Spelling suggestions: "subject:"nonlinear analysis"" "subject:"onlinear analysis""
161 |
Odbavovací hala / Departures HallKubíček, Ján January 2014 (has links)
This thesis focuses on the design and assessment of the supporting steel structure of departures hall for international airport Pardubice. The design is processed in two variants, one of which is selected and further elaborated. The hall contains one-story built for office and comercial use. To obtain the internal forces in the structure, modelling of the hall in the FEM computermodeling software was selected. The thesis includes manual assessment of selected elements and details, the assessment of elements in computational software, drawings and bill of material.
|
162 |
Pravděpodobnostní analýza zatížitelnosti železobetonového mostu z nosníků I-73 / Probabilistic analysis of reinforced concrete bridge made of I-73 girdersNezval, Michal January 2017 (has links)
Many older bridges on the highways and roads in the Czech republic and all arend the world have been designed by codes, which are distinct of currently valid codes. Considering current codes, it is possible to set load bearing capacity in few different ways. In presented diploma thesis nonlinear finite element analysis using deterministic methods is compared with fully probabilistic nonlinear finite element analysis. Girder I-73 is analysed. Also the influence of degradation processes and following corrosion of reinforcement is taken into account, when load capacity is predicted for residual service life.
|
163 |
Simulation of Strong Ground Motions in Mashiki Town, Kumamoto, Based on the Seismic Response Analysis of Soils and the Dynamic Rupture Modeling of Sources / 地盤応答解析および動力学的震源モデルに基づく熊本県益城町における強震動シミュレーションSun, Jikai 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23188号 / 工博第4832号 / 新制||工||1755(附属図書館) / 京都大学大学院工学研究科建築学専攻 / (主査)教授 松島 信一, 教授 竹脇 出, 教授 林 康裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
164 |
Dimensionering av höga balkar av armerad betong : En jämförelse mellan EK2, BBK, laboratorieförsök och ATENA 2D / Design of high beams of reinforced concrete : A comparison of EC2, BBK, laboratory tests and ATENA 2DKarlsson, Evelina January 2020 (has links)
Detta examensarbete vid Luleå tekniska universitet har utförts i samarbete med avdelningen för byggkonstruktionvid det nordiska konsultföretaget Norconsult AB. Arbetet bygger på en önskan från Norconsultatt ta fram en beräkningsmodell för höga balkar i överensstämmelse med Eurokod 2 motsvarande densom finns i BBK 04. Eurokod 2 har endast en knapphändig beskrivning av hur höga balkar bör dimensioneras.Detta skapar frustration och osäkerhet hos konstruktörer. Den tidigare svenska betongnormen,BBK 04, innehöll en tydlig och enkel mer empirisk beräkningsmetod för höga balkar, vilket gav en störresäkerhet vid projekteringen. Arbetet begränsas till att studera enkelt upplagda och kontinuerliga balkar i två spann belastade med enpunktlast mitt i vartdera spannet. Geometrin är densamma för samtliga balkar och armeringsmängdenvarieras tillsammans med brottlasten. Initialt utfördes en litteraturstudie för att erhålla en fördjupad kunskap om området samt att bygga uppen förståelse för teorin för höga balkar och den fackverksmodell som används i Eurokod 2. Vidare presenterasen försöksrapport, Rogowsky et al. (1983), som redovisar en experimentell laboratoriestudie därhöga balkar belastas till brott. Resultaten som presenteras är brottlast, töjning i betong och armering,sprickmönster samt nedböjning. Fyra enkelt upplagda och fyra kontinuerliga balkar väljs ut för vidarejämförelse och analys. Härvid används det ickelinjära beräkningsprogrammet ATENA 2D, där studeradebalkar modelleras. Handberäkningar enligt EK2 och BBK 04 utförs för respektive balk och tillhörandearmeringsmängd beräknas. En maximal brottlast itereras fram för respektive balk och beräkningsmetod (EK2 eller BBK 04). Armeringsmängdensom ges av denna beräkning modelleras i ATENA 2D och motsvarande balk analyseras.Resultaten jämförs sedan. Erhållna resultat sammanställs och jämförs med varandra: Rogowsky et al. (1983), ATENA 2D och handberäkningarnaenligt både Eurokod 2 och BBK 04. Jämförelsen visar att det finns få likheter mellan EK2och BKK 04, med avseende på erhållen armeringsmängd. BBK kräver generellt större armeringsmängdän Eurokod 2. Studien visar att beräkningarna med ATENA 2D stämmer väl överens med laboratorieförsöken.Resultaten visar även att antaganden enligt Eurokod 2 stämmer väl överens med hur de studeradebalkarna beter sig i verkligheten. En enkel beräkningsmodell som motsvarar BBKs konservativa modell är inte möjlig att ta fram inom deramar och begränsningar som finns för detta examensarbete. Istället sammanställs en modell i form av enpunktlista som förtydligar, sammanfattar och exemplifierar den mer verklighetstrogna beräkningsgångenför höga balkar enligt Eurokod 2.
|
165 |
Análisis y diseño estructural de una torre de 40 pisos y 4 sótanos siguiendo normas peruanas incluyendo su desempeño sísmico en el distrito de Santiago de Surco, Lima / Analysis and structural design of a tower 40 stories and 4 basements following peruvian norms including its seismic performance in the district de Santiago de Surco, LimaFernández López, Rodrigo Miguel, Zapata Velásquez, Ricardo Timoteo 01 July 2020 (has links)
En la presente investigación se realizará el análisis y diseño estructural de una torre de 40 pisos y 4 sótanos de concreto armado siguiendo normas peruanas y el cálculo de desempeño sísmico en el distrito de Santiago de Surco, Lima. Para esto, la hipótesis plantea sí las normas peruanas cumplen con el desempeño sismorresistente deseado para una torre alta como esta.
Para un entendimiento progresivo, primero se hará una descripción de la torre alta a estudiar, su arquitectura, estructura, suelo y otros. En la segunda parte se darán los conceptos necesarios para comprender los tipos de análisis lineal estático, lineal dinámico y no lineal estático. Se definirán los materiales, los diagramas momento – rotación también se explicará la obtención de la curva de capacidad del edificio. Se tocarán conceptos de viento y nivel de desempeño. En la tercera parte, se procederá con en análisis sísmico cumpliendo las exigencias de sismorresistencia, también se hará el análisis por viento para comparar ambos efectos. En el capítulo cuarto se procederá a hacer el diseño estructural usando las normas de concreto armado. En el capítulo cinco se hará el análisis por desempeño usando el método pushover para finalmente conseguir los resultados de este proyecto y a las conclusiones de este desarrollo. / In the present investigation, the analysis and structural design of a 40-storey tower and 4 reinforced concrete basements will be carried out following Peruvian regulations and the calculation of seismic performance in the Santiago de Surco district, Lima. For this, the hypothesis states whether the Peruvian standards meet the desired seismic resistance performance for a tall tower like this one.
For a progressive understanding, first a description will be made of the tall tower to study, its architecture, structure, soil and others. In the second part, the concepts necessary to understand the types of static linear analysis, dynamic linear analysis and static non-linear analysis will be given. The materials will be defined, the moment - rotation diagrams will also explain the obtaining of the building capacity curve. Wind and performance level concepts will be discussed. In the third part, we will proceed with seismic analysis complying with the seismic resistance requirements, we will also do the wind analysis to compare both effects. In the fourth chapter, the structural design will be carried out using the reinforced concrete standards. In chapter five the performance analysis will be done using the pushover method to finally get the results of this project and the conclusions of this development. / Tesis
|
166 |
Technologies informatiques pour l'étude du comportement expérimental et numérique d'un assemblage poutre-poteau en béton armé / Information technologies for the study of the experimental and numerical behavior of a reinforced concrete beam-column jointIskef, Alaa Eddin 08 April 2016 (has links)
L'analyse du comportement des assemblages poteau-poutre en béton armé ainsi que leur influence sur la résistance de l'ensemble de la structure sous chargement cyclique ou sismique a fait l'objet de plusieurs investigations ces dernières années. Toutefois, le comportement de cette partie de structure reste loin d'être maitrisé à cause de la complexité de cet assemblage qui fait intervenir plusieurs phénomènes physiques, et à cause du manque de données expérimentales. Ce travail a pour but de mettre en place et fournir une base de données expérimentales fiable et dense dont la vocation est de donner accès à un benchmark expérimental pour permettre la modélisation et la validation du comportement de ces assemblages. / The behavior of reinforced concrete beam-column joints and their influence on the strength of the structures under cyclic or seismic loadings has been the subject of several investigations in recent years. However, the behavior of that part of the structure remains far from being mastered due to the complexity of the assembly involving several physical phenomena and due to the lack of exhaustive experimental data. This work aims to implement and provide a reliable and dense experimental database whose vocation is to provide access to an experimental benchmark to enable the modeling and validation of the behavior of these assemblies.
|
167 |
Materiálově nelineární řešení konstrukcí z plastů / Material nonlinear solution of structures made of plasticsWeis, Lukáš January 2014 (has links)
The presented thesis focuses on static analysis of plastic structures, taking into account nonlinear behaviour of the material depending on the stress. The static analysis is performed using the finite element method. The difference between material linear and material nonlinear approach is illustratively described in the introduction. A shell finite element, which is enhanced by the possibility of further delamination into layers and integration points along its thickness, is suitable to be used for a numerical analysis of a plastic structures. Separate chapters are devoted to the integration of the resulting values over the height of the cross-section. The integration of the material stiffness matrix correctly reflects the emergence of eccentricity. A part of the attention is devoted to the numerical quadrature rules. Next chapter is devoted to material nonlinear models. Two approaches are described: a simpler one, using the isotropic nonlinear elastic model, and more general one, using the orthotropic plastic model. The theoretical description is complemented by the graphic interpretation of the criteria according to the individual authors. A significant portion of this work is devoted to the algorithmization of calculation procedures described in the theoretical chapters. The algorithmization itself is implemented in Fortran language into a dynamic-link library which is part of the software program RFEM 5 which is widely used in engineering practice. A part of the work is a study comparing the performance of the different technologies applicable for the algorithmization of the described issues. The agreement of the theoretical analysis of the material models and subsequent implementation within the RFEM 5 is demonstrated on the example of the bent cantilever. The thermoplastic aboveground tank structure is subject of detailed material linear, and nonlinear analysis respectively. The various approaches are compared on the results of stress, deformation an
|
168 |
Návrh a posouzení prefabrikovaných nosníků uložených ozubem / Design and analysis of precast dapped-end beamsHasa, Michal January 2018 (has links)
The doctoral thesis deals with the analysis of the dapped-end beam detail, in terms of theoretical modelling and practical design using the strut-and-tie method as well as experimental verification of the bearing capacity and the behaviour of the detail under load by means of load tests and subsequent numerical nonlinear analysis. A summary of known structural and static designs explored in the literature has been presented. In addition, the strut-and-tie method has been introduced as an appropriate tool for a consistent design of the detail, element or the whole structure. The theoretical basis for the method has been described, including the general methodology for design and analysis. Practical problems have been discussed, specifically those resulting from the known design of the analysed detail based on the German approach; its modification has been processed theoretically taking into account the practical mode of reinforcement. An experiment has been suggested with a view to verify the presented calculation procedure and the influence of the used ratio of vertical to inclined hanger reinforcement on the bearing capacity and behaviour of the detail under load. The experiment also included accompanying material tests of the concrete which were used along with the inspection certificates issued for the used reinforcement as a basis for the nonlinear finite element analysis. Based on the results, the presented design procedure can be considered safe. These results also imply that the chosen ratio of vertical and inclined hanger reinforcements has no influence on the ultimate bearing capacity within practical reinforcement, as it only influences the formation, development and final width of cracks. With the growing ratio of the inclined hanger reinforcement, the width and density of cracks decreases at all stages of loading. Owing to their limitations, primarily during the service state, it is recommended that the minimal inclined reinforcement should be used.
|
169 |
Computational Simulation of Chloride-Induced Corrosion Damage in Prestressed Concrete Bridge GirdersAliasghar Mamaghani, Mojtaba 12 July 2023 (has links)
Prestressed concrete is a popular construction material for highway bridges. A variety of girder span values, cross-sectional shapes, and prestressing strand layouts has been used in bridges across the United States. A major concern for such bridges is the possibility of corrosion damage in the prestressing strands or reinforcing bars, which is commonly caused by the use of deicing salts on the deck or saltwater spray in coastal regions. The present study aims at establishing analytical tools for the accurate simulation of chloride ingress, corrosion and mechanical damage (cracking) in the concrete, and for the evaluation of the impact of corrosion on the flexural and shear strength of bridge girders.
First, an efficient and accurate analytical scheme is formulated to enable the calculation of the load-carrying capacity of corrosion-damaged girders. The analyses rely on two types of models, namely, beam models and nonlinear truss models. The latter are deemed necessary to obtain reliable estimates of the shear capacity, as beam models are not well-tailored for capturing shear failures. A procedure to account for the reduction in area and deformability of corroded strands, based on visually observed corrosion damage, is proposed and implemented. The models are calibrated and validated with the results of experimental tests on prestressed girders which exhibited varying levels of corrosion damage. Further analyses allow the comparison of the capacity of corrosion-damaged girders to that of their undamaged counterparts. The accuracy of a simplified procedure, using equations in the AASHTO code to determine the flexural and shear capacity of the damaged girders, is also determined.
Subsequently, a computation scheme was proposed to describe the intrusion of chloride ions in prestressed bridge girder sections. The approach accounts for multiple, coupled processes, i.e., heat transfer, moisture transport, and chloride advective and diffusive transport. The constitutive models for moisture and chloride transport rely on previous pertinent work, with several necessary enhancements. The modeling scheme is calibrated with data from previous experimental tests on concrete cylindrical and prismatic specimens. The calibrated models are then validated using data from chloride titration tests conducted on girders removed from two bridges in Virginia after 34 and 49 years of service. The results indicate that the proposed framework can accurately reproduce the experimentally measured chloride content. The modeling approach also allows the evaluation of the accuracy of simplified, design-oriented tools for estimating the evolution of chloride content with time.
The multi-physics simulation scheme is further refined to account for the corrosion-induced mechanical damage (cracking), by incorporating a phenomenological description of the electrochemical reaction kinetics, generation of expansive corrosion products, and subsequent development of tensile stresses and cracking in the surrounding concrete. The impact of cracking on the chloride and moisture transport mechanisms is also taken into account.
The last part of this dissertation pursues the quantification of the uncertainty governing the chloride ingress in bridge girders, through the use of a stochastic collocation approach. The focus is on understanding how the inherent uncertainty in the value of input parameters (e.g., material transport parameters, ambient conditions etc.) is propagated, leading to uncertainty in the evolution of chloride content and the expected corrosion initiation time for a given bridge. / Doctor of Philosophy / Prestressed concrete is widely utilized in the construction of highway bridges in the United States. A significant concern arises regarding potential corrosion damage in the prestressing strands or reinforcing bars, which is commonly attributed to the application of deicing salts on the deck or exposure to saltwater spray in coastal regions. This study aims to develop analytical tools that can accurately simulate the intrusion of corrosive agents (namely chloride ions), and subsequent damage (cracking) in concrete. Furthermore, the research seeks to assess the impact of corrosion on the bearing capacity of bridge girders.
Two different classes of analytical approaches are pursued. The first class employs purely mechanical (stress/deformation) models for capturing the strength, deformability and failure modes of girders with visual corrosion damage. These models rely on two approaches to capture the flexural and shear capacity of specimens, namely, beam-based models and truss-based models. The impact of corrosion is established through appropriate modification of the model parameters, based on the extent of visually observed corrosion damage. The analytical approaches are validated through a series of experimental tests previously conducted on corrosion-damaged girders.
The second class of analytical approaches employs multi-physics models, to describe the mechanisms leading to corrosion-induced damage. The models account for heat transfer, moisture transport, and chloride transport in prestressed beam sections. Model parameters are calibrated with experimental tests in literature. The computational scheme is used to quantitatively describe the chloride ingress on bridge girders decommissioned from two different bridges in Virginia, after 34 and 49 years of service. The analysis results are found capable of capturing the actual chloride content at various depths from the exposure surface, as determined by chloride titration tests. The temporal evolution of chloride on the surface of prestressing strands indicates that corrosion has been taking place over a period of time for the two bridges.
The multi-physics simulation approach is further enhanced to account for the corrosion-induced mechanical damage (cracking), by explicitly incorporating a description of the reaction kinetics, generation of expansive corrosion products and subsequent development of cracking in the surrounding concrete.
The last part of this dissertation pursues the quantification of the uncertainty in the expected service life of prestressed concrete bridge structures. Given the inherent uncertainty to key values of model parameters, a parametric study is employed to investigate the propagation of uncertainty to the time history of chloride content at particular locations of the section and the probability of corrosion initiation at specific age values.
|
170 |
SYSTEM-LEVEL SEISMIC PERFORMANCE QUANTIFICATION OF REINFORCED MASONRY BUILDINGS WITH BOUNDARY ELEMENTSEzzeldin, Mohamed January 2017 (has links)
The traditional construction practice used in masonry buildings throughout the world is limited to walls with rectangular cross sections that, when reinforced with steel bars, typically accommodate only single-leg horizontal ties and a single layer of vertical reinforcement. This arrangement provides no confinement at the wall toes, and it may lead to instability in critical wall zones and significant structural damage during seismic events. Conversely, the development of a new building system, constructed with reinforced masonry (RM) walls with boundary elements, allows closed ties to be used as confinement reinforcement, thus minimizing such instability and its negative consequences. Relative to traditional walls, walls with boundary elements have enhanced performance because they enable the compression reinforcement to remain effective up to much larger displacement demands, resulting in a damage tolerant system and eventually, more resilient buildings under extreme events.
Research on the system-level (complete building) performance of RM walls with boundary elements is, at the time of publication of this dissertation, nonexistent in open literature. What little research has been published on this innovative building system has focused only on investigating the component-level performance of RM walls with boundary elements under lateral loads. To address this knowledge gap, the dissertation presents a comprehensive research program that covered: component-level performance simulation; system-level (complete building) experimental testing; seismic risk assessment tools; and simplified analytical models to facilitate adoption of the developed new building system. In addition, and in order to effectively mobilize the knowledge generated through the research program to stakeholders, the work has been directly related to building codes in Canada and the USA (NBCC and ASCE-7) as well as other standards including FEMA P695 (FEMA 2009) (Chapter 2), TMS 402 and CSA S304 (Chapter 3), FEMA P58 (FEMA 2012) (Chapter 4), and ASCE-41 (Chapter 5). Chapter 1 of the dissertation highlights its objectives, focus, scope and general organization. The simulation in Chapter 2 is focused on evaluating the component-level overstrength, period-based ductility, and seismic collapse margin ratios under the maximum considered earthquakes. Whereas previous studies have shown that traditional RM walls might not meet the collapse risk criteria established by FEMA P695, the analysis presented in this chapter clearly shows that RM shear walls with boundary elements not only meet the collapse risk criteria, but also exceed it with a significant margin. Following the component-level simulation presented in Chapter 2, Chapter 3 focused on presenting the results of a complete two-story asymmetrical RM shear wall building with boundary elements, experimentally tested under simulated seismic loading. This effort was aimed at demonstrating the discrepancies between the way engineers design buildings (as individual components) and the way these buildings actually behave as an integrated system, comprised of these components. In addition, to evaluate the enhanced resilience of the new building system, the tested building was designed to have the same lateral resistance as previously tested building with traditional RM shear walls, thus facilitating direct comparison. The experimental results yielded two valuable findings: 1) it clearly demonstrated the overall performance enhancements of the new building system in addition to its reduced reinforcement cost; and 2) it highlighted the drawbacks of the building acting as a system compared to a simple summation of its individual components. In this respect, although the slab diaphragm-wall coupling enhanced the building lateral capacity, this enhancement also meant that other unpredictable and undesirable failure modes could become the weaker links, and therefore dominate the performance of the building system. Presentation of these findings has attracted much attention of codes and standards committees (CSA S304 and TMS 402/ACI 530/ASCE 5) in Canada and the USA, as it resulted in a paradigm shift on how the next-generation of building codes (NBCC and ASCE-7) should be developed to address system-levels performance aspects. Chapter 4 introduced an innovative system-level risk assessment methodology by integrating the simulation and experimental test results of Chapters 2 and 3. In this respect, the experimentally validated simulations were used to generate new system-level fragility curves that provide a realistic assessment of the overall building risk under different levels of seismic hazard. Although, within the scope of this dissertation, the methodology has been applied only on buildings constructed with RM walls with boundary elements, the developed new methodology is expected to be adopted by stakeholders of other new and existing building systems and to be further implemented in standards based on the current FEMA P58 risk quantification approaches. Finally, and in order to translate the dissertation findings into tools that can be readily used by stakeholders to design more resilient buildings in the face of extreme events, simplified backbone and hysteretic models were developed in Chapter 5 to simulate the nonlinear response of RM shear wall buildings with different configurations. These models can be adapted to perform the nonlinear static and dynamic procedures that are specified in the ASCE-41 standards for both existing and new building systems. The research in this chapter is expected to have a major positive impact, not only in terms of providing more realistic model parameters for exiting building systems, but also through the introduction of analytical models for new more resilient building systems to be directly implemented in future editions of the ASCE-41. This dissertation presents a cohesive body of work that is expected to influence a real change in terms of how we think about, design, and construct buildings as complex systems comprised of individual components. The dissertation’s overarching hypothesis is that previous disasters have not only exposed the vulnerability of traditional building systems, but have also demonstrated the failure of the current component-by-component design approaches to produce resilient building systems and safer communities under extreme events. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0998 seconds