Spelling suggestions: "subject:"linearregression"" "subject:"multilinearregression""
561 |
Driving factors for growing companies / Drivande faktorer för växande företagLiljedahl, Ida, Rondahl, Ebba January 2020 (has links)
Finding a way to forecast what characteristics make a fast growing company would be useful, both for companies trying to succeed and for investment companies wanting to make successful investments. This thesis aims to develop a model describing the relationship between 9 chosen characteristics, based on real data from 2015 concerning companies that were rewarded with a DI Gasell in 2018. The final result show that half of the variables chosen to form the model have little to no relationship with the response variable EBIT margin. However, the final model consists of four variables that with statistic significance correlates with the response variable. The explanatory level is low and implies that forecasting companies growth probably can’t be done using this model. The four regressors that correlate with EBIT margin are Year of Incorporation, Operatingrevenue, Number of subsidiaries & SNI code. Although a forecast can’t be performed other insight are obtained from the research. Companies with SNI code 4, which corresponds to operating in the economic sector, affects EBIT margin in a more positive way than other sectors. Number of subsidiaries correlates fairly linearly with the response variable. Contradictory to previous research CEO characteristics are shown to be the least important factor contributing to profitability. / Att hitta ett sätt att förutspå vilka egenskaper som skapar ett snabbväxande företag kan vara användbart, både för företag som vill växa men också för investeringsbolag som letar efter gynnsamma investeringar med bra avkastning. Denna avhandling strävar efter att utveckla en modell som beskriver relationen mellan 9 utvalda variabler, baserat på data från år 2015 gällande företag som 2018 tilldelades utmärkelsen ”DI Gasell”. Den slutgiltiga modellen visar att hälften av regressorerna statistiskt signifikant påverkar responsvariabeln EBIT-marginal. Förklaringsgraden för modellen är låg, vilket antyder att sambanden inte är starka nog att kunna förutspå vilka företag som kommer att bli ”DI Gasell” med denna modell. De fyra regressorer som påverkar EBIT-marginalen mest är registreringsår, omsättning, antal dotterbolag och SNI-kod. Trots modellens låga förklaringsvärde kan andra slutsatser dras av undersökningen. Företag i ekonomisektorn påverkar EBIT-marginalen mer positivt än företag inom andra sektorer. Antal dotterbolag korrelerar relativt linjärt med respons variabeln. Till motsats från tidigare studier visar avhandlingen att ålder och kön på VD inte påverkar lönsamheten.
|
562 |
An investigation of the relationship between online activity on Studi.se and academic grades of newly arrived immigrant students : An application of educational data miningMenon, Akash, Islam, Nahida January 2017 (has links)
This study attempts to analyze the impact of an online educational resource on academic performances among newly arrived immigrant students in Sweden between the grade six to nine in the Swedish school system. The study focuses on the web based educational resource called Studi.se made by Komplementskolan AB.The aim of the study was to investigate the relationship between academic performance and using Studi.se. Another purpose was to see what other factors that can impact academic performances.The study made use of the data mining process, Cross Industry Standard for Data Mining (CRISP-DM), to understand and prepare the data and then create a regression model that is evaluated. The regression model tries predict the dependent variable of grade based on the independent variables of Studi.se activity, gender and years in Swedish schools. The used data set includes the grades in mathematics, physics, chemistry, biology and religion of newly arrived students in Sweden from six municipalities that have access to Studi.se. The data used also includes metrics of the student’s activity on Studi.se.The results show negative correlation between grade and gender of the student across all subjects. In this report, the negative correlation means that female students perform better than male students. Furthermore, there was a positive correlation between number of years a student has been in the same school and their academic grade. The study could not conclude a statistically significant relationship between the activity on Studi.se and the students’ academic grade.Additional explanatory independent variables are needed to make a predictive model as well as investigating alternative regression models other than multiple linear regression. In the sample, a majority of the students have little or no activity on Studi.se despite having free access to the resource through the municipality. / Denna studie analyserar inverkan som digitala läromedel har på skolbetyg bland nyanlända elever i Sverige mellan årskurs sex och nio i det svenska skolsystemet. Studien fokuserar på den webbaserade pedagogisk resursen Studi.se, gjord av Komplementskolan AB.Målet med studien var att undersöka relationen mellan skolresultat och användandet av Studi.se. Ett annat syfte var att undersöka vad för andra faktorer som kan påverka skolresultat.Studien använder sig av datautvinningsprocessen, Cross Industry Standard for Datamining (CRISP-DM), för att förstå, förbereda och analysera datan i form av en regressionsmodell som sedan evalueras. Datasamlingen som används innehåller bland annat skolbetyg i ämnena matematik, fysik, kemi, biologi och religion från sex kommuner som har tillgång till Studi.se. Aktivitet hos eleverna från dessa kommuner på Studi.se hemsidan användes också för studien.Resultaten visar en negativ korrelation mellan betyg och kön hos eleverna i alla ämnena. Den negativa korrelationen betyder i denna rapport att tjejer får bättre betyg i genomsnitt än killar hos urvalet av nyanlända från de sex kommunerna. Dessutom fanns det en positiv korrelation mellan antal år en elev varit i skolan alternativt i svenska skolsystemet och deras betyg. Studien kunde inte säkerställa ett statistisk signifikant resultat mellan aktivitet på Studi.se och elevernas skolresultat.Ett flertal förklarande oberoende variabler behövs för att kunna skapa en prognastisk modell för skolresultat samt bör en undersökning på alternativa regressions modeller förutom linjär multipel regression göras. I studiens urval av nyanlända elever från kommunerna, har majoriteten inte använt eller knappt använt Studi.se även om dessa kommuner haft tillgång till denna resurs.
|
563 |
The Impact of Student Self-beliefs and Learning Behaviors on Mathematics Achievement for Nontraditional Students in an Online Charter High SchoolHawk, Nathan A. January 2021 (has links)
No description available.
|
564 |
Using Multiple Linear Regression to Estimate Customer Profitability in Consumer Credits / Använda Multipel Linjär Regression för att Estimera Kundlönsamhet i KonsumentkrediterAlmgren, Andreas January 2021 (has links)
In cooperation with a consumer credit company based in Stockholm, this bachelor thesis investigates if the customer profitability in the consumer credit market can be predicted with multiple linear regression. Data collected before the initial credit was accepted and data connected to the account activity of the customers' first nine months are analyzed. Further, it is examined if the findings could be useful in a profitability analysis and as a reduction of adverse selection. The findings show that a number of covariates express promising correlations with the costumer profitability. However, the prediction error is high and not efficient in individual cases. Further, some reduction in adverse selection, due to a decrease in asymmetric information between the customers and the company, can be identified, but further research is encouraged. Finally, potential improvements are discussed, especially concerning the choice of regression algorithm. / I samarbete med ett konsumentkreditbolag baserat i Stockholm undersöker detta kandidatexamensarbete om kundlönsamhet inom marknaden för konsumentkrediter kan förutsägas med hjälp av multipel linjär regression. Data består av information som insamlades innan den initiala kreditförfrågningen accepterades, och av kontoaktivitet under kundens nio första månader. Vidare undersöks om resultatet kan användas i en lönsamhetsanalys och som en metod för att minska snedvridet urval. Resultatet visar att ett antal kovariat uttrycker en lovande korrelation med kundlönsamheten. Dessvärre är felen från förutsägelserna stora och därför ineffektiva gällande estimering av individuella kunder. Fortsättningsvis kan det identifieras viss reduktion av snedvridet urval som en följd av minskad informationsasymmetri mellan kunderna och företaget, men vidare undersökning uppmuntras. Avslutningsvis diskuteras ett antal förbättringsmöjligheter, framför allt gällande val av regressionsalgoritm.
|
565 |
Robust Portfolio Optimization with Correlation Penalties / Robust portföljoptimering med korrelationsstraffNydahl, Pelle January 2023 (has links)
Robust portfolio optimization models attempt to address the standard optimization method's high sensitivity to noise in the parameter estimates, by taking an investor's uncertainty about the estimates into account when finding an optimal portfolio. In this thesis, we study robust variations of an extension of the mean-variance problem, where an additional term penalizing the portfolio's correlation with an exogenous return sequence is included in the objective. Using a normalized risk factor model of the asset returns, estimations are done using EMA filtering as well as exponentially weighted linear regression. We show that portfolio performance can significantly improve with respect to a range of metrics, such as Sharpe ratio, expected shortfall and skewness, when using appropriate robust models and hyperparameters. We further show that extending the optimization problem with a correlation penalty can notably reduce portfolio correlation with an arbitrary return sequence, with only a small impact on other performance metrics. / Robust portföljoptimering är en metod för att reducera vanliga portföljmodellers höga känslighet för brus i parameterskattningar, genom att ta en investerares osäkerhet kring skattningarna i åtanke när en optimal portfölj tas fram. I denna rapport studeras robusta varianter av ett utökat mean-variance-problem, där en straffterm för portföljens korrelation med en exogen avkastningsserie lagts till. Skattningarna bygger på en riskfaktor-modell för avkastningarna, och använder EMA-filter kombinerat med exponentiellt viktad linjär regression. Vi visar att en portföljs prestanda kan förbättras avsevärt med avseende på ett flertal prestandamått, till exempel Sharpe-kvot, expected shortfall och skevhet, vid användning av lämpliga robusta modeller och hyperparametrar. Vi visar också att inkludering av ett korrelationsstraff i optimeringsproblemet kan ge noterbara reduceringar i portföljens korrelation med en godtycklig avkastningsserie, med liten effekt på andra prestandamått.
|
566 |
Dynamic Warning Signals and Time Lag Analysis for Seepage Prediction in Hydropower Dams : A Case Study of a Swedish Hydropower PlantOlsson, Lovisa, Hellström, Julia January 2023 (has links)
Hydropower is an important energy source since it is fossil-free, renewable, and controllable. Characteristics that become especially important as the reliance on intermittent energy sources increases. However, the dams for the hydropower plants are also associated with large risks as a dam failure could have fatal consequences. Dams are therefore monitored by several sensors, to follow and evaluate any changes in the dam. One of the most important dam surveillance measurements is seepage since it can examine internal erosion. Seepage is affected by several different parameters such as reservoir water level, temperature, and precipitation. Studies also indicate the existence of a time lag between the reservoir water level and the seepage flow, meaning that when there is a change in the reservoir level there is a delay before these changes are reflected in the seepage behaviour. Recent years have seen increased use of AI in dam monitoring, enabling more dynamic warning systems. This master’s thesis aims to develop a model for dynamic warning signals by predicting seepage using reservoir water level, temperature, and precipitation. Furthermore, a snowmelt variable was introduced to account for the impact of increased water flows during the spring season. The occurrence of a time lag and its possible influence on the model’s performance is also examined. To predict the seepage, three models with different complexity are used – linear regression, support vector regression, and long short-term memory. To investigate the time lag, the linear regression and support vector regression models incorporate a static time lag by shifting the reservoir water level data up to 14 days. The time lag was further investigated using the long short-term memory model as well. The results show that reservoir water level, temperature, and the snowmelt variable are the combination of input parameters that generate the best results for all three models. Although a one-day time lag between reservoir water level and seepage slightly improved the predictions, the exact duration and nature of the time lag remain unclear. The more complex models (support vector regression and long short-term memory) generated better predictions than the linear regression but performed similarly when evaluated based on the dynamic warning signals. Therefore, linear regression is deemed a suitable model for dynamic warning signals by seepage prediction.
|
567 |
Portfolio Risk Modelling in Venture Debt / Kreditriskmodellering inom Venture DebtEriksson, John, Holmberg, Jacob January 2023 (has links)
This thesis project is an experimental study on how to approach quantitative portfolio credit risk modelling in Venture Debt portfolios. Facing a lack of applicable default data from ArK and publicly available sets, as well as seeking to capture companies that fail to service debt obligations before defaulting per se, we present an approach to risk modeling based on trends in revenue. The main framework revolves around driving a Monte Carlo simulation with Copluas to predict future revenue scenarios across a portfolio of early-stage technology companies. Three models for a random Gaussian walk, a Linear Dynamic System and an Autoregressive Integrated Moving Average (ARIMA) time series are implemented and evaluated in terms of their portfolio Value-at-Risk influence. The model performance confirms that modeling portfolio risk in Venture Debt is challenging, especially due to lack of sufficient data and thus a heavy reliance on assumptions. However, the empirical results for Value-at-Risk and Expected Shortfall are in line with expectations. The evaluated portfolio is still in an early stage with a majority of assets not yet in their repayment period and consequently the spread of potential losses within one year is very tight. It should further be recognized that the scope in terms of explanatory variables for sales and model complexities has been narrowed and simplified for computational benefits, transparency and communicability. The main conclusion drawn is that alternative approaches to model Venture Debt risk is fully possible, and should improve in reliability and accuracy with more data feeding the model. For future research it is recommended to incorporate macroeconomic variables as well as similar company analysis to better capture macro, funding and sector conditions. Furthermore, it is suggested to extend the set of financial and operational explanatory variables for sales through machine learning or neural networks. / Detta examensarbete är en experimentell studie för kvantitativ modellering av kreditrisk i Venture Debt-portföljer. Givet en brist på tillgänlig konkurs-data från ArK samt från offentligt tillgängliga databaser i kombination med ambitionen att inkludera företag som misslyckas med skuldförpliktelser innan konkurs per se, presenterar vi en metod för riskmodellering baserad på trender i intäkter. Ramverket för modellen kretsar kring Monte Carlo-simulering med Copluas för att estimera framtida intäktsscenarier över en portfölj med tillväxtbolag inom tekniksektorn. Tre modeller för en random walk, ett linjärt dynamiskt system och ARIMA- tidsserier implementeras och utvärderas i termer av deras inflytande på portföljens Value-at- Risk. Modellens prestationer bekräftar att modellering av portföljrisk inom Venture Debt är utmanande, särskilt på grund av bristen på tillräckliga data och därmed ett stort beroende av antaganden. Dock är de empiriska resultaten för Value-at-Risk och Expected Shortfall i linje med förväntningarna. Den utvärderade portföljen är fortfarande i ett tidigt skede där en majoritet av tillgångarna fortfarande befinner sig i en amorteringsfri period och följaktligen är spridningen av potentiella förluster inom ett år mycket snäv. Det bör vidare tillkännages att omfattningen i termer av förklarande variabler för intäkter och modellkomplexitet har förenklats för beräkningsfördelar, transparens och kommunicerbarhet. Den främsta slutsatsen som dras är att alternativa metoder för att modellera risker inom Venture Debt är fullt möjliga och bör förbättras i tillförlitlighet och precision när mer data kan matas in i modellen. För framtida arbete rekommenderas det att inkorporera makroekonomiska variabler samt analys av liknande bolag för att bättre fånga makro-, finansierings- och sektorsförhållanden. Vidare föreslås det att utöka uppsättningen av finansiella och operationella förklarande variabler för intäkter genom maskininlärning eller neurala nätverk.
|
568 |
Evaluation of Machine Learning Methods for Time Series Forecasting on E-commerce Data / Utvärdering av Maskininlärningsmodeller för tidsserie-prognotisering på e-handels dataAbrahamsson, Peter, Ahlqvist, Niklas January 2022 (has links)
Within demand forecasting, and specifically within the field of e-commerce, the provided data often contains erratic behaviours which are difficult to explain. This induces contradictions to the common assumptions within classical approaches for time series analysis. Yet, classical and naive approaches are still commonly used. Machine learning could be used to alleviate such problems. This thesis evaluates four models together with Swedish fin-tech company QLIRO AB. More specifically, a MLR (Multiple Linear Regression) model, a classic Box-Jenkins model (SARIMAX), an XGBoost model, and a LSTM-network (Long Short-Term Memory). The provided data consists of aggregated total daily reservations by e-merchants within the Nordic market from 2014. Some data pre processing was required and a smoothed version of the data set was created for comparison. Each model was constructed according to their specific requirements but with similar feature engineering. Evaluation was then made on a monthly level with a forecast horizon of 30 days during 2021. The results shows that both the MLR and the XGBoost provides the most consistent results together with perks for being easy to use. After these two, the LSTM-network showed the best results for November and December on the original data set but worst overall. Yet it had good performance on the smoothed data set and was then comparable to the first two. The SARIMAX was the worst performing of all the models considered in this thesis and was not as easy to implement. / Inom efterfrågeprognoser, och specifikt inom området e-handel, innehåller den tillhandahållna informationen ofta oberäkneliga beteenden som är svåra att förklara. Detta motsäger vanliga antaganden inom tidsserier som används för de mer klassiska tillvägagångssätten. Ändå är klassiska och naiva metoder fortfarande vanliga. Maskininlärning skulle kunna användas för att lindra sådana problem. Detta examensarbete utvärderar fyra modeller tillsammans med det svenska fintechföretaget QLIRO AB. Mer specifikt en MLR-modell (Multiple Linear Regression), en klassisk Box-Jenkins-modell (SARIMAX), en XGBoost-modell och ett LSTM-nätverk (Long Short-Term Memory). Den tillhandahållna informationen består av aggregerade dagliga reservationer från e-handlare inom den nordiska marknaden från 2014. Viss dataförbehandling krävdes och en utjämnad version av datamängden skapades för jämförelse. Varje modell konstruerades enligt deras specifika krav men med liknande \textit{feature engineering}. Utvärderingen gjordes sedan på månadsnivå med en prognoshorisont på 30 dagar under 2021. Resultaten visar att både MLR och XGBoost ger de mest pålitliga resultaten tillsammans med fördelar som att vara lätta att använda. Efter dessa visar LSTM-nätverket de bästa resultaten för november och december på den ursprungliga datamängden men sämst totalt sett. Ändå visar den god prestanda på den utjämnade datamängden och var sedan jämförbar med de två första modellerna. SARIMAX var den sämst presterande av alla jämförda modeller och inte lika lätt att implementera.
|
569 |
Factors Affecting Employment Duration in the Food Retail Industry / Faktorer som Påverkar Anställningens Varaktighet i DagligvaruhandelnSundling, Beata, Höft, Lova January 2023 (has links)
Measuring and tracking the employee turnover rate is a crucial part when evaluating a company’s performance. An important part of this is measuring the employment duration within an organization. The purpose of this report is to investigate if employment duration in a food retail company can be explained by predetermined variables using multiple linear regression. Data from five years ago until today has been collected and processed to analyze and fit the best choice of the linear model. Gender, employment rate, industry experience and age are the predictors used for conducting the analysis. The result shows that a low linear correlation can be seen between employment duration and the explanatory variables: gender, employment rate, industry experience and age. In the discussion, the results are analyzed as well as potential problems and improvements of the regression.
|
570 |
Precision Tailoring Cooling Systems using Linear Regression / Precisionsanpassning av Kylsystem med Linjär RegressionBjelle, Kajsa, Cui, Ida January 2021 (has links)
This bachelor thesis is written for KTH Royal Institute of Technology and Ymer Technology AB. It examines the friction factor associated with the pressure drop in wavy-fin heat exchangers. Previous studies have used a nonlinear approach for determining the regression coefficients. This study introduces a linearizing transform that solves the issues of finding non-optimal parameter values stemming from the current nonlinear approach. The linearization also drastically improves the computational time. A final model explaining 95.4\% of the variance in the data is presented. Methods for avoiding overfitting, detecting outliers and hidden extrapolation are presented and used to evaluate the model. The implications of the mathematical results on improving profit, competitiveness, and customer relationships are analyzed in the second part of the report with a qualitative approach. / Denna kandidatuppsats är skrivet vid Kungliga Tekniska Högskolan och Ymer Technology AB. Det undersöker den friktionsfaktor som associeras med tryckfallet i kylare med wavy-fins. Tidigare studier har använt ett ickelinjärt tillvägagångssätt för att bestämma regressionskoefficienterna. Denna studie introducerar en linjäriserande transform som löser problemen med att hitta icke-optimala paramatervärden, som härstammar från tidigare icke-linjära tillvägagångsätt. Linjäriseringen visar sig även förbättra beräkningstiden drastiskt. En slutgiltig modell som förklarar 95\% av variansen i datan presenteras. Metoder för att undvika overfitting, identifiera outliers, och undvika att falla offer för gömd extrapolation presenteras och används för att evaluera modellen. De matematiska resultatens implikationer för Ymer med avseende på vinst, konkurrenskraft och kundrelationer, analyseras i den andra delen av rapporten med en kvalitativ ansats.
|
Page generated in 0.0563 seconds