• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 25
  • 23
  • 14
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 230
  • 102
  • 46
  • 39
  • 34
  • 33
  • 32
  • 30
  • 30
  • 29
  • 27
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

High Frequency Characterization and Modeling of SiGe Heterojunction Bipolar Transistors

Malm, B. Gunnar January 2002 (has links)
No description available.
192

High Frequency Characterization and Modeling of SiGe Heterojunction Bipolar Transistors

Malm, B. Gunnar January 2002 (has links)
No description available.
193

The Functionalization of Epitaxial Graphene on SiC with Nanoparticles towards Biosensing Capabilities

Strandqvist, Carl January 2015 (has links)
Graphene has been shown to be very powerful as a transducer in many biosensor applications due to its high sensitivity. This enables smaller surfaces and therefore less material consumption when producing sensors and concequently cheaper and more portable sensors compared to the commercially available sensors today. The electrical properties of graphene are very sensitive to gas exposure why presence of molecules or small changes in concentration could easily be detected when using graphene as a sensing layer. Graphene is sensitive towards many molecules and in order to detect and possibly identify gas molecules the surface needs to be functionalized. The intention of this project was to use nanoparticles (NPs) to further increase sensitivity and specificity towards selected molecules and also enable biofunctionalization of the NPs, and by that tune the electrical properties of the graphene. This study proposes the use of Fe3O4 and TiO2 NPs to enable sensitive detection of volatile gases and possibly further functionalization of the NPs using biomolecules as a detecting agent in a liquid-phasebiosensor application. The interaction between graphene and NPs have been investigated using several surface charactarization methods and electrical measurements for detection of gaseous molecules and also molecules in a liquid solution. The characterizing methods used are XPS, AFM with surface-potential mapping and Raman spectroscopy with reflectance mapping in order to investigate the NPs interaction with the graphene surface. Sensors where manufactured for gas-phase detection of CO, formaldehyde, benzene and NH3 specifically and display differences in sensitivity and behavior of the Fe3O4 and TiO2 NPs respectively. For liquid measurements the difference in behavior in two buffers was investigated using an in-house flow-cell setup. The surface charecterizing measurements indicated that just a small difference could be found between the two NPs, however a significant change in sensor response could be detected as a function of coverage. The liquid and gas-phase measurements rendered information on differences in sensitivity between the NPs and between analytes where TiO2 showed a higher level of sensitivity towards most of the gases investigated. Both Fe3O4 and TiO2 NP coated graphene showed capability to detect formaldehyde and benzene down to 50 ppb and 5 ppb respectively. The sensitive gas detection could help protecting individuals being exposed to a hazardous level of volatile gases if concentrations increase rapidly or at a long term exposure with lower concentrations, improving saftey and health where these gases are present.
194

Raman-Spektroskopie an epitaktischem Graphen auf Siliziumkarbid (0001)

Fromm, Felix Jonathan 29 April 2015 (has links) (PDF)
Die vorliegende Arbeit behandelt die Charakterisierung von epitaktischem Graphen auf Siliziumkarbid (0001) mittels Raman-Spektroskopie. Nach der Einführung theoretischer sowie experimenteller Grundlagen werden das Wachstum von Graphen auf Siliziumkarbid (SiC) behandelt und die untersuchten Materialsysteme vorgestellt. Es wird gezeigt, dass das Raman-Spektrum von epitaktischem Graphen auf SiC (0001) neben den Phononenmoden des Graphens und des Substrats weitere Signale beinhaltet, welche der intrinsischen Grenzflächenschicht, dem Buffer-Layer, zwischen Graphen und SiC zugeordnet werden können. Das Raman-Spektrum dieser Grenzflächenschicht kann als Abbild der phononischen Zustandsdichte interpretiert werden. Fortführend werden verspannungsinduzierte Änderungen der Phononenenergien der G- und 2D-Linie im Raman-Spektrum von Graphen untersucht. Dabei werden starke Variationen des Verspannungszustands beobachtet, welche mit der Topographie der SiC-Oberfläche korreliert werden können und erlauben, Rückschlüsse auf Wachstumsmechanismen zu ziehen. Die Entwicklung einer neuen Messmethode, bei der das Raman-Spektrum von Graphen durch das SiC-Substrat aufgenommen wird, ermöglicht die detektierte Raman-Intensität um über eine Größenordnung zu erhöhen. Damit wird die Raman-spektroskopische Charakterisierung eines Graphen-Feldeffekttransistors mit top gate ermöglicht und ein umfassendes Bild des Einflusses der Ladungsträgerkonzentration und der Verspannung auf die Positionen der G- und 2D-Raman-Linien von quasifreistehendem Graphen auf SiC erarbeitet.
195

Theoretical Studies of Epitaxial Bain Paths of Metals

Schönecker, Stephan 12 October 2011 (has links) (PDF)
Epitaxial growth is an important technique for the fabrication of film structures with good crystalline quality, e.g., monoatomic overlayers, multilayers, compound materials, and ordered alloys. Such epitaxially grown films are technologically important materials with, e.g., adjustable electronic, magnetic, and optical properties. In case of coherent or pseudomorphic epitaxy, the overlayer adapts the in-plane lattice parameters of the substrate, i.e., the overlayer is strained to match the lattice parameters parallel to the substrate surface (in-plane directions). Simultaneously, a relaxation of the film dimension perpendicular to the substrate-film interface occurs (out-of-plane direction). Thus, coherent epitaxy provides a method to put phases under strain, and it can stabilise a metastable state of the film material, if the substrate lattice matches this metastable structure. Bulk-like properties in thick overlayers, which adopt the body-centred tetragonal (BCT) crystal structure and which grow coherently on a suitable substrate with quadratic surface symmetry, are modelled by the epitaxial Bain path (EBP) in this thesis. The knowledge of the EBP allows to study properties of the overlayer as function of the substrate lattice parameter. In particular, strain effects on the film material, magnetic order in the overlayer, and the existence of possible metastable states are investigated by means of density functional theory (DFT) in the local spin density approximation (LSDA), and in the singular case of uranium, employing the generalised gradient approximation (GGA). Note that a symmetry property of the BCT structure states, that it is identical to the body-centred cubic (BCC) structure or the face-centred cubic (FCC) structure for definite ratios of the tetragonal lattice parameters. Our definition of the EBP has two, previously not considered consequences for EBPs in general: an EBP can be discontinuous, and the high symmetry cubic structures (FCC and BCC) need not be points on the EBP. Both cases occurred for several elements considered in this thesis. If, however, a cubic structure is a point on the EBP, then a symmetry property guarantees that the total energy along the EBP, E(a), is stationary at this cubic structure. We computed the EBPs of all transition metals (TMs), the post TMs Zn, Cd, and Hg, the alkaline earth metals Ca, Sr, and Ba, the lanthanides La and Lu, and the actinide U (35 elements were treated in total). For each element but Zr, Hg, and U, there are exactly two structures whose energies are minima on the EBP, and which exhibit neither in-plane nor out-of-plane stresses; for Zr, Hg, and U there are three minima each. All other states on the EBP exhibit in-plane stresses because they are a strained form of the stress-free structures. The possibility of metastability of these particular, stress-free structures, i.e., stabilisation of these structures without bonding to the substrate, was investigated by stability conditions based on linear elasticity theory (except for U). We predict that ten FCC structures and three BCT structures not known from the respective phase diagrams may be metastable. We studied the properties of ferromagnetic (FM) states on the EBP for the elements Fe, Co, and Ni, and moreover predict, that Mn, Ru, Os, and U order ferromagnetically for certain states of the EBP. The latter three elements are paramagnetic in their ground states. The onset of ferromagnetism in Os and U is not accompanied by a simultaneously fulfilled Stoner criterion. According to our results, antiferromagnetic order (with moment sequences up-down or up-up-down-down on successive (001) planes) is never more stable than FM order on any EBP for any element investigated. On the basis of our comprehensive results for all TMs, we analysed trends across each of the three TM series and similarities among the three series. We demonstrate, that the type of the EBP (a classification of extrema of E(a) by symmetry into types) follows a characteristic trend across each of the three TM series. We discuss exceptions (Mn, Fe, and Zr) to this trend. Another trend, identical for the three series, is found for the BCT­-FCC structural energy difference as function of the d-band filling (evaluated for BCT structures that define extrema of E(a)), which follows a similar trend as the well studied BCC­-FCC structural energy difference. Clear similarities among the three periods of elements are also reflected in the bulk moduli and in the elastic constants of the cubic or tetragonal structures, that define the global and local minima of E(a). The mentioned similarities suggest, that many properties which are associated with the EBPs of TMs, can be attributed to the occupation of the d-band, which is the most dominant feature of the electronic structure of TMs.
196

Investigation of New Concepts and Solutions for Silicon Nanophotonics

Wang, Zhechao January 2010 (has links)
Nowadays, silicon photonics is a widely studied research topic. Its high-index-contrast and compatibility with the complementary metal-oxide-semiconductor technology make it a promising platform for low cost high density integration. Several general problems have been brought up, including the lack of silicon active devices, the difficulty of light coupling, the polarization dependence, etc. This thesis aims to give new attempts to novel solutions for some of these problems. Both theoretical modeling and experimental work have been done. Several numerical methods are reviewed first. The semi-vectorial finite-difference mode solver in cylindrical coordinate system is developed and it is mainly used for calculating the eigenmodes of the waveguide structures employed in this thesis. The finite-difference time-domain method and beam propagation method are also used to analyze the light propagation in complex structures. The fabrication and characterization technologies are studied. The fabrication is mainly based on clean room facilities, including plasma assisted film deposition, electron beam lithography and dry etching. The vertical coupling system is mainly used for characterization in this thesis. Compared with conventional butt-coupling system, it can provide much higher coupling efficiency and larger alignment tolerance. Two novel couplers related to silicon photonic wires are studied. In order to improve the coupling efficiency of a grating coupler, a nonuniform grating is theoretically designed to maximize the overlap between the radiated light profile and the optical fiber mode. Over 60% coupling efficiency is obtained experimentally. Another coupler facilitating the light coupling between silicon photonic wires and slot waveguides is demonstrated, both theoretically and experimentally. Almost lossless coupling is achieved in experiments. Two approaches are studied to realize polarization insensitive devices based on silicon photonic wires. The first one is the use of a sandwich waveguide structure to eliminate the polarization dependent wavelength of a microring resonator. By optimizing the multilayer structure, we successfully eliminate the large birefringence in an ultrasmall ring resonator. Another approach is to use polarization diversity scheme. Two key components of the scheme are studied. An efficient polarization beam splitter based on a one-dimensional grating coupler is theoretically designed and experimentally demonstrated. This polarization beam splitter can also serve as an efficient light coupler between silicon-on-insulator waveguides and optical fibers. Over 50% coupling efficiency for both polarizations and -20dB extinction ratio between them are experimentally obtained. A compact polarization rotator based on silicon photonic wire is theoretically analyzed. 100% polarization conversion is achievable and the fabrication tolerance is relatively large by using a compensation method. A novel integration platform based on nano-epitaxial lateral overgrowth technology is investigated to realize monolithic integration of III-V materials on silicon. A silica mask is used to block the threading dislocations from the InP seed layer on silicon. Technologies such as hydride vapor phase epitaxy and chemical-mechanical polishing are developed. A thin dislocation free InP layer on silicon is obtained experimentally. / QC20100705
197

Effets d'asymétrie structurale sur le mouvement induit par courant de parois de domaines magnétiques / Effects of structural asymmetry on current-induced domain wall motion.

Ishaque, Muhammad Zahid 31 May 2013 (has links)
L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi. / The aim of this thesis is to study the effect of the magnetic Oersted field on current-induced domain wall (DW) motion in IrPy bilayer nanostripes. We optimized the epitaxial growth of IrPy films on sapphire (0001) substrates with less structural defects, small surface and interface roughness and small coercive fields. This was expected to reduce the DW pinning and hence increase the DW mobility. Polycrystalline PtPy nanostripes prepared by sputtering were also studied to compare the results with epitaxial samples. A first direct evidence of the effect of the Oersted field on the magnetic configuration of magnetic nanostripes was given by V. Uhlir et al. using time-resolved XMCD-PEEM measurements. They observed a large tilt of the Py and CoFeB magnetization in the direction transverse to the stripes in CoCuPy and CoCuCoFeB trilayer nanostripes. We observed chirality switching of transverse walls induced by the Oersted field due to current pulses using magnetic force microscopy. DW motion was found to be stochastic due to DW pinning, which results in a distribution of velocities. DW motion opposite to the electron flow and DW transformations were also observed due to Joule heating. The large grain size (comparable to the stripe width) in our epitaxial bi-crystalline films with respect to the polycrystalline samples (~10nm) may be a possible source of pinning. Nevertheless, very high maximum DW velocities (up to 700 and 250m/s) for relatively low current densities (1.7 x1012 and 1 x1012 A/m2) were observed in epitaxial and sputtered samples respectively. These velocities are 2 to 5 times higher with similar or even smaller current densities than observed in single layer Py nanostripes, reported in the literature. The Oersted field may be at the origin of the high efficiency of the spin transfer torque in these bilayer stripes. Micromagnetic simulations performed in our group confirm that when a transverse magnetic field is applied in addition to a longitudinal field along the nanostripe for VW motion, the vortex core can be stabilized in the center of nanostripe, suppressing the core expulsion at the nanostripe edge and hence preventing the VW transformation. Similarly, it can stabilize transverse walls, preventing DW transformations. This can result in a shift of the Walker breakdown to higher fields/currents, resulting in an increase in DW velocity. Time-resolved XMCD-PEEM measurements will be performed in the near future to confirm the effect of the Oersted field on the DW motion.
198

Propriétés structurales et magnétiques de cobaltites de types CoV2O6 à structure unidimensionnelle avec un intérêt potentiel pour la spintronique / Structural and magnetic properties of unidimensional cobaltites CoV2O6 and the potential interest for spintronic

Lenertz, Marc 11 October 2013 (has links)
Le but de ce travail de thèse est de réaliser des vannes de spin « naturelles » constituées d’un matériau unique. Le matériau en question doit contenir une alternance de feuillets magnétiques et non magnétiques et présenter différents états magnétiques. Ce système modèle ne présenterait alors ni d’inter diffusion ni de rugosité aux interfaces magnétiques/non-magnétiques et pourrait constituer un système modèle pour les études des phénomènes de transport dépendant de spin. Le CoV2O6 est un oxyde polymorphe de basse dimensionnalité. Les deux phases (α et γ) présentent chacune plusieurs plateaux d’aimantation induits par un champ magnétique. Le premier objectif est de comprendre la structure cristalline et magnétique de ce composé, ce qui a été réalisé par des mesures d’aimantation, de diffraction des rayons X et de neutrons sur des poudres et monocristaux. Les résultats de la phase α sont appuyés par des calculs ab initio. Le second objectif est de déposer ce matériau en couche mince afin d’analyser ses propriétés de transport. Des films épitaxiés de γ CoV2O6 ont été obtenus sur TiO2(100) et TiO2/Pt(111) par ablation laser. Le dépôt sur l’électrode de Pt montre la présence de six variants entrainant l’observation de plateaux d’aimantation supplémentaires. / The purpose of this work is to synthesize “natural” spin valves within one unique material. The material needs a crystalline structure formed by stacking magnetic and non-magnetic sheets as well as different magnetic states. Such model system could be used for the study of spin dependent transport properties as no-roughness or diffusion at the magnetic/non-magnetic interfaces is allowed. The polymorph low-dimensional oxide CoV2O6 is such a material. Both phases (α and γ) exhibit field induced magnetization plateaus. This study’s first aim is to understand crystalline and magnetic structures. Investigations were performed on powders and single crystals using magnetization measurements as well as X-ray and neutron diffraction measurements. The magnetic properties of α CoV2O6 were supported by ab initio calculations. The second aim is to grow CoV2O6 thin films in order to analyze further the transport properties. Epitaxial γ CoV2O6 thin films were obtained by pulsed laser ablation on both TiO2(100) and TiO2/Pt(111) substrates. Films grown on Pt electrode exhibit six variants which allows observing additional magnetization plateaus.
199

Vibrational properties of epitaxial silicene on Ag(111) / Die Schwingungseigenschaften von epitaktischen Silicen auf Ag(111)

Solonenko, Dmytro Ihorovych 18 December 2017 (has links) (PDF)
This dissertation works out the vibrational properties of epitaxial silicene, which was discovered by Vogt et al. in 2012 by the epitaxial synthesis on the silver substrate. Its two-dimensional (2D) character is modified in comparison to the free-standing silicene due to its epitaxial nature, since the underlying substrate alters the physical properties of silicene as a result of the strong hybridization of the electronic levels of the substrate and adlayer. The growth of silicene layers is complicated by the sensitivity of the Si structures to the experimental conditions, mainly temperature, resulting in the formation of several seemingly different surface reconstructions. Another Si structure appears on the Ag surface at a supramonolayer coverage. The Raman spectroscopy was utilized to understand the relation between different Si structures and reveal their origin as well as to investigate the phonon-related physical properties of two-dimensional Si sheets. The central core of this work is the growth and characterization of these 2D silicene monolayers on the Ag (111) surface as well as the formation of silicene multilayer structures. The characterization of these materials was performed using in situ surface-sensitive measurement methods such as Raman spectroscopy and low-energy electron diffraction under ultra-high vacuum conditions due to high chemical reactivity of epitaxial silicene. Additional characterization was done ex situ by means of scanning force microscopy. The experimentally determined spectral signature of the prototypical epitaxial (3x3)/(4x4) silicene structure was confirmed by ab initio calculations, in collaboration with theory groups. The Raman signatures of the other 2D and 3D Si phases on Ag (111) were determined which allowed us to provide a clear picture of their formation depending on the preparation conditions. The monitoring of the silicene multi-layer growth yielded the vibrational signature of the top layer, reconstructed in a (√3x√3) fashion. It was compared to the inverse, (√3x√3)-Ag/Si(111), system showing the vast amount of similarities, which suggest that the (√3x√3) reconstruction belong to the silver layer. The chemical and physical properties of this surface structure additionally strengthen this equivalence. The possibility of functionalization of epitaxial silicene was demonstrated via exposure to the atomic hydrogen under UHV conditions. The adsorbed hydrogen covalently bonds to the silicene lattice modifying it and reducing its symmetry. As shown by Raman spectroscopy, such modification can be reversed by thermal desorption of hydrogen. The excitation-dependent Raman measurements also suggest the change of the electronic properties of epitaxial silicene upon hydrogenation suggesting that its originally semi-metallic character is modified into a semiconducting one. / Die experimentellen Forschungsarbeiten zum Thema Silicen basieren auf den 2012 von Vogt et al. durchgeführten Untersuchungen zu dessen Synthese auf Silbersubstraten. Diese Untersuchungen lieferten die Grundlage, auf der zweidimensionales (2D) epitaktisches Silicen sowie weitere 2D Materialien untersucht werden konnten. In den anfänglichen Arbeiten konnte dabei gezeigt werden, dass sich die Eigenschaften von epitaktischem Silicen gegenüber den theoretischen Vorhersagen von frei-stehendem Silicen unterscheiden. Darüber hinaus verkomplizieren sich die experimentellen Untersuchungen dieses 2D Materials, da auf dem Ag(111) Wachstumssubstrat sechs verschiedene 2D Si Polytypen existieren. Eine detaillierte Darstellung dieser Untersuchungen findet sich in dem einführenden Kapitel der vorliegen Promotionsschrift. Der zentrale Kern dieser Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung dieser 2D Silicen Monolagen auf Ag(111) Oberflächen sowie der Bildung von Silicen- Multilagen Strukturen. Die Charakterisierung dieser Materialien wurde in situ mit oberflächenempfindlichen Messmethoden wie der Raman Spektroskopie und der niederenergetischen Elektronenbeugung unter Ultrahochvakuum-Bedingungen durchgeführt. Eine zusätzliche Charakterisierung erfolgte ex situ mittels Raster-KraftMikroskopie. Die experimentell bestimmte spektrale Raman-Signatur der prototypischen epitaktischen (3x3)/(4x4) Silicene Struktur wurde durch ab initio Rechnungen, in Zusammenarbeit mit Theoriegruppen, bestätigt. Durch diesen Vergleich wir die zweidimensionale Natur der epitaktischen Silicen-Schichten vollständig bestätigt, wodurch andere mögliche Interpretationen ausgeschlossen werden können. Darüber hinaus wurden die Ramans-Signaturen der weiteren 2D und 3D Siliziumphasen auf Ag(111) bestimmt, wodurch sich ein klares Bild der Bildung dieser Strukturen in Abhängigkeit von den Präparationsbedingungen ergibt. Um die Möglichkeit der Funktionalisierung von Silicen und der weiteren 2D Si Strukturen zu testen, wurden diese unter UHV Bedingungen atomarem Wasserstoff ausgesetzt. Durch die Bindung zu den Wasserstoffamen wird die kristalline Struktur der Silicen-Schichten modifiziert und die Symmetrie reduziert, was sich deutlich in der spektralen Raman-Signatur zeigt. Wie mittels Raman Spektroskopie gezeigt werden konnte, kann diese Modifikation durch thermische Desorption des Wasserstoffs rückgängig gemacht werden, ist also reversibel. Raman Messungen mit verschiedenen Anregungswellenlängen deuten darüber hinaus auf die Änderung der elektronischen Eigenschaften der Silicen-Schichten durch die Hydrierung hin. Der ursprüngliche halbmetallische Charakter der epitaktischen Silicen-Schicht geht möglicherweise in einen halbleitenden Zustand über. Das Wachstum von Silicen Multilagen wurde ebenfalls mit in situ Ramanspektroskopie verfolgt. Die sich dabei ergebene Raman-Signatur wurde mit der Raman-Signatur von Ag terminiertem Si(111) verglichen. Hier zeigen sich große Ähnlichkeiten, die auf eine ähnliche atomare Struktur hindeuten und zeigen, dass Ag Atome für die Ausbildung der Oberflächenstruktur während des Wachstums der Si-Lagen verantwortlich sind. Die chemischen und physikalischen Eigenschaften dieser Struktur bestärken zusätzlich diese Äquivalenz.
200

Electrocaloric materials and devices

Crossley, Samuel January 2013 (has links)
The temperature and/or entropy of electrically polarisable materials can be altered by changing electric field E. Research into this electrocaloric (EC) effect has focussed on increasing the size of the EC effects, with the long-term aim of building a cooler with an EC material at its heart. Materials and experimental methods are briefly reviewed. A ‘resetting’ indirect route to isothermal entropy change ∆S for hysteretic first-order transitions is described. An indirect route to adiabatic temperature change ∆T, without the need for field-resolved heat capacity data, is also described. Three temperature controllers were built: a cryogenic probe for 77-420 K with ∼5 mK resolution, a high-temperature stage with vacuum enclosure for 295-700 K with ∼15 mK resolution, and a low-temperature stage for 120-400 K with electrical access via micropositioners. Automation enables dense datasets to be compiled. Single crystals of inorganic salts (NH4)2SO4 , KNO3 and NaNO2 were obtained. Applying 380 kV cm−1 across (NH4)2SO4 , it was found that |∆S| ∼ 20 J K−1 kg−1 and |∆T | ∼ 4 K, using the indirect method near the Curie temperature TC = 223 K. Without the ‘resetting’ indirect method, |∆S| ∼ 45 J K−1 kg−1 would have been spuriously found. Preliminary indirect measurements on KNO3 and NaNO2 give |∆S| ∼ 75 J K−1 kg−1 for ∆E ∼ 31 kV cm−1 near TC = 400 K and |∆S| ∼ 14 J K−1 kg−1 for ∆E ∼ 15 kV cm−1 near TC = 435 K, respectively. A cation-ordered PbSc0.5Ta0.5O3 ceramic showing a nominally first-order transition at 295 K was obtained. The Clausius-Clapeyron phase diagram is revealed via indirect measurements where |∆S| ∼ 3.25 J K−1 kg−1 and |∆T | ∼ 2 K, and direct measurements where |∆T | ∼ 2 K. Clamped samples show broadening of the field-induced transition. Epitaxial, ∼64 nm-thick SrTiO3 films were grown by pulsed laser deposition on NdGaO3 (001) substrates with a La0.67Sr0.33MnO3 bottom electrode. The indirect method gives |∆S| ∼ 8 J K−1 kg−1 and |∆T | ∼ 3.5 K near 180 K with |∆E| = 780 kV cm−1. Finite element modelling (FEM) was used to optimise the geometry of multilayered capacitors (MLCs) for EC cooling. Intrinsic cooling powers of 25.9 kW kg−1 are predicted for an optimised MLC based on PVDF-TrFE with Ag electrodes.

Page generated in 0.3193 seconds