• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 16
  • 9
  • Tagged with
  • 71
  • 37
  • 19
  • 15
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Thermique et thermodynamique des nanosystèmes

Bourgeois, Olivier 09 October 2008 (has links) (PDF)
La réduction des dimensionnalités de systèmes physiques implique des modifications substantielles des propriétés thermiques. Avec l'engouement pour les nanosciences et en particulier pour la nanophysique, les physiciens et chimistes ont cherché à savoir si la matière possédait les mêmes propriétés à petite échelle que dans les échantillons massifs. Depuis vingt ans de belles illustrations expérimentales de variations de propriétés électriques (magnétiques) ont été obtenues en physique mésoscopique, en matériau ou en magnétisme. En revanche les propriétés thermiques et thermodynamiques restent relativement mal comprises et ce pour plusieurs raisons: il est très difficile de contrôler les flux de chaleur à très petite échelle, les énergies mises en jeu pour des systèmes peu massiques sont très faibles et donc délicates à mesurer, et enfin la manipulation et la fragilité de ces petits systèmes transforme leur mesure en un défi expérimental. C'est ce que nous cherchons à faire dans ce travail.
22

Croissance, assemblage et intégration collective de nanofils de ZnO : application à la biodétection / Growth, assembly and collective integration of ZnO nanowires : application to biosensing

Demes, Thomas 17 March 2017 (has links)
Les réseaux bidimensionnels de nanofils (NFs) d’oxyde de zinc (ZnO) aléatoirement orientés, ou nanonets (pour « nanowire networks »), constituent des nanostructures innovantes et prometteuses pour de nombreuses applications. L’objectif de cette thèse est de développer des nanonets de ZnO en vue d’applications à la détection de molécules biologiques ou gazeuses, en particulier de l’ADN, ceci selon une procédure bas coût et industrialisable. Dans ce but, il est essentiel de bien maitriser les différentes étapes d’élaboration qui sont : (i) le dépôt de couches minces de germination de ZnO sur des substrats de silicium par voie sol-gel, (ii) la croissance de NFs de ZnO sur ces couches de germination par synthèse hydrothermale, et (iii) l’assemblage par filtration sous vide de ces NFs en nanonets de ZnO. Des études approfondies de chacun de ces procédés ont donc été menées. Ces travaux ont permis d’élaborer des couches minces, des NFs et des nanonets de ZnO reproductibles et homogènes dont les propriétés morphologiques sont précisément contrôlées sur une large gamme. Deux protocoles de biofonctionnalisation des nanonets avec de l’ADN ont ensuite été développés et ont abouti à des résultats encourageants mais restant à optimiser. Les nanonets ont également été intégrés au sein de dispositifs fonctionnels et les premières caractérisations électriques ont fourni des résultats prometteurs. A terme, ce travail ouvre la voie à l’intégration collective de NFs de ZnO qui permettrait la réalisation d’une nouvelle génération de capteurs (de biomolécules, de gaz…) à la fois portables, rapides et très sensibles. / Two-dimensional randomly oriented zinc oxide (ZnO) nanowire (NW) networks, or nanonets, represent innovative and promising nanostructures for numerous applications. The objective of this thesis is to develop ZnO nanonets for the detection of biological or gaseous molecules, in particular DNA, by using a low cost and scalable procedure. To this end, it is essential to control the different elaboration steps which are: (i) the deposition of ZnO seed layer films on silicon substrates by sol-gel approach, (ii) the growth of ZnO NWs on these seed layer films by hydrothermal synthesis, and (iii) the assembly of these NWs into ZnO nanonets by vacuum filtration. In-depth studies of each of these processes were thus carried out. This work enabled to elaborate reproducible and homogenous ZnO thin films, NWs and nanonets whose morphological properties are precisely controlled over a wide range. Two DNA biofunctionnalization protocols were then developed for the nanonets and led to encouraging results which need however to be further optimized. The nanonets were also integrated into functional devices and the first electrical characterizations provided promising results. In the longer term, this work opens the way to the collective integration of ZnO NWs which would enable the development of a new generation of portable, fast and ultra-sensitive (bio- or gas-) sensors.
23

Etude des mécanismes physiques de fiabilité sur transistors Trigate/Nanowire / Study of the physical mechanisms affecting the reliability of the trigate transistors

Laurent, Antoine 05 April 2018 (has links)
En continuant à suivre la loi de Moore, les transistors ont atteint des dimensions de plus en plus réduites. Cependant pour les largeurs inférieures à 100nm, des effets parasites dits de canaux courts sont apparus. Il a ainsi fallu développer de nouvelles architectures, à savoir les transistors 3D, aussi appelés trigates, finfets ou encore nanofils. Le remplacement des transistors planaires utilisés depuis les années 60 par ces dispositifs tridimensionnels constitue une réelle rupture technologique et pose de sérieuses questions quant à la fiabilité de ces nouveaux composants électroniques. Parmi les spécificités des dispositifs 3D, on peut notamment citer l’utilisation de différents plans cristallins du silicium, les potentiels effets d’angle ou encore le confinement des porteurs de charge. Les principaux mécanismes de fiabilité doivent, à ce titre, être étudiés afin de prédire le vieillissement de tels dispositifs. Ainsi, l’évolution du transistor MOS et les limites de l’architecture planaire sont rappelées dans un premier temps. Les différents mécanismes de dégradation ainsi que les méthodes de caractérisation sont également exposés. Les défauts d’oxyde jouant un rôle important en fiabilité, l’impact sur la tension de seuil VT d’une charge élémentaire q selon sa localisation spatiale a été simulé. On a ainsi pu constater que l’influence de ces défauts change selon leur position mais aussi selon les dimensions du transistor lui-même. Par la suite, le manuscrit se concentre sur la dégradation BTI (Bias Temperature Instabilities). Une comparaison entre les transistors trigates et d’autres quasi planaires a ainsi été effectuée en mettant en évidence les effets de la largeur du MOSFET. Un autre mécanisme important de fiabilité est intitulé dégradation par porteurs chauds ou HC, hot carriers en anglais. Les principaux modèles développés sur les architectures planaires ont été rappelés puis vérifiés pour les transistors 3D. Lors de stress HC, les niveaux de courant sont tels que des effets d’auto-échauffement apparaissent et dégradent les paramètres électriques du dispositif. Cette contribution a alors dû être décorrélée de la contrainte porteurs chauds afin d’obtenir uniquement la dégradation HC. De manière similaire au BTI, les effets de la largeur du transistor ont également été analysés pour ce mécanisme de fiabilité. Enfin, l’effet des contraintes mécaniques dans le canal, telles que le strained-SOI ou l’apport de germanium, a été étudié non seulement du point de vue des performances mais également de la fiabilité. Nous avons alors pu en déduire le meilleur compromis performance/fiabilité réalisable. / By continuing to follow Moore’s law, transistors have reached ever smaller dimensions. However, from 100nm gate length, parasitic effects called short channel effects appear. As a result new architectures named trigate, nanowires or finfets have been developed. The transition from planar technology used for the last fifty years to 3D devices is a major technological breakthrough. The special features of these architectures like conduction over various crystalline planes, corner effects or carrier confinement effects raise numerous questions about their reliability. Main reliability mechanisms have to be study in order to evaluate 3D transistor aging. In this way, MOS transistor evolution and planar architecture limits have first been reminded. The electrical degradation mechanisms and their characterization methods have also been exposed. As oxide defects represent an important part of device reliability, impact on threshold voltage VT of an elementary charge q has been simulated in accordance to its spatial localization. Thus we can notice that the defect influence on VT change with at once its position and the device dimensions. Next, this manuscript focuses on Bias Temperature Instabilities (BTI). A parallel has been done between narrow Trigate devices and wide ones which can be considered as planar transistors and a width effect on NBTI (Negative BTI) degradation has been highlighted. Another major reliability mechanism is called hot carrier degradation. Its principle models developed on planar architecture have been remembered and their validity on Trigate transistors has been verified. During HC stress, current density can be so high that self-heating effects appear and degrade device electrical parameters. Therefore this contribution has been decorrelate from HC degradation in order to obtain the result of HC stress only. As in BTI chapter, width effect has also been evaluated for this reliability mechanism. Finally strain effects in channel region have been analyzed from both performance and reliability point of view. As a conclusion the best tradeoff between these two items has been determined.
24

Perspectives de biocapteurs nanoélectronique avec spectroscopie d'impédance à haute fréquence / Prospects of nanoelectronic biosensing with high-frequency impedance spectroscopy

Pittino, Federico 21 May 2015 (has links)
Au cours des dernières années, la possibilité de combiner la nanoélectronique et les biocapteurs a ouvert un champ très large et prometteur de la recherche, qui a le potentiel de révolutionner la biologie analytique et pour permettre le diagnostic envahissants et la médecine personnalisée. Plates-formes intégrées de biocapteurs nanoélectroniques peuvent fournir une compensation et l'étalonnage du matériel et des logiciels, une sensibilité améliorée en raison des très petites dimensions, parallélisme élevé, le coût remarquable et la réduction de la taille et les vastes marchés nécessaires à l'industrie des semi-conducteurs. Comme dans le cas de tous les capteurs intégrés nanoélectroniques, la conception fiable et abordable est possible que si des modèles précis sont disponibles pour élucider et quantitativement prédisent le processus de transduction du signal. Cependant, malgré les nombreux efforts, calibré modèles analytiques et numériques pour décrire avec précision la réponse du biocapteur sont encore souvent défaut. Animé par la volonté de combler cette lacune, dans ce travail, nous développons des modèles analytiques compacts et des outils complexes de simulation numérique pour l'étude de la chaîne de transduction dans des biocapteurs nanoélectroniques impédimétriques. En particulier, les ENBIOS simulateur 3D, entièrement développées et validées au cours de cette thèse, est un outil polyvalent qui peut être facilement étendu pour inclure de nouveaux effets physiques ou des descriptions plus sophistiqués d'électrolytes et analytes couplés à des dispositifs semi-conducteurs. Les modèles soulignent l'existence de deux fréquences de coupure pertinentes régissant le biocapteur réponse impédimétriques, ils révèlent les dépendances de la réponse du biocapteur à l'analyte et des conditions environnementales et ils révèlent la présence de signatures bien définis dans le signal d'impédance. Les outils analytiques et numériques sont soigneusement vérifiées et ensuite utilisés pour examiner plusieurs études de cas. La première que nous considérons est un réseau de impédimétriques nanoélectrode biocapteur. En collaboration avec l'Université de Twente, nous étudions sa réponse aux micro-particules conductrices et diélectriques dans des conditions expérimentales bien contrôlées. Nous montrons que les résultats de simulation sont en très bon accord avec les mesures et nous donnent un aperçu des conditions optimales de détection. En étudiant la réponse du biocapteur à de petites particules, comme des protéines, des virus ou de l'ADN, nous confirmons ensuite par simulation les avantages de la spectroscopie d'impédance à haute fréquence, en particulier la capacité des signaux de courant alternatif à une fréquence au-dessus de relaxation diélectrique de la fréquence de coupure de l'électrolyte pour surmonter la Debye criblage et de sonder le volume de l'électrolyte avec une sensibilité presque indépendante de la position et de la charge des particules et de concentration en sel. Dans un deuxième exemple notable nous considérons le cas d'une Silicon Nanowire (SiNW) biocapteur. Nous effectuons les mesures et simulations sur SiNWs dans le régime AC en collaboration avec le CEA / LETI et laboratoires de l'EPFL / CLSE. Nous démontrons le fonctionnement de SiNWs AC en particulier pour les applications de détection pH. Nous confirmons enfin avantage potentiel d'un biocapteur SiNW travailler à haute fréquence, afin d'augmenter la réponse à l'égard de l'opération DC. / In recent years the possibility to combine nanoelectronics and biosensing has opened a very broad and promising field of research, which holds the potential to revolutionize analytical biology and to enable pervasive diagnostics and personalized medicine. Integrated nanoelectronic biosensor platforms can provide compensation and calibration hardware and software, improved sensitivity due to the very small dimensions, high parallelism, remarkable cost and size reduction and the vast markets needed by the semiconductor industry. As in the case of all integrated nanoelectronic sensors, reliable and affordable design is possible only if accurate models are available to elucidate and quantitatively predict the signal transduction process. However, despite the numerous efforts, calibrated analytical and numerical models to accurately describe the biosensor response are often still lacking. Animated by the will to bridge this gap, in this work we develop compact analytical models and complex numerical simulation tools for the study of the transduction chain in impedimetric nanoelectronic biosensors. In particular, the 3D simulator ENBIOS, entirely developed and validated during this thesis, is a general-purpose tool that can be easily expanded to include new physical effects or more sophisticated descriptions of electrolytes and analytes coupled to semiconductor devices. The models point out the existence of two relevant cut-off frequencies governing the biosensor impedimetric response, they reveal the dependencies of biosensor response to the analyte and environmental conditions and they disclose the existence of well-defined signatures in the impedance signal. The analytical and numerical tools are carefully verified and then used to examine several case studies. The first one we consider is an impedimetric nanoelectrode array biosensor. In collaboration with Twente University, we study its response to conductive and dielectric micro-particles under well controlled experimental conditions. We show that the simulation results are in very good agreement with the measurements and we provide insight on optimum detection conditions. By studying the biosensor response to small particles, like proteins, viruses or DNA, we then confirm by simulation the advantages of high frequency impedance spectroscopy, in particular the ability of AC signals at frequency above electrolyte's dielectric relaxation cut-off frequency to overcome the Debye screening and to probe the electrolyte volume with sensitivity almost independent of the particle position and charge and of salt concentration. As a second notable example we consider the case of a Silicon Nanowire (SiNW) biosensor. We perform measurements and simulations on SiNWs in AC regime in collaboration with the CEA/LETI and EPFL/CLSE laboratories. We demonstrate the operation of SiNWs in AC in particular for pH sensing applications. We finally confirm potential advantage of a SiNW biosensor working at high frequency, in order to increase the response with respect to the DC operation. / Negli ultimi anni la possibilità di combinare nanoelettronica e biosensoristica ha apertoun campo di ricerca molto vasto e promettente, che ha il potenziale di rivoluzionare labiologia analitica e di consentire diagnostica pervasiva e medicina personalizzata. Lepiattaforme di biosensori nanoelettronici integrati sono potenzialmente in grado di fornirecompensazioni e calibrazioni hardware, firmware programmabili, una maggiore sensibilitàa causa delle ridotte dimensioni, elevato parallelismo, riduzione notevole dei costi e delledimensioni e i vasti mercati necessari per il settore dei semiconduttori. Come nel casodi tutti i sensori nanoelettronici integrati, un progetto affidabile e conveniente è possibilesolo se sono disponibili modelli accurati per comprendere e prevedere quantitativamente ilprocesso di trasduzione del segnale. Tuttavia, con l’eccezione di alcuni pionieristici sforzi,mancano ancora spesso modelli analitici e numerici calibrati per descrivere accuratamentela risposta della maggior parte dei concept di biosensori.Animati dalla volontà di colmare questa lacuna, in questo lavoro sviluppiamo modellianalitici compatti e complessi strumenti di simulazione numerica per lo studio della catenadi trasduzione in biosensori nanoelettronici impedimetrici. In particolare, il simulatore3D ENBIOS, interamente sviluppato e convalidato durante questa tesi, è uno strumentogenerale che può essere facilmente ampliato per includere nuovi effetti fisici o descrizionipiù sofisticate di elettroliti e analiti accoppiati ai dispositivi a semiconduttore. I modellirilevano l’esistenza di due frequenze di taglio rilevanti che regolano la risposta impedimet-rica del biosensore, rivelano le dipendenze della risposta del biosensore all’analita e allecondizioni ambientali e l’esistenza di firme ben definite nel segnale di impedenza.Gli strumenti analitici e numerici sono attentamente verificati e poi utilizzati per esam-inare diversi casi di studio. Il primo che consideriamo è un biosensore impedimetrico amatrice di nanoelettrodi. In collaborazione con l’Università di Twente, studiamo la suarisposta a micro-particelle conduttive e dielettriche in condizioni sperimentali ben con-trollate. I risultati della simulazione sono in ottimo accordo con le misure e ci fornisconoinformazioni sulle condizioni di rilevamento ottimali. Studiando la risposta del biosensorea piccole particelle, come proteine, virus o DNA, confermiamo quindi tramite simulazionii vantaggi della spettroscopia di impedenza ad alta frequenza, in particolare la capacitàdei segnali in AC a frequenza superiore alla frequenza di taglio di rilassamento dielettricodell’elettrolita di superare lo screening di Debye e di sondare il volume dell’elettrolita conuna sensibilità quasi indipendente da posizione e carica della particella e dalla concen-trazione salina.Come secondo esempio notevole consideriamo il caso di un biosensore a Nanofilo diSilicio (SiNW). Eseguiamo misure e simulazioni su SiNWs in regime AC in collaborazionecon i laboratori CEA / LETI ed EPFL / CLSE. Dimostriamo il funzionamento dei SiNWsin AC, in particolare per applicazioni di misura del pH. Infine, confermiamo i vantaggipotenziali di un biosensore a SiNW operante in alta frequenza, al fine di aumentarel’intensità della risposta rispetto al caso di funzionamento in DC.
25

Etude de NEMS à nanofils polycristallins pour la détection et l’intégration hétérogène 3D ultra-dense / Study of polycrystalline nanowire based NEMS for detection and ultra-dense 3D heterogeneous integration

Ouerghi, Issam 04 December 2015 (has links)
Les progrès technologiques de ces dernières années ont permis une très forte intégration des composants de la microélectronique à l'échelle nanométrique. Face aux limites de la miniaturisation classique, les technologies d'intégration en trois dimensions (3D) ouvrent la voie vers des dispositifs miniaturisés hétérogènes avec de nouvelles générations de puces. En parallèle, de nouveaux concepts tels que les nanofils sans jonction et les nanofils en silicium polycristallins permettent à terme d'imaginer des procédés froids et des dispositifs à faible coût permettant une intégration 3D hyperdense sur un CMOS stabilisé. La fabrication de NEMS à base de nanofils polycristallins pour la détection de masse sur CMOS est donc une nouvelle opportunité « More-Than-Moore ». Les capteurs pourraient être disposés en réseau dense en s'inspirant des architectures mémoires et imageurs. L'adressage individuel de chaque NEMS, la possibilité de les fonctionnaliser à la détection de molécules particulières, et la multiplication des capteurs sur une grande surface (« Very Large Integration » (VLSI)) permettraient la mise en œuvre d'un nouveau genre de capteur multi-physique, compact et ultrasensible. Le but de ces travaux de thèse a donc été la fabrication et l'évaluation des performances de NEMS à base de nanofils en poly-silicium. L'enjeu fut de trouver des procédés avec un budget thermique compatible à une intégration sur back-end. Une étude rigoureuse sur les propriétés physico-chimiques de la couche a été corrélée aux performances électriques, mécaniques, ainsi qu'au rendement des NEMS poly-Silicium, ce qui nous a permis de faire une sélection des meilleurs procédés de fabrication. Les NEMS fabriqués à basse température avec une couche active déposée à température ambiante et recristallisée par laser ont montré des performances, que ce soit au niveau de la transduction (piézorésistivité), ou de la stabilité du résonateur compétitives par rapports aux références monocristallines. / Recently, technological advances lead to a very large scale integration (VLSI) of microelectronics components at the nanoscale. Faced with the traditional miniaturization limits, the three dimensions (3D) integration open the door to heterogeneous miniaturized devices, with new chip generations. At the same time, new concepts such as junctionless nanowires and polycrystalline silicon nanowires allow to imagine low temperature processes and low-cost devices for a 3D integration on a stabilized CMOS. Poly-silicon nanowire based NEMS on CMOS for mass detection is a new "More-Than-Moore" opportunity. The NEMS could be arranged in a dense network like memory and image sensor architectures. The individual addressing of each NEMS, the functionalization for the detection of specific molecules within a large area (VLSI), allow the implementation of a new type of Multi-physics sensors, compact and highly sensitive. The purpose of this thesis has been the manufacturing and the performance evaluation of poly-silicon nanowire based NEMS. The challenge was to find the best processes with a back-end compatible thermal budget. A rigorous study of the layer physicochemical properties has been correlated with the electrical, mechanical performances and the yield of poly-silicon NEMS. This allowed us to make a selection of the best fabrication processes. NEMS manufactured at very low temperature with an active layer deposited at room temperature and recrystallized by a laser annealing exhibited high performances in terms of transduction (piezoresistivity) and frequency stability comparable to monocrystalline references. Polycrystalline silicon.
26

Etude expérimentale des effets mécaniques et géométriques sur le transport dans les transistors nanofils à effet de champ / Study of strain and electrical properties in Si nanowire transistors

Pelloux-Prayer, Johan 15 June 2017 (has links)
Ce document est le résultat de mon travail de thèse au sein du CEA-Leti Grenoble.Il couvre notamment l'évolution de l'effet piézorésistif et des propriétés de transport électrique de transistors à effet de champ en fonction de différentes variables telles que la géométrie, la température, la contrainte mécanique interne....Le point de focalisation de ce travail est d'étudier l'effet de la réduction à l'extrême des dimensions de canal et de grille dans les transistors MOSFET.Une attention spéciale a aussi été portée sur la modélisation des données électriques.Différents algorithmes sont utilisés pour extraire les paramètres clefs des dispositifs, leurs pertinences en fonction des dimensions sont discutées.Un modèle de l'évolution des coefficients piézorésistifs a été dérivé d'un modèle de transport pour les transistors à grilles multiple.Ce modèle permet de prévoir les variations des coefficients piézorésitifs avec la section (largeur et épaisseur du canal) pour un dispositif multigrille.Un effet qui n'est pas prévu par les théories standards pour les dispositifs à très faible section a été montré par les mesures, des hypothèses sont discutées pour expliquer cet effet. / This document is the result of my thesis work at the CEA-Leti Grenoble.It covers the evolution of the piezoresistive effect and the electrical transport properties of field effect transistor device against several variable such as geometry, temperature, internal stress....The focus of this work is to understand the effect brought by extreme reducing of channel and gate dimensions in MOSFET transistors.A special attention is given on electrical data modeling. Different algorithms are used to extract key parameters of devices and their viability against the device dimensions considered is discussed. A new piezoresistive coefficients model is drawn from a known mobility model,it allows to draw a reliable tendancy of piezoresistive variation against the cross section (channel width and thickness) of a given multigate device.An effect not accountable by standard theory for small cross section was shown by the measurements, and some hypothesis are made and discussed to explain whose results.
27

Etude de de l'intégration 3D et des propriétés physiques de nanofils de silicium obtenus par croissance. Réalisation de capacités ultra-denses / Study of the grown silicon nanowire 3D integration and physical properties – Fabrication of high density capacitors

Morel, Paul-Henry 13 December 2011 (has links)
L'évolution de la microélectronique est rythmée par l'augmentation constante du nombre de transistors intégrés dans chaque circuit grâce à la miniaturisation des dispositifs. Face à des coûts de fabrication et de développement de plus en plus élevés d'une part et à l'apparition de phénomènes parasites de plus en plus importants dans les dispositifs miniaturisés d'autre part, l'industrie se tourne progressivement vers l'intégration tridimensionnelle où les circuits sont empilés. La phase suivante de cette évolution pourra consister en la fabrication de circuits eux-mêmes tridimensionnels avec des composants répartis sur plusieurs niveaux. Dans ce contexte, la croissance catalysée de nanofils par CVD permet d'obtenir des structures cristallines en silicium sans relation d'épitaxie et de dimensions nanométriques sans photolithographie agressive. Nous avons utilisé ces propriétés pour la réalisation de démonstrateurs de capacités MOS et MIM ultra-denses de respectivement 22 µF/cm² et de 9 µF/cm² grâce à l'importante surface déployée par une assemblée de nanofils. Ces valeurs correspondent à des gains en surface appotée par les nanofils de 27,5 et de 16 pour les capacités MOS et MIM. Nous présentons dans ce travail de thèse, le dimensionnement, la fabrication et la caractérisation de ces dispositifs, depuis la croissance des nanofils jusqu'à l'obtention du démonstrateur complet. Nous nous sommes également intéressés aux principales briques technologiques de la fabrication de transistors verticaux à base de nanofils pour les niveaux d'interconnexion. Nous avons pour cela mis au point une technologie de croissance guidée de nanofils et étudié les qualités d'interface de l'empilement d'une grille déposé à basse température sur les nanofils. Cette étude s'appuie sur la comparaison des propriétés électriques de capacités MOS à base de nanofils obtenus par croissance catalysée avec les mêmes nanostructures obtenues par épitaxie sélective. Les nanofils catalysés présentent une très bonne qualité d'interface avec un empilement à base d'alumine et de nitrure de titane. Les technologies mises au point dans cette thèse ouvrent de nouvelles opportunités pour l'intégration tridimensionnelle au sein d'une même puce. / The main focus of microelectronic industry has been to increase the number of integrated transistors in each circuit thanks to the device miniaturization. However, due to the increasing manufacturing and development costs combined with the increase of parasitic phenomena in transistors when the dimensions decrease, the microelectronic industry is now focusing on the three-dimensional integration in which strategy, the circuits are stacked. The next step of this tendency will be able to consist in a component stacking inside the same three-dimensional circuit. In this context, the catalyzed CVD grown silicon nanowires are a very promising material since they can be grown with a crystalline structure without any epitaxial relationship. They can also have nanoscale dimensions without any aggressive photolithography step. We report in this thesis, the nanowire integration in high density MOS and MIM capacitors using the high developed surface of a nanowire assembly. This way, we have obtained capacitance densities of 22 µF/cm² and of 9 µF/cm² for MOS and MIM capacitors respectively. In this work, we present how the devices have been designed, fabricated and characterized from the nanowire growth to the complete devices. We have also studied the main steps of the nanowire integration MOS transistors for the interconnects. A guided nanowire growth process has been developed and the interface quality of a low temperature deposited gate stack has been investigated. This study is based on a comparison of MOS capacitor electrical performances between catalyzed and unanalyzed silicon nanowires obtained by selective epitaxial growth. The catalyzed nanowires show a very good interface quality with a gate stack composed of alumina and titanium nitride. The technologies developed in this thesis open new opportunities for the 3D integration of devices on the same chip.STAR
28

Démonstration de l’intérêt des dispositifs multi-grilles auto-alignées pour les nœuds sub-10nm / Demonstrating the interest of self-aligned multiple gate transistors for sub-10nm nodes

Coquand, Rémi 17 December 2013 (has links)
Les nombreuses modifications de la structure du transistor bulk ont permis de poursuivre la miniaturisation jusqu'à sa limite aux nœuds 32/28nm. Les technologies actuelles répondent au besoin d'un meilleur contrôle électrostatique en s'ouvrant vers l'industrialisation de transistors complètement dépletés, avec les architectures sur film mince (FDSOI) ou non planaires (TriGate FinFET bulk). Dans ce dernier cas, le substrat bulk reste limitant pour des applications à basse consommation. La combinaison de la technologie SOI et d'une architecture non-planaire conduit aux transistors TriGate sur SOI (ou TGSOI). Nous verrons l'intérêt de ces dispositifs et démontrerons qu'ils sont compatibles avec les techniques de contrainte. On montrera en particulier les améliorations de mobilité et de courants obtenus sur ces dispositifs de largeur inférieure à 15nm. Des simulations montrent également qu'un dispositif TGSOI peut être compatible avec les techniques de modulation de VT. Enfin, nous démontrons la possibilité de fabriquer des dispositifs ultimes à nanofils empilés avec une grille enrobante par une technique innovante de lithographie tridimensionnelle. La conception, la caractérisation physique et les premiers résultats électriques obtenus seront présentés. Ces solutions peuvent répondre aux besoins des nœuds sub-10nm. / Changing the bulk transistor structure was sufficient so far to fulfill the scaling needs. The current technologies answer the needs of electrostatics control with the industrialization of fully depleted transistors, with thin-film (FDSOI) or non-planar (TriGate FinFet bulk) technologies. In the latter, bulk substrate is still an issue for low power applications. Combining SOI with multiple-gate structure gives rise to TriGate on SOI (or TGSOI). We will discuss the interest of such devices and will demonstrate their compatibility with strain techniques. We will focus on the mobility and current enhancement obtained on sub-15nm width devices. Simulations also demonstrate the compatibility of TGSOI with VT modulation technique. Finally, we demonstrate the fabrication through 3D lithography of ultimate stacked nanowires with a gate-all-around. The conception, physical characterization and first electrical results are presented.
29

Electromechanical study of semiconductor piezoelectric nanowires. Application to mechanical sensors and energy harvesters / Etude électromécanique de nanofils piézoélectriques semi conducteurs. Application aux capteurs et recuperateurs d’énergie mecaniques

Hinchet, Ronan 04 April 2014 (has links)
Les systèmes intelligents sont le résultat combiné de différentes avancées en microélectronique et en particulier de l’augmentation des puissances de calcul, la diminution des consommations d’énergie, l'ajout de nouvelles fonctionnalités et de moyens de communication et en particulier à son intégration et application dans notre vie quotidienne. L'évolution du domaine des systèmes intelligents est prometteuse, et les attentes sont élevées dans de nombreux domaines : pour la surveillance dans l'industrie, les transports, les infrastructures et l'environnement, ainsi que dans le logement, l'électronique grand public et les services de soins de santé, mais aussi dans les applications pour la défense et l’aérospatial. Aujourd’hui, l'intégration de plus en plus de fonctions dans les systèmes intelligents les conduisent vers un problème énergétique où l'autonomie devient le principal problème. Par conséquent, il existe un besoin croissant en capteurs autonomes et sources d'alimentation. Le développement de dispositifs de récupération d’énergie et de capteurs autoalimentés est une façon de répondre à ce problème énergétique. Parmi les technologies étudiées, la piézoélectricité a l'avantage d'être compatible avec l'industrie des MEMS. De plus elle génère des tensions élevées et elle possède un fort couplage direct entre les physiques mécaniques et électriques. Parmi les matériaux piézoélectriques, les nanofils (NFs) semi-conducteurs piézoélectriques pourraient être une option prometteuse car ils présentent des propriétés piézoélectriques plus importantes et une plus grande gamme de flexion.Parmi les différents NFs piézoélectriques, les NFs de ZnO et de GaN sont les plus étudiés. A l'échelle nanométrique leurs propriétés piézoélectriques sont plus que doublées. Ils ont l'avantage d'être compatible avec l’industrie microélectronique et raisonnablement synthétisable par des approches top-down et bottom-up. En particulier, nous avons étudié la croissance par voie chimique de NFs de ZnO. Pour les utiliser correctement, nous avons étudié le comportement des NFs de ZnO. Nous avons effectué une étude analytique et des simulations par éléments finis (FEM) d'un NF de ZnO en flexion. Ces études décrivent la distribution du potentiel piézoélectrique en fonction de la force et permettent d’établir les règles d'échelle et de dimensionnement. Ensuite, nous avons développé la caractérisation mécanique par AFM du module de Young de NFs de ZnO et de GaN, puis nous avons effectué des caractérisations piézoélectriques par AFM de ces NFs pour vérifier leur comportement sous des contraintes mécaniques de type flexion. Une fois leur comportement physique compris, nous discutons des limites de notre modèle de NFs piézoélectriques en flexion et nous développons un modèle plus réaliste et plus proche des configurations expérimentales. En utilisant ce nouveau modèle, nous avons évalué le potentiel des NFs de ZnO pour les capteurs de force et de déplacement en mesurant le potentiel généré sous une contrainte, puis, sur la base d’expériences, nous avons évalué l'utilisation de NFs de GaN pour les capteurs de force en mesurant le courant au travers des NFs contraints. De même, nous avons évalué le potentiel de ces NFs pour les applications de récupération d'énergie liées aux capteurs autonomes. Pour bien comprendre la problématique, nous avons étudié l’état de l’art des nano générateurs (NG) et leurs architectures potentielles. Nous analysons leurs avantages et inconvénients, afin de définir une structure de NG de référence. Après une brève étude analytique de cette structure pour comprendre son fonctionnement et les défis, nous avons effectué plusieurs simulations FEM pour définir des voies d'optimisation pour les NG utilisé en mode de compression ou de flexion. Enfin la fabrication de prototypes et leurs caractérisations préliminaires sont présentées. / Smart systems are the combined result of different advances in microelectronics leading to an increase in computing power, lower energy consumption, the addition of new features, means of communication and especially its integration and application into our daily lives. The evolution of the field of smart systems is promising, and the expectations are high in many fields: Industry, transport, infrastructure and environment monitoring as well as housing, consumer electronics, health care services but also defense and space applications. Nowadays, the integration of more and more functions in smart systems is leading to a looming energy issue where the autonomy of such smart systems is beginning to be the main issue. Therefore there is a growing need for autonomous sensors and power sources. Developing energy harvesters and self-powered sensors is one way to address this energy issue. Among the technologies studied, piezoelectricity has the advantage to be compatible with the MEMS industry, it generates high voltages and it has a high direct coupling between the mechanic and electric physics. Among the piezoelectric materials, semiconductor piezoelectric nanowires (NWs) could be a promising option as they exhibit improved piezoelectric properties and higher maximum flexion.Among the different piezoelectric NWs, ZnO and GaN NWs are the most studied, their piezoelectric properties are more than doubled at the nanoscale. They have the advantage of being IC compatible and reasonably synthesizable by top-down and bottom-up approaches. Especially we studied the hydrothermal growth of ZnO NWs. In order to use them we studied the behavior of ZnO NWs. We performed analytical study and FEM simulations of a ZnO NW under bending. This study explains the piezoelectric potential distribution as a function of the force and is used to extract the scaling rules. We have also developed mechanical AFM characterization of the young modulus of ZnO and GaN NWs. Following we perform piezoelectric AFM characterization of these NWs, verifying the behavior under bending stresses. Once physics understood, we discuss limitation of our piezoelectric NWs models and a more realistic model is developed, closer to the experimental configurations. Using this model we evaluated the use of ZnO NW for force and displacement sensors by measuring the potential generated, and from experiments, the use of GaN NW for force sensor by measuring the current through the NW. But energy harvesting is also necessary to address the energy issue and we deeper investigate this solution. To fully understand the problematic we study the state of the art of nanogenerator (NG) and their potential architectures. We analyze their advantages and disadvantages in order to define a reference NG structure. After analytical study of this structure giving the basis for a deeper understanding of its operation and challenges, FEM simulations are used to define optimization routes for a NG working in compression or in bending. The fabrication of prototypes and theirs preliminary characterization is finally presented.
30

Nano-optomécanique au coeur d'un faisceau laser focalisé : cartographie du champ de force optique et action en retour bidimensionnelle / Nano-optomechanics at the waist of a focused laser beam : cartography of the optical force field and bidimensional backaction

Gloppe, Arnaud 19 December 2014 (has links)
Cette thèse s'inscrit dans la thématique de la nano-optomécanique et de l'emploi de nanorésonateurs mécaniques comme sonde de force ultrasensible pour étudier leur interaction avec la lumière. Pour cela, un nanofil de carbure de silicium est positionné dans un faisceau laser fortement focalisé. Cela permet, en mesurant les fluctuations de l'intensité transmise, d'observer avec grande dynamique et une sensibilité proche de la limite quantique standard le mouvement Brownien du nanorésonateur. La grande sensibilité en force des nanofils, inhérente à leur très faible masse, permet d'étudier l'action en retour de la mesure, c'est-à-dire la force exercée par le laser focalisé sur le nanofil. L'exploitation de la légère levée de dégénérescence observée entre les deux polarisations mécaniques transverses permet de réaliser une cartographie vectorielle bidimensionnelle du champ de force optique, avec une sonde de diamètre sub-longueur d'onde. Cette mesure permet également de mettre en évidence le caractère non-conservatif de l'interaction lumière-matière, dont la signature emblématique est l'existence de vorticité dans le champ de force mesuré. Ce dernier présente de très fortes variations spatiales, qui modifient profondément la dynamique du nanofil. Cette action en retour de la mesure est responsable d'un fort couplage entre les deux polarisations mécaniques du mode fondamental du nanofil. Le caractère bidimensionnel du couplage ainsi que la topologie non-conservative du champ de force conduisent à une bifurcation et à une instabilité dynamique du nanofil. Cette nouvelle instabilité optomécanique est observée avec des forces optiques instantanées, qui suivent instantanément les variations d'intensités vues par le nanofil. En présence d'absorption, le cas plus général d'un champ de force partiellement retardé par les constantes de temps thermiques est également étudié, conduisant à un refroidissement, spécifique et accordable en position, des deux polarisations mécaniques. Enfin l'interaction lumière-matière entre le laser et le nanofil et la grande variété des propriétés optomécaniques accessibles à cette approche sont développés. Ces développements démontrent la possibilité d'observer et de contrôler optiquement des nanorésonateurs mécaniques de très grande sensibilité, proche de l'attonewton, pour des mesures vectorielles ultrasensibles de champ de force. / This thesis is related to the field of nano-optomechanics and the use of nanomechanical resonators as ultrasensitive force sensor to study their interaction with light. A silicon carbide nanowire is positioned in a tightly focused laser beam. This enables, by measuring the transmitted intensity fluctuations, to observe with great dynamics and with a sensitivity close to the standard quantum limit the Brownian motion of the nanoresonator. The huge force sensitivity of the nanowires, due to their ultra low mass, permits to study the measurement backaction, which is induced by the force exerted on the nanowire by the focused laser beam. The exploitation of the slight degeneracy observed between the two transverse mechanical polarizations enables to realize a vectorial bidimensional cartography of the optical force field, with a probe of sub-wavelength diameter. This measurement highlights the non-conservative feature of the light-matter interaction, a symbolic signature being the existence of vorticity in the measured force field. The latter shows strong spatial variations, which modify deeply the nanowire dynamics. This measurement backaction is responsible of a strong coupling between the two mechanical polarizations of the nanowire fundamental mode. The bidimensional feature of the coupling and the force field non-conservative topology lead to a bifurcation and to a dynamical instability of the nanowire. This new optomechanical instability is observed with instantaneous optical forces, which follows instantaneously the intensity variations seen by the nanowire. In presence of absorption, a more general case of a force field partially delayed by the thermal time constants is studied, leading to a cooling, specific and tunable with the position, of the two mechanical polarizations. Then, the light-matter interaction between a laser and the nanowire and the great variety of optomechanical properties accessible with this approach are developed. These developments demonstrate the ability to observe and control optically nanomechanical resonators with a huge sensitivity, close to the attonewton, for ultrasensitive measurements of vectorial force fields.

Page generated in 0.0176 seconds