatial information crucial to understand a phase transition, probing the static correlation length along the molecule as a function of temperature. The transition has been investigated for A and B-forms in order to understand its dependence on molecular configuration.Furthermore, after the first melting, denatured DNA films show typical glass behaviour. Their thermal relaxation has been explored using calorimetry.Neutron and X-ray inelastic scattering (INS and IXS) were used in the past to measure longitudinal phonons in fibre DNA, and the results shown disagreement. Recent INS measurements supported with phonon simulations have been crucial to understand the different dispersion curves reported to date. Experiments using INS and IXS have been carried out to continue with this investigation. Attempts to observe the transverse fluctuations associated to the thermal denaturing of DNA, never experimentally investigated before, have been made.
|
199 |
Électrolytes solides fluorés pour batteries tout solide à ions F- / Fluoride solid electrolytes for Fluoride Ion BatteryChable, Johann 30 November 2015 (has links)
Ce travail porte sur la synthèse, la mise en forme et la caractérisation desolutions solides de type tysonite RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr). Dans unpremier temps, une démarche d’étude rigoureuse est mise en place pour la solution solide ditede référence, La1-xBaxF3-x. Les synthèses menées à l’état solide aboutissent à une maîtrise dela composition chimique et à l'établissement de lois de variations des paramètres structuraux.Une meilleure compréhension de l’influence de la structure sur la mobilité des ions F- estégalement acquise. L’influence du frittage dans l’obtention de bonnes valeurs de conductivitéionique est également à souligner. Dans un second temps, les effets de la nanostructurationpar mécanobroyage sur les propriétés de conductivité sont évalués. L’utilisation de laméthodologie des plans d’expériences mène à la mise au point des réglages optimums debroyage. Il apparaît alors que la synthèse des électrolytes peut être accélérée et mise àl’échelle tout en gardant des valeurs optimales de conductivité. Enfin, la démarche déterminéeest appliquée à d'autres solutions solides de type tysonite et à la recherche du conducteurionique le plus performant. Si les composés issus de la substitution Ce/Sr ou encore Sm/Casemblent les plus prometteurs, la plus grande stabilité chimique de la solution solide La1-xSrxF3-x est le compromis idéal pour l'utiliser comme électrolyte solide lors des mesuresélectrochimiques des batteries. / This work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability.
|
200 |
Etude de nouveaux matériaux phosphates de lithium et d'élément de transition comme électrode positive pour batteries LI-ION / Iron phosphates with original structures used as positive electrode materials in lithium and sodium batteriesTrad, Khiem 30 September 2010 (has links)
Depuis la mise en évidence des potentialités du phosphate LiFePO4 comme électrode positive de batteries lithium-ion, un très fort regain d’intérêt pour les phosphates de fer est actuellement observé. Dans cette optique de recherche de nouveaux matériaux, notre intérêt s’est porté sur la phase Na3Fe3(PO4)4 et sur des monophosphates de fer et de manganèse de type alluaudite LiXNa1-XMnFe2(PO4)3. Leurs structures, respectivement en couche et en chaines, en font de bons candidats pour des applications en tant que matériau d’électrode pour des batteries au lithium ou au sodium. Notre étude porte donc, d’une part, sur la synthèse et la caractérisation structurale de ces phases, et d’autre part sur leurs propriétés physiques et électrochimiques. / Since the discovery of highly interesting properties for LiFePO4 as a positive electrode material in lithium ion batteries, the search for novel polyanion-based insertion hosts is intense. Actually, cathodic materials based on iron phosphates exhibit high stability and economical and environmental interests. In this context, we were interested in Na3Fe3(PO4)4 with a lamellar structure and in alluaudite-like iron and manganese phosphates LiXNa1-XMnFe2(PO4)3 which structure exhibits tunnels. This work deals, in one hand, on the synthesis and the structural characterisation of these materials and in the other hand on their physical and electrochemical properties as positive electrode for lithium and sodium batteries.
|
Page generated in 0.0358 seconds