• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 33
  • 6
  • 2
  • 2
  • Tagged with
  • 83
  • 29
  • 28
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimisation de la structure textile des prothèses vasculaires pour un développement en monocouche des cellules endotheliales

François, Sébastien 07 December 2009 (has links) (PDF)
Les prothèses vasculaires textiles en polyéthylène téréphtalate (PET) présentent souvent des occlusions après implantation pour les petits diamètres (6-8mm) car la surface des prothèses est peu hémocompatible. Or, l'hémocompatibilité des prothèses serait largement améliorée si ces dernières se recouvraient d'une couche de cellules endothéliales qui tapissent naturellement les vaisseaux sanguins. Ce projet vise à mettre en évidence que les textiles bruts ne sont pas un support viable pour le développement de ces cellules endothéliales, puis propose de remplacer les matrices protéiniques par un recouvrement synthétique. Pour ce faire, de l'acide poly-L-lactique (PLA) solubilisé a été filé sous forme de nanofibres déposées sur la surface luminale de la prothèse. L'étirage par jet d'air a été caractérisé selon un modèle plan, puis adapté à la fon11e tubulaire des prothèses. Les nanofibres ont été évaluées sur le plan de la cytocompatibilité, de l'adhérence et de la prolifération avec un modèle de cellules endothéliales animales. Ce travail vise aussi à optimiser l'adhérence de ces fibres sur le PET par l'emploi d'une technique de modification de surface par plasma. Les résultats montrent qu'il est possible de produire des nanofibres de PLA et de contrôler leur diamètre, et de sceller la paroi de la prothèse textile. Enfin, les cellules endothéliales prolifèrent en monocouche sur des prothèses recouve1tes de nanofibres. Il est possible d'optimiser l'adhérence des nanofibres sur le PET avec un traitement par plasma. En conclusion nous avons proposé une alternative à l'enduction traditionnelle des prothèses permettant la prolifération en monocouche des cellules endothéliales.
42

Le composite cuivre / nanofibres de carbone / The copper-carbon nanofibers composite

Vincent, Cécile 19 November 2008 (has links)
Le matériau composite Cu/NFC (Nano Fibre de Carbone) peut être utilisé en tant que drain thermique par les industriels de l'électronique de puissance. En remplacement du cuivre, il doit combiner une conductivité thermique élevée et un coefficient de dilatation thermique adapté à celui de la céramique du circuit imprimé (alumine ou nitrure d’aluminium). Après avoir étudié les propriétés de la matrice cuivre et des NFC, plusieurs méthodes de synthèse du composite Cu/NFC ont été développées. Le composite a tout d’abord été élaboré par métallurgie des poudres. Puis, dans le but d’améliorer l’homogénéité, il a été envisagé de revêtir individuellement chaque NFC par du cuivre déposé par voie chimique electroless ainsi que par une méthode originale de décomposition d’un sel métallique. Des mesures de densité et de propriétés thermiques (conductivité et dilatation) ainsi que les caractérisations microstructurales de ces matériaux montrent la complexité de l’élaboration d’un tel composite. En effet, la dispersion des nanofibres, la nature des interfaces fibres/matrice et surtout les phénomènes thermiques à l’échelle nanométrique sont autant de paramètres à contrôler afin d’obtenir les propriétés recherchées. La simulation numérique et analytique, qui a été mise en oeuvre en parallèle a été corrélée aux résultats expérimentaux, afin de prédire les propriétés finales de nos matériaux. / Cu/CNF (Carbon Nano Fiber) composite materials can be used as heat sink in power electronic devices. They can substitute Copper by combining a high thermal conductivity and a coefficient of thermal expansion close to the printed circuit one (alumina or aluminum nitride). After studying the properties of Copper matrix and CNF, three methods were set up for the elaboration of the Cu/CNF composite materials. It was first synthesized by a simple powder metallurgy process. Second, in order to obtain a better homogeneity, CNF were individually coated with Cu by an electroless deposition method. Third, an original technique involving the decomposition of a metallic salt has been used. Measurements of the density, the thermal properties (conductivity and dilatation), and the characterization of the microstructure of the composite materials have been performed. It reveals the complexity of the realization of such a composite. Indeed, the dispersion of CNF and the chemical nature of the Cu/CNF interfaces have to be controlled in order to reach the desired thermal properties. Analytical and numerical simulations have been conducted and correlated with the experimental results to predict final properties of our materials.
43

Contribution à l'étude et à la caractérisation de nanofibres obtenues par électro-filage : Application aux domaines médical et composite / Contribution to the study of nanofibers characterization obtained by electro-spinning : medical and composite application

Khenoussi, Nabyl 29 November 2010 (has links)
La filature par voie électrostatique consiste à dissoudre un polymère dans un solvant, puis soumettre cette solution à un champ électrostatique intense. Différents paramètres influencent l'obtention, la production et la régularité des nanofilaments obtenus. Parmi ces paramètres, il y a des paramètres physiques inhérents à la cabine de filage, des paramètres électriques et des paramètres liés à la solution. Pour obtenir des nanofilaments, la première étape est de déterminer le ou les meilleurs couples polymère-solvant ainsi que les conditions expérimentales optimales pour obtenir à la fois des produits homogènes et reproductibles. L'obtention de nanofilaments de caractéristiques mécaniques et de structures données est complexe et dépend à la fois de paramètres de filage, mais aussi des propriétés de la solution. Une des propriétés les plus importantes de la solution est sa viscosité. Il a donc été nécessaire d'étudier, pour différents couples solvant-polymère (PA, PAN, PLA, PHEA) leur comportement rhéologique. Ces études rhéologiques ont permises d'expliquer les morphologies des matériaux obtenus par la conformation macromoléculaire de la solution. Les non-tissés de nanofibres obtenus ont été caractérisés par Microscopie à Forces Atomiques (AFM), Microscopie Electronique à Transmission (MET) et à Balayage (MEE) pour les aspects morphologiques. D'autres caractérisations, thermique (DSC), spectroscopique (FTIR) et mécaniques (traction et indentation) ont complété la caractérisation de ces matériaux. A l'issue de l'étude précédente, les nanofibres ont été employées dans deux applications. (1) L'incorporation et la compatibilisation de nanorenforts à l'intérieur d'une matrice polymère (Polyacrylonitrile). L'influence sur les propriétés géométriques des nanofibres de façon globale, et plus finement, la morphologie de surface, ont été observées par une analyse AFM de nano-rugosité. (2) La réalisation à partir d'un biopolymère d'un guide tubulaire permettant la croissance cellulaire et la reconnexion de nerfs sectionnés. Il a fallu pour cela remplir un cahier des charges rigoureux en termes de dimensionnement, de structure, et de propriétés mécaniques. / Electrospinning is a process to produce the fibers in nano scale by injecting the polymer solution through a metallic needle to a high voltage electrical field. Different parameters affect the process production and regularity of obtained nano-web. Among these parameters, there are physical parameters depending on the electrospinning booth, electrical parameters and polymer solution properties. For nanofibers production, the first step is to determine the most efficient polymer-solvent pairs and the optimal experimental conditions for both homogeneous and reproducible products. Obtaining mechanical and morphological properties of nanofibers nonwowen is complex and depends on the electrospinning parameters, but also the solution properties. One of the most important properties of the solution is its viscosity. It was therefore necessary to study for the selected pairs (PA, PAN, PLA, PHEA) their rheological behaviour. These rheological studios allow to explain the morphology of obtained nanofibers, which could be explained by the conformation of the macromolecules in the solution. Nonwoven nanofibers obtained were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) for morphological aspects. Other characterizations, thermal (DSC), spectroscopie (FTIR) and mechanical (tensile and indentation) completed the characterization of these materials. After these previous studios, the nanofibers have been used in two applications. (1) The incorporation of nanofillers and compatibilization within a polymer matrix (Polyacrylonitrile). The influence on the geometric properties of nanofibers, and surface morphology were observed by AFM nano-roughness analysis. (2) The production by electrospinning of a guide tube for cell growth and reconnection of severed nerves: from a biopolymer. The produced material had to meet strict specifications in terms of size, structure, and mechauical properties.
44

Fabrication of nanofibrous mats by "green" electrospinning for liquid microfiltration applications / « Green » électrospinning de membranes nanofibreuses pour des applications de filtration liquide

Mailley, Domitille 03 October 2018 (has links)
La fabrication de membranes nanofibreuses par un procédé d’électrospinning plus respectueux de l’environnement, ou plus « vert », est de nos jours un défi. L’électrospinning est un procédé qui permet, généralement à partir d’une solution de polymère, d’obtenir des membranes non-tissées dont le diamètre des fibres est compris entre 50 nm et quelques micromètres. Deux stratégies nouvelles ont été développées pour répondre à ce besoin croissant. La première consiste à fabriquer des membranes à partir de polymères bio- sourcés tandis que la deuxième vise à employer des solvants exclusivement aqueux. Cette deuxième stratégie permet de s’affranchir des vapeurs de solvants souvent toxiques utilisés au cours du procédé. Dans ce cadre, des membranes ont été fabriquées à partir de suspensions aqueuses de polymères non-hydrosolubles, d’une part, et à partir d’acide tannique, une molécule non-polymérique bio-sourcée en exploitant les interactions supramoléculaires. Ces stratégies plus « vertes » rendent moins dangereuse et moins couteuse l’utilisation d’émetteurs multi-jets et permettent, de ce fait, une meilleure industrialisation du procédé d’électrospinning. Les membranes développées ont été fabriquées pour des applications de microfiltration liquide. En effet, les membranes d’électrospinning peuvent allier des tailles de pores submicroniques à des porosités supérieures à 80% contrairement aux membranes de microfiltration commerciales (porosité < 40%). La fabrication de membranes de filtration par un procédé d’électrospinning multi-jet « vert » permet ainsi d’accroitre les débits de production et de filtration tout en respectant davantage l’environnement. / The fabrication of nanofibrous mats by an environmentally friendly, or in other words by a “green”, electrospinning process is nowadays a challenge. Electrospinning is a process allowing the fabrication, generally from a polymer solution, of nonwoven mats composed of fibers having diameters ranging between 50 nm and a few micrometers. Two new strategies have been developed to answer such a growing need. The first one consists in electrospinning bio-sourced polymers while the second one is based on the electrospinning of aqueous solutions exclusively. This second strategy allows avoiding toxic vapors coming from the evaporation of toxic solvents often used during the process. In this context, mats were electrospun from solutions composed of aqueous suspensions of water insoluble polymers, on one hand, and composed of tannic acid, a non-polymeric bio-based molecule exploiting supramolecular interactions. These new environmentally friendly strategies turn the electrospinning process in a less dangerous and less expensive one, and, as a result, ease the use of multi-jet setups and enable a better industrialization of the electrospinning process. Membranes have been developed for liquid microfiltration applications. As a matter of fact, electrospinning membranes can combine submicron pore sizes with porosities greater than 80% unlike commercial microfiltration membranes (porosity < 40%). The fabrication of liquid filtration membranes by a multi-jet "green" electrospinning process, thus, makes it possible to increase the production rates of electrospinning mats and filtration rates while respecting the environment.
45

Nanomédecine régénérative de l'articulation temporo-mandibulaire / Temporomandibular joint regenerative nanomedicine

Van Bellinghen, Xavier 13 March 2019 (has links)
L'articulation temporo-mandibulaire (ATM) est une articulation formée entre l'os temporal et le condyle mandibulaire, et est fréquemment atteinte. Ces affections sont souvent si douloureuses lors d'activités orales fondamentales que les patients ont une qualité de vie diminuée. Les limites de la thérapeutique pour les atteintes des ATM, ont conduit à accroître l'intérêt pour les stratégies régénératives combinant les cellules souches, les "scaffolds" implantables et les molécules bioactives. Réussir dans la régénération fonctionnelle et structurelle de l'ATM constitue un véritable défi. Des stratégies innovantes et des biomatériaux sont absolument essentiels car l'ATM peut être considérée comme l'un des ensembles tissulaires les plus difficiles à régénérer, au vu de sa capacité de guérison limitée, de ses propriétés histologiques et structurelles uniques et de la nécessité de prévenir à long terme ses adhérences ossifiées ou fibreuses. Une première étude in vitro a été menée pour développer un implant nanostructuré pro-régénératif du cartilage portant des cellules souches mésenchymateuses humaines. Les nanoréservoirs de TGFβ3 au sein d’une matrice de collagène de type II de méduse ont montrés leur capacité chondrogénique. Ils ont permis une colonisation, puis une différenciation et une maturation matricielle favorable à la régénération cartilagineuse. Ces résultats sont encourageants vu la difficulté de mise en culture des chondrocytes et la nécessité d'une restauration rapide de la couche cartilagineuse des surfaces articulaires. Une deuxième étude in vivo a été menée pour développer un implant nanostructuré pro-régénératif anti-inflammatoire osseux. Des matrices biomimétiques nanofibreuses et microporeuses de polycaprolactone (PCL) ont été fonctionnalisées par des nanoréservoirs de BMP-2 et d’ibuprofène. Elles ont été implantées sur des modèles murins de lésions osseuses maxillaires. L’accélération de la régénération induite par ces implants nanofonctionnalisés a été mise en évidence sur des souris sauvages et sur des souris mutantes Tabby. Le bénéfice ainsi établi de fonctionnalisation des implants par la BMP-2 et l'ibuprofène revêt un intérêt particulier face aux fréquentes pathologies inflammatoires chroniques de l'ATM. Ces résultats prometteurs devront faire suite à des approches d'orchestration tridimensionnelle des différents tissus de l'ATM. / The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. A first in vitro study was conducted to develop a pro-regenerative nanostructured cartilage implant bearing human mesenchymal stem cells. The nanoreservoirs of TGFβ3 within a jellyfish type II collagen matrix showed their chondrogenic capacity. They allowed colonization, then differentiation and matrix maturation favorable to cartilaginous regeneration. These results are encouraging given the difficulty of culturing chondrocytes and the need for rapid restoration of the cartilaginous layer of articular surfaces. A second in vivo study was conducted to develop a nanostructured pro-regenerative anti-inflammatory bone implant. Nanofibrous and microporous biomimetic matrices of polycaprolactone (PCL) were functionalized by nanoreservoirs of BMP-2 and ibuprofen. They have been implanted in mouse models of maxillary bone lesions. The acceleration of regeneration induced by these nanofunctionalized implants has been demonstrated in wild-type mice and Tabby mutant mice. The benefit thus established of functionalization of implants by BMP-2 and ibuprofen is of particular interest in the frequent chronic inflammatory pathologies of TMJ. These promising results follow three-dimensional orchestration approaches for different TMJ tissues.
46

Síntese e caracterização de ácido-all-trans-retinoico incorporado a nanofibras poliméricas e seus efeitos sobre células de osteossarcoma / Sintesis and characterization of all-trans-retioic-acid incorporated to polymers Nanofibers under human osteossarcoma cells

Girondi, Camila Miorelli 02 May 2018 (has links)
Submitted by Camila Girondi (camila.girondi@gmail.com) on 2018-07-03T20:30:17Z No. of bitstreams: 1 Dissertação 28.06 COM FICHA CATALOGRÀFICA.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5) / Approved for entry into archive by Silvana Alvarez null (silvana@ict.unesp.br) on 2018-07-10T19:06:46Z (GMT) No. of bitstreams: 1 girondi_cm_me_sjc.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5) / Made available in DSpace on 2018-07-10T19:06:46Z (GMT). No. of bitstreams: 1 girondi_cm_me_sjc.pdf: 1652288 bytes, checksum: 2ff0f9722f6563cc30aaacbdd2bd4b81 (MD5) Previous issue date: 2018-05-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As nanofibras (NF) podem ser sintetizadas por meio de eletrofiação, um método simples que permite incorporação de fármacos em biopolímeros que apresentam a vantagem de serem liberados de forma gradual. Policaprolactona (PCL) apresenta a vantagem de poder ser eletrofiada permitindo a incorporação de fármacos. Os ácidos retinoicos são fármacos empregados no tratamento de osteossarcoma, mas, apresentam efeitos colaterais. O ATRA (all-trans-retinoic-acid) é o mais comum entre os retinoides. Os objetivos deste estudo foram: sintetizar e caracterizar NF, incorporar o fármaco a elas e verificar a liberação ao meio de cultura; realizar testes de citoxicidade e genotoxicidade tais como: crescimento, integridade, viabilidade e micronúcleo de células MG63 tratadas com NF incorporada com ATRA e analisar a secreção das citocinas pró inflamatórias: IL-1β, IL-6 e TNF-α por meio do teste ELISA. As NF sintetizadas por meio da eletrofiação foram caracterizadas morfologicamente e bioquimicamente por meio de microscopia eletrônica de varredura (MEV) e estudo do espectro de infravermelho da transformada de Fourrier (FTIR): Os testes in vitro foram realizados utilizando uma linhagem de células imortalizadas de osteossarcoma, MG63. Os ensaios incluídos nesse estudo foram divididos em grupos compostos por: [C (controle puro), ATRA (controle positivo), NF (controle negativo) e NF + ATRA (grupo experimental).] Em todos os grupos foram realizados testes de viabilidade celular (MTT), micronúcleo e ELISA sob os tempos de 3, 7 e 14 dias. A liberação do fármaco através do sistema de NF+ATRA foi comprovada pelo FTIR. Os demais resultados encontrados foram avaliados através do teste ANOVA one-way, no qual o método apresentou-se eficiente, mostrando diferença estatística de p=0,00, sendo signficante para todos os períodos de tempo nos testes de MTT e MN, além de ser verificada a secreção de citocinas proinflamatórias IL-1β e IL-6, comprovando os efeitos citotóxicos e genotoxicos sob células MG63 mostrando a efetividade da técnica. Podendo ser uma alternativa para o tratamento. / Nanofibers (NF) can be synthesized by electro-spinning, a simple method that allows incorporation of drugs into biopolymers that have the advantage of being released gradually. Polycaprolactone (PCL) has the advantage that it can be electrophied allowing the incorporation of drugs. Retinoic acids are drugs used in the treatment of osteosarcoma, but have side effects. ATRA (all-trans-retinoicacid) is the most common retinoid. The objectives of this study were: to synthesize and characterize NF, to incorporate the drug to them and to verify the release to the culture medium; perform cytotoxicity and genotoxicity tests such as: growth, integrity, viability and micronucleus of N63-treated NF-treated cells with ATRA and to analyze the secretion of pro-inflammatory cytokines: IL-1β, IL-6 and TNFα by the ELISA . The NF synthesized by electrophilation were characterized morphologically and biochemically by scanning electron microscopy (SEM) and Fourrier Transform Infrared Spectrum (FTIR) study: In vitro tests were performed using an immortalized osteosarcoma cell line, MG63. The trials included in this study were divided into groups composed of: C (pure control), ATRA (positive control), NF (negative control) and NF + ATRA (experimental group). All groups were tested for cell viability (MTT), micronucleus and ELISA under the times of 3, 7 and 14 days. Release of the drug through the NF + ATRA system was confirmed by FTIR. The other results were evaluated using the oneway ANOVA test, in which the method was efficient, showing a statistical difference of p = 0.00, being significant for all time periods in the MTT and MN tests, besides the secretion of proinflammatory cytokines IL-1β and IL-6, proving the cytotoxic and genotoxic effects under MG63 cells, showing the effectiveness of the technique. It may be an alternative to treatment
47

Fabrication et étude de nanomatériaux 1D conducteurs par électrofilage pour leurs propriétés optoélectroniques / Fabrication and study of 1D conductive nanomaterials by electrospinning for their optoelectronic properties

Bessaire, Bastien 27 September 2016 (has links)
L'utilisation de matériaux transparents et conducteurs a subi une croissance exponentielle lors de la dernière décennie, puisque faisant partie intégrante de nombreux dispositifs optoélectroniques tels que les écrans tactiles & les cellules solaires. Parmi ces matériaux, l'oxyde d'indium-étain occupe la quasi-totalité du marché puisqu'il associe une conductivité élevée et une transparence supérieure à 90% sous forme de film mince. Cependant, le développement de technologies flexibles pousse à rechercher des alternatives à son utilisation car son cout élevé et sa faible flexibilité le rendent incompatible. Au milieu des alternatives carbonées (graphène et nanotubes), les nanomatériaux métalliques ou les polymères conducteurs se présentent comme des alternatives intéressantes : bas cout et facilité à mettre en forme pour les polymères conducteurs, hautes performances pour les nanofils métalliques. Cette thèse présente la mise en œuvre de ces matériaux alternatifs par la méthode originale d'électrofilage et l'étude de leurs propriétés optoélectroniques. La maitrise des conditions de mise en forme (champ, débit, paramètres environnementaux) et l'optimisation des solutions utilisées (rhéologie, concentration en polymère, co-solvants) nous a permis d'obtenir 2 types de nanostructures : des nanofibres 100% polymériques à base de PEDOT:PSS et des nanofibres composites PVP:Nanofils d'argent. L'étude des propriétés opto-électroniques des réseaux ainsi obtenus a aussi été étudiée / The use of transparent and conductive materials has been growing exponentially in the last decade as they are part of many optoelectronic devices such as touch screens and solar cells. Among these materials, Indium-Tin Oxide (ITO) is the market reference since it combines a low resistivity and a high transparency up to 90% in the form of thin film. However, the growing in the development of flexible technologies created a real need in alternatives as ITO has poor mechanical properties. Carbon nanotubes and graphene are potential substitutes, but metallic nanowires and conductive polymers have been developed for their high performances and low cost respectively.This thesis presents the implementation of these alternatives by the original method of electrospinning and the study of their optoelectronic properties. The optimization of the experimental setup (field, rate, environmental parameters) and solutions (rheology, polymer concentration, co-solvents) allowed us to obtain 2 different kinds of nanostructures: fully polymeric with PEDOT:PSS and composite with PVP and silver nanowires. The study of the optoelectronic properties of the resulting networks has also been investigated
48

Fabrication de nanofibres et nanoparticules de biopolyesters pour la libération contrôlée d'un composé modèle / Temporally and spatially controlled delivery from electrospun biopolyesters

Lavielle, Nicolas 29 November 2013 (has links)
L’électrospinning est un procédé couramment utilisé pour la fabrication de membranes nanofibreuses non-tissées. Ces membranes sont particulièrement intéressantes pour des applications tels que l’ingénierie tissulaire et la libération contrôlée de médicaments car elles sont très poreuses et ont une large surface spécifique. Dans une première partie, nous avons développé une nouvelle stratégie afin de contrôler la morphologie et la dimension des fibres fabriquées par electrospinning. Puis nous avons développé un composite fait de nanofibres de PLA et de microparticules de PEG auto-organisé, créant des motifs en nid d’abeilles qui grandissent avec l’épaisseur de la membrane. Ces membranes auto-organisées ont une structure poreuse dont la dimension des pores va de quelques microns à plusieurs centaines de microns. Enfin, deux modèles ont été développés pour une libération contrôlée d’un composé model : la délivrance retardée par l’élaboration de structure sandwich et la libération directionnnelle par la création d’un gradient de concentration avec différentes cinétiques. / Electrospinning is widely used for the synthesis of nanofibrous non-woven membranes. The fabricated electrospun membranes have high porosity and high surface to volume ratio; they are thus suitable for many applications such as sensing, tissue engineering or drug delivery. In the present work, the first focus was on the fabrication of electrospun fibers with controlled morphology and dimension. Then A self-organized honeycomb-like composite made of simultaneously electrosprayed PEG microparticles and PLA electrospun fibers was developed. The obtained composite mat exhibits a hierarchical, porous structure with pore sizes ranging from few microns up to several hundreds of microns. Finally, a method tailoring the hydrophobicity of drug loaded nanofibrous membranes by the incorporation of electrosprayed PEG microparticles was developed.
49

Microstructuration of nanofibrous membranes by electrospinning : application to tissue engineering / Micro-structuration de membranes nanofibreuses par électrospinning : application à l'ingénierie tissulaire

Nedjari, Salima 21 October 2014 (has links)
L’objectif de cette thèse était de développer de nouveaux biomatériaux nanofibreux architecturés (2D ou 3D) grâce à la méthode d’électrospinning puis d’étudier l’influence de ces structures nanofibreuses sur le comportement des cellules osseuses. L’électrospinning est une technique qui permet d’obtenir des nanofibres en projetant sous l’action d’un champ électrique intense une solution de polymère sur un collecteur. Les nanofibres sont alors généralement disposées aléatoirement sous forme de mats (ou scaffolds). Ces scaffolds trouvent des applications en ingénierie tissulaire grâce à leur structure mimant la matrice extracellulaire des tissus vivants. Toutefois, il a été montré que lorsque le collecteur est micro-structuré, il est alors possible de contrôler l’organisation des fibres lors de leur dépôt grâce à la perturbation locale du champ électrique au voisinage de la surface du collecteur. Ces collecteurs architecturés jouent ainsi le rôle de « templates » électrostatiques. Dans un premier temps, nous avons développé des scaffolds 2D nanofibreux monocomposants en forme de nids d’abeilles grâce à l’utilisation d’un collecteur micro-structuré en nids d’abeilles lors du procédé d’électrospinning. Ces scaffolds ont été développés à partir de deux biopolyesters le poly(ε-caprolactone) (PCL) ou le poly(lactic acid) (PLA). Nous avons prouvé que la morphologie des nanofibres de PCL (distribution bimodale du diamètre des fibres) conduisait à un scaffold présentant un relief beaucoup plus marqué alors qu’avec les fibres de PLA, qui présentent une distribution monomodale du diamètre des fibres, les scaffolds obtenus sont beaucoup plus plats. Nous avons montré qu’il est possible de contrôler l’organisation spatiale de cellules osseuses de type MG-63, des ostéoblastes, en jouant sur le relief et l’architecture du scaffold. Puis, nous avons démontré qu’en couplant la micro-structuration des nanofibres de PCL (par l’utilisation d’un collecteur en nid d’abeilles lors du procédé d’électrospinning) avec les propriétés d’auto-assemblage du PCL, nous pouvions élaborer de nouveaux scaffolds nanofibreux 3D ayant la particularité de présenter des pores de tailles contrôlées ainsi qu’un gradient de porosité dans l’épaisseur du scaffold. Puis nous nous sommes intéressés à l’élaboration de membranes composites micro-structurées 2D et 3D. En couplant le procédé d’électrospinning avec le procédé d’électrospraying sur des collecteur micro-structurés, nous avons démontré que nous pouvions déposer de manière contrôlée les particules spécialement sur les murs des nids d’abeilles grâce notamment à la présence d’une très fine couche de fibres électrospinnées au préalable sur le collecteur. Cette fine couche de nanofibres joue le rôle de « template électrostatique » pour le dépôt des particules. Nous avons ensuite appliqué cette technique pour développer des membranes composites nanofibreuses bicouches à base de nanofibres de PCL et de microparticules d’hydroxyapatite (HA). Ces membranes composées de 21 microarchitectures différentes (barres, plots, hexagones, labyrinthe) ont ensuite été intégrées dans des mini plaques de culture cellulaire, formant ainsi un nouveau type de biopuce, appelés biochips, qui permettent pour le screening des microarchitectures nanofibreuses. Enfin, en combinant simultanément l’électrospinning de nanofibres et l’électrospraying de particules sur des collecteur micro-structurés en nid d’abeilles, des scaffolds composites 3D présentant des pores cylindriques de tailles contrôlées ont été élaborés. / The aim of this thesis was to develop new architectured nanofibrous biomaterials (2D or 3D) using the electrospinning method and to study the influence of these nanofibrous structures on bone cells behaviors. Electrospinning is a technique allowing the production of nanofibers by projecting, under the action of a strong electric field, a polymer solution on a collector. The nanofibers are generally randomly deposited and form mats or scaffolds. These scaffolds are interesting for tissue engineering applications because of their structure mimicking the extracellular matrix of living tissues. However, it has been shown that when the collector is microstructured, it is possible to control the organization of the fibers during their deposition through the local perturbation of the electric field at the vicinity of the surface of the collector. These micropatterned collectors act as "electrostatic templates". First, 2D honeycomb nanofibrous scaffolds were elaborated using micropatterned honeycomb collectors during the electrospinning process. These scaffolds were made either with poly(ε-caprolactone) (PCL) or poly(lactic acid) (PLA). We showed that the morphology of the PCL nanofibers (bimodal distribution of the fiber diameter) led to a scaffold with a strong relief. Despite, with PLA fibers which presented a monomodal distribution of the fiber diameter, the obtained scaffolds were much flatter. It was possible to control the spatial organization of bone-like cells MG-63 (osteoblasts), playing on the relief and the architecture of the scaffold. Subsequently, 3D materials were elaborated using micropatterned collectors in order to open new paths for the development of filling materials for bone regeneration. Microstructuration of PCL nanofibers (by the use of micropatterned honeycomb collector during the electrospinning process) coupled with the self-assembling properties of the PCL lead to the development of new 3D nanofibrous scaffolds, with controlled pore size and porosity gradient in the thickness of the scaffold. Afterwards, micropatterned composite 2D and 3D membranes were elaborated. By coupling the process of electrospinning with the process of electrospraying on micropatterned collector, we demonstrated that we can deposit the particles in a controlled way, especially on the walls of honeycomb patterns thanks to the presence of a thin fiber layer first deposited on the collector. This thin nanofiber layer plays the role of an "electrostatic template" for the particles deposition. Thereafter, this technique was applied to develop bilayers composite nanofibrous membranes containing PCL nanofibers and hydroxyapatite (HA) microparticles. These membranes consisted of 21 different microarchitectures (bars, blocks, hexagons, maze) were then incorporated into a small cell culture plate, thereby forming a new type of biochip for the screening of nanofibrous architectures. Indeed, these biochips allowed the screening of nanofibrous microarchitectures to identify the most relevant for bone regeneration. It turned out that the HA hexagonal structures (with an average diameter of 300 microns) and circular HA structures (with an average diameter of 150 microns) are the structures that enhance the most the mineralization process of bone cells. Finally, by combining simultaneously electrospinning nanofibers and electrospraying particles on micropatterned honeycomb collector, 3D composite scaffolds were elaborated. It was possible to control the size of cylindrical pores of these 3D composite from tens to hundreds of microns by changing the size of the honeycomb patterns of the collector.
50

Matériaux carbonés nanostructurés pour supercapacités électrochimiques / Nanostructured Carbon materials for electrochemical supercapacitors

Gao, Pengcheng 04 March 2014 (has links)
Différents matériaux carbonés nanostructurés ont été synthétisés et mis en oeuvre comme matériaux supercapacitifs à double couche électrochimique (EDLC) ou comme substrats de matériaux pseudocapacitifs avec pour objectif d'augmenter leur densité de puissance. Nous avons ainsi développé une méthode de synthèse simple et originale de carbures de silicium (SiC) qui procède par une réduction topotactique d'un composite silice/carbon par le magnésium. Du fait de la température de synthèse inférieure à 800°C, SiC résultant conserve la morphologie et/ou la structure poreuse du précurseur composite. Par cette approche, nous pouvons moduler la structure poreuse ordonnée de SiC à façon, développer des porosités hiérarchiques méso/macro, préparer des feuillets ou des fibres de SiC. Les différentes formes de SiC ont été converties par chloration en autant de carbones, opération introduisant une microporosité supplémentaire. En électrolyte organique, ces carbones à porosité hierarchique combinent à la fois des capacités importantes issues de la microporosité mais également des performances inégalées en terme de puissance du fait de la méso ou macro-porosité associée. Dans une approche différente, des feuillet de graphène ont été décorés par voie sol-gel non-hydrolytique (micro-onde en milieu alcool benzilique) par des nanoparticules de FeOx. Le composite FeOx/graphene résultant combine simultanément les comportements EDLC et pseudocapacitif du graphène et de FeOx. Du fait de sa structure particulière, le composite FeOx/graphene conserve les performances en puissance du graphène auxquelles s'ajoutent celles d'énergie de FeOx. Nous avons également décoré des nanofibres de carbone avec des carbones mésoporeux. Après dépôt de MnO2 birnessite, les composites gagnent à la fois en capacité et en puissance en particulier avec des carbones présentant des pores supérieurs à 10nm. / Various nanostructured carbon materials were synthesized and further served as active materials of electrical double layer capacitor or substrates of pseudocapacitive materials in order to improve power capability of corresponding supercapacitor. On the one hand, a simple synthesis of porous silicon carbides (SiCs) was achieved by performing a topotactic thermal reduction by magnesium (Mg) of a silica/ carbon composite. Thanks to the low synthetic temperature (below 800 ºC), the SiCs well preserved the pristine skeletons of their silica/carbon precursors. Successively, the SiCs with diverse porous structures from their silica/carbon precursor emerged, e.g. ordered tunable mesoporous SiCs, 3D-hierarchical meso and macroporous SiC, SiC nanosheet and SiC nanofiber. Furthermore, the porous SiCs derived from magnesio-thermal reduction were reduced to hierarchical carbons with newborn narrow distributed microporosity by chlorination. In an organic electrolyte, the hierarchical carbon combines the high specific capacitance from narrow distributed microporosity and the outstanding rate capability from ordered-arranged meso or macroporosity that make it promising for high power and energy density capacitor. On the other hand, a “benzyl alcohol route” has been used to decorate RGO nanosheets with FeOx nanoparticles. The resulting FeOx/ RGO composite, due to their hybrid nanostructure, combine both EDLC capacitive and pseudocapacitive bahaviors of RGO and FeOx, respectively. Thanks to the laminated RGO and nano FeOx particles film, the resulting composite gains the same power capability as RGO and a higher energy density than raw FeOx. Furthermore, mesoporous carbon was introduced to adorn the CNF surface through self-assemble of resol, carbon nanofiber(CNF) and Pluronic@127. After further coating with birnessite-MnO2, the composite electrode gains extra capacitance and power improvement in presence of superficially coating mesoporous carbon with pore size larger than 10nm.

Page generated in 0.4272 seconds