• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 120
  • 70
  • 24
  • 12
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 719
  • 719
  • 719
  • 168
  • 156
  • 140
  • 127
  • 126
  • 124
  • 103
  • 101
  • 100
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Étude mathématique et numérique des résonances dans une micro-cavité optique / Mathematical and numerical study of resonances in optical micro-cavities

Moitier, Zoïs 03 October 2019 (has links)
Cette thèse est consacrée à l'étude des fréquences de résonance de cavités optiques bidimensionnelles. Plus particulièrement, on s'intéresse aux résonances à modes de galerie (modes localisés au bord de la cavité avec un grand nombre d'oscillations). La première partie traite du calcul numérique des résonances par la méthode des éléments finis à l'aide de couches parfaitement adaptées, et d'une analyse de sensibilité des paramètres de celles-ci dans les trois situations suivantes : un problème unidimensionnel, une réduction du cas bidimensionnel invariant par rotation et le cas général. La deuxième partie porte sur la construction de développements asymptotiques des résonances à modes de galerie quand le nombre d'oscillations le long du bord tend vers l'infini. On considère d'abord le cas d'un problème invariant par rotation pour lequel le nombre d'oscillations s'interprète comme un paramètre semiclassique grâce à la transformée de Fourier angulaire. Ensuite, pour le cas général, la construction utilise un ansatz phase-amplitude de type BKW qui permet de se ramener à un opérateur de Schrödinger généralisé. Enfin, les résonances calculées numériquement dans la première partie sont comparées aux développements asymptotiques explicités par calcul formel. / This thesis is devoted to the study of resonance frequencies of bidimensional optical cavities. More specifically, we are interested in whispering-gallery modes (modes localized along the cavity boundary with a large number of oscillations). The first part deals with the numerical computation of resonances by the finite element method using perfectly matched layers, and with a sensibility analysis in the three following situations: an unidimensional problem, a reduction of the rotationally invariant bidimensional case, and the general case. The second part focuses on the construction of asymptotic expansions of whispering-gallery modes as the number of oscillations along of boundary goes to infinity. We start by considering the case of a rotationally invariant problem for which the number of oscillations can be interpreted as a semiclassical parameter by means of an angular Fourier transform. Next, for the general case, the construction uses a phase-amplitude ansatz of WKB type which leads to a generalized Schrödinger operator. Finally, the numerically computed resonances obtained in the first part are compared to the asymptotic expansions made explicit by the use of a computer algebra software.
532

Absorption de l'eau et des nutriments par les racines des plantes : modélisation, analyse et simulation / Water and nutrient uptake by plant roots : modeling, analysis and simulation

Tournier, Pierre-Henri 04 February 2015 (has links)
Dans le contexte du développement d'une agriculture durable visant à préserver les ressources naturelles et les écosystèmes, il s'avère nécessaire d'approfondir notre compréhension des processus souterrains et des interactions entre le sol et les racines des plantes.Dans cette thèse, on utilise des outils mathématiques et numériques pour développer des modèles mécanistiques explicites du mouvement de l'eau et des nutriments dans le sol et de l'absorption racinaire, gouvernés par des équations aux dérivées partielles non linéaires. Un accent est mis sur la prise en compte explicite de la géométrie du système racinaire et des processus à petite échelle survenant dans la rhizosphère, qui jouent un rôle majeur dans l'absorption racinaire.La première étude est dédiée à l'analyse mathématique d'un modèle d'absorption du phosphore (P) par les racines des plantes. L'évolution de la concentration de P dans la solution du sol est gouvernée par une équation de convection-diffusion avec une condition aux limites non linéaire à la surface de la racine, que l'on considère ici comme un bord du domaine du sol. On formule ensuite un problème d'optimisation de forme visant à trouver les formes racinaires qui maximisent l'absorption de P.La seconde partie de cette thèse montre comment on peut tirer avantage des récents progrès du calcul scientifique dans le domaine de l'adaptation de maillage non structuré et du calcul parallèle afin de développer des modèles numériques du mouvement de l'eau et des solutés et de l'absorption racinaire à l'échelle de la plante, tout en prenant en compte les phénomènes locaux survenant à l'échelle de la racine unique. / In the context of the development of sustainable agriculture aiming at preserving natural resources and ecosystems, it is necessary to improve our understanding of underground processes and interactions between soil and plant roots.In this thesis, we use mathematical and numerical tools to develop explicit mechanistic models of soil water and solute movement accounting for root water and nutrient uptake and governed by nonlinear partial differential equations. An emphasis is put on resolving the geometry of the root system as well as small scale processes occurring in the rhizosphere, which play a major role in plant root uptake.The first study is dedicated to the mathematical analysis of a model of phosphorus (P) uptake by plant roots. The evolution of the concentration of P in the soil solution is governed by a convection-diffusion equation with a nonlinear boundary condition at the root surface, which is included as a boundary of the soil domain. A shape optimization problem is formulated that aims at finding root shapes maximizing P uptake.The second part of this thesis shows how we can take advantage of the recent advances of scientific computing in the field of unstructured mesh adaptation and parallel computing to develop numerical models of soil water and solute movement with root water and nutrient uptake at the plant scale while taking into account local processes at the single root scale.
533

Modélisation mathématique du rôle et de la dynamique temporelle de la protéine p53 après dommages à l'ADN induits par les médicaments anticancéreux / Mathematical model of the role and temporal dynamics of protein p53 after drug-induced DNA damage

Elias, Jan 01 September 2015 (has links)
Plusieurs modèles pharmacocinétiques-pharmacodynamiques moléculaires ont été proposés au cours des dernières décennies afin de représenter et de prédire les effets d'un médicament dans les chimiothérapies anticancéreuses. La plupart de ces modèles ont été développés au niveau de la population de cellules, puisque des effets mesurables peuvent y être observés beaucoup plus facilement que dans les cellules individuelles.Cependant, les véritables cibles moléculaires des médicaments se trouvent au niveau de la cellule isolée. Les médicaments utilisés soit perturbent l'intégrité du génome en provoquant des ruptures de brins de l'ADN et par conséquent initialisent la mort cellulaire programmée (apoptose), soit bloquent la prolifération cellulaire, par inhibition des protéines (cdks) qui permettent aux cellules de procéder d'une phase du cycle cellulaire à la suivante en passant par des points de contrôle (principalement en $G_1/S$ et $G_2/M$). Les dommages à l'ADN causés par les médicaments cytotoxiques ou la $\gamma$-irradiation activent, entre autres, les voies de signalisation contrôlées par la protéine p53 qui forcent directement ou indirectement la cellule à choisir entre la survie et la mort.Cette thèse vise à explorer en détail les voies intracellulaires impliquant la protéine p53, ``le gardien du génome", qui sont initiées par des lésions de l'ADN, et donc de fournir un rationnel aux cancérologues pour prédire et optimiser les effets des médicaments anticancéreux en clinique. Elle décrit l'activation et la régulation de la protéine p53 dans les cellules individuelles après leur exposition à des agents causant des dommages à l'ADN. On montre que les comportements dynamiques qui ont été observés dans les cellules individuelles peuvent être reconstruits et prédits par fragmentation des événements cellulaires survenant après lésion de l'ADN, soit dans le noyau, soit dans le cytoplasme. Ceci est mis en œuvre par la description du réseau des protéines à l'aide d'équations différentielles ordinaires (EDO) et partielles (EDP) impliquant plusieurs agents dont les protéines ATM, p53, Mdm2 et Wip1, dans le noyau aussi bien que dans le cytoplasme, et entre les deux compartiments. Un rôle positif de Mdm2 dans la synthèse de p53, qui a été récemment observé, est exploré et un nouveau mécanisme provoquant les oscillations de p53 est proposé. On pourra noter en particulier que le nouveau modèle rend compte d'observations expérimentales qui n'ont pas pu être entièrement expliquées par les modèles précédents, par exemple, l'excitabilité de p53.En utilisant des méthodes mathématiques, on observe de près la façon dont un stimulus (par exemple, une $\gamma$-irradiation ou des médicaments utilisés en chimiothérapie) est converti en un comportement dynamique spécifiques (spatio-temporel) de p53, en particulier que ces dynamiques spécifiques de p53, comme messager de l'information cellulaire, peuvent moduler le cycle de division cellulaire, par exemple provoquant l'arrêt du cycle ou l'apoptose. Des modèles mathématiques EDO et EDP de réaction-diffusion sont utilisés pour examiner comment le comportement (spatio-temporel) de p53 émerge, et nous discutons des conséquences de ce comportement sur les réseaux moléculaires, avec des applications possibles dans le traitement du cancer.Les interactions protéine-protéine sont considérées comme des réactions enzymatiques. On présente quelques résultats mathématiques pour les réactions enzymatiques, en particulier on étudie le comportement en temps grand du système de réaction-diffusion pour la réaction enzymatique réversible à l'aide d'une approche entropique. À notre connaissance, c'est la première fois qu'une telle étude est publiée sur ce sujet. / Various molecular pharmacokinetic–pharmacodynamic models have been proposed in the last decades to represent and predict drug effects in anticancer therapies. Most of these models are cell population based models since clearly measurable effects of drugs can be seen on populations of (healthy and tumour) cells much more easily than in individual cells.The actual targets of drugs are, however, cells themselves. The drugs in use either disrupt genome integrity by causing DNA strand breaks and consequently initiate programmed cell death or block cell proliferation mainly by inhibiting proteins (cdks) that enable cells to proceed from one cell cycle phase to another. DNA damage caused by cytotoxic drugs or $\gamma$-irradiation activates, among others, the p53 protein-modulated signalling pathways that directly or indirectly force the cell to make a decision between survival and death.The thesis aims to explore closely intracellular pathways involving p53, ``the guardian of the genome", initiated by DNA damage and thus to provide oncologists with a rationale to predict and optimise the effects of anticancer drugs in the clinic. It describes p53 activation and regulation in single cells following their exposure to DNA damaging agents. We show that dynamical patterns that have been observed in individual cells can be reconstructed and predicted by compartmentalisation of cellular events occurring either in the nucleus or in the cytoplasm, and by describing protein interactions, using both ordinary and partial differential equations, among several key antagonists including ATM, p53, Mdm2 and Wip1, in each compartment and in between them. Recently observed positive role of Mdm2 in the synthesis of p53 is explored and a novel mechanism triggering oscillations is proposed. For example, new model can explain experimental observations that previous (not only our) models could not, e.g., excitability of p53.Using mathematical methods we look closely on how a stimulus (e.g., $\gamma$-radiation or drugs used in chemotherapy) is converted to a specific (spatio-temporal) pattern of p53 whereas such specific p53 dynamics as a transmitter of cellular information can modulate cellular outcomes, e.g., cell cycle arrest or apoptosis. Mathematical ODE and reaction-diffusion PDE models are thus used to see how the (spatio-temporal) behaviour of p53 is shaped and what possible applications in cancer treatment this behaviour might have. Protein-protein interactions are considered as enzyme reactions. We present some mathematical results for enzyme reactions, among them the large-time behaviour of the reaction-diffusion system for the reversible enzyme reaction treated by an entropy approach. To our best knowledge this is published for the first time.
534

Multi-scale modeling and asymptotic analysis for neuronal synapses and networks / Modélisation multi-échelle et analyse asymptotique pour les synapses et les réseaux neuronaux

Guerrier, Claire 17 December 2015 (has links)
Dans cette thèse, nous étudions plusieurs structures neuronales à différentes échelles allant des synapses aux réseaux neuronaux. Notre objectif est de développer et analyser des modèles mathématiques, afin de déterminer comment les propriétés des synapses au niveau moléculaire façonnent leur activité, et se propagent au niveau du réseau. Ce changement d’échelle peut être formulé et analysé à l’aide de plusieurs outils tels que les équations aux dérivées partielles, les processus stochastiques ou les simulations numériques. Dans la première partie, nous calculons le temps moyen pour qu’une particule brownienne arrive à une petite ouverture définie comme le cylindre faisant la jonction entre deux sphères tangentes. La méthode repose sur une transformation conforme de Möbius appliquée à l’équation de Laplace. Nous estimons également, lorsque la particule se trouve dans un voisinage de l’ouverture, la probabilité d’atteindre l’ouverture avant de quitter le voisinage. De nouveau, cette probabilité est exprimée à l’aide d’une équation de Laplace, avec des conditions aux limites mixtes. En utilisant ces résultats, nous développons un modèle et des simulations stochastiques pour étudier la libération vésiculaire au niveau des synapses, en tenant compte de leur géométrie particulière. Nous étudions ensuite le rôle de plusieurs paramètres tels que le positionnement des canaux calciques, le nombre d’ions entrant après un potentiel d’action, ou encore l’organisation de la zone active. Dans la deuxième partie, nous développons un modèle pour le terminal pré- synaptique, formulé dans un premier temps comme un problème de réaction-diffusion dans un microdomaine confiné, où des particules browniennes doivent se lier à de petits sites cibles. Nous développons ensuite deux modèle simplifiés. Le premier modèle couple un système d’équations d’action de masse à un ensemble d’équations de Markov, et permet d’obtenir des résultats analytiques. Dans un deuxième temps, nous developpons un modèle stochastique basé sur des équations de taux poissonniens, qui dérive de la théorie du premier temps de passage et de l’analyse précédente. Ce modèle permet de réaliser des simulations stochastiques rapides, qui donnent les mêmes résultats que les simulations browniennes naïves et interminables. Dans la dernière partie, nous présentons un modèle d’oscillations dans un réseau de neurones, dans le contexte du rythme respiratoire. Nous developpons un modèle basé sur les lois d’action de masse représentant la dynamique synaptique d’un neurone, et montrons comment l’activité synaptique au niveau des neurones conduit à l’émergence d’oscillations au niveau du réseau. Nous comparons notre modèle à plusieurs études expérimentales, et confirmons que le rythme respiratoire chez la souris au repos est contrôlé par l’excitation récurrente des neurones découlant de leur activité spontanée au sein du réseau. / In the present PhD thesis, we study neuronal structures at different scales, from synapses to neural networks. Our goal is to develop mathematical models and their analysis, in order to determine how the properties of synapses at the molecular level shape their activity and propagate to the network level. This change of scale can be formulated and analyzed using several tools such as partial differential equations, stochastic processes and numerical simulations. In the first part, we compute the mean time for a Brownian particle to arrive at a narrow opening defined as the small cylinder joining two tangent spheres. The method relies on Möbius conformal transformation applied to the Laplace equation. We also estimate, when the particle starts inside a boundary layer near the hole, the splitting probability to reach the hole before leaving the boundary layer, which is also expressed using a mixed boundary-value Laplace equation. Using these results, we develop model equations and their corresponding stochastic simulations to study vesicular release at neuronal synapses, taking into account their specific geometry. We then investigate the role of several parameters such as channel positioning, the number of entering ions, or the organization of the active zone. In the second part, we build a model for the pre-synaptic terminal, formulated in an initial stage as a reaction-diffusion problem in a confined microdomain, where Brownian particles have to bind to small target sites. We coarse-grain this model into two reduced ones. The first model couples a system of mass action equations to a set of Markov equations, which allows to obtain analytical results. We develop in a second phase a stochastic model based on Poissonian rate equations, which is derived from the mean first passage time theory and the previous analysis. This model allows fast stochastic simulations, that give the same results than the corresponding naïve and endless Brownian simulations. In the final part, we present a neural network model of bursting oscillations in the context of the respiratory rhythm. We build a mass action model for the synaptic dynamic of a single neuron and show how the synaptic activity between individual neurons leads to the emergence of oscillations at the network level. We benchmark the model against several experimental studies, and confirm that respiratory rhythm in resting mice is controlled by recurrent excitation arising from the spontaneous activity of the neurons within the network.
535

Contrôle optimal de modèles de neurones déterministes et stochastiques, en dimension finie et infinie. Application au contrôle de la dynamique neuronale par l'Optogénétique / Optimal control of deterministic and stochastic neuron models, in finite and infinite dimension. Application to the control of neuronal dynamics via Optogenetics

Renault, Vincent 20 September 2016 (has links)
Let but de cette thèse est de proposer différents modèles mathématiques de neurones pour l'Optogénétique et d'étudier leur contrôle optimal. Nous définissons d'abord une version contrôlée des modèles déterministes de dimension finie, dits à conductances. Nous étudions un problème de temps minimal pour un système affine mono-entrée dont nous étudions les singulières. Nous appliquons une méthode numérique directe pour observer les trajectoires et contrôles optimaux. Le contrôle optogénétique apparaît comme une nouvelle façon de juger de la capacité des modèles à conductances de reproduire les caractéristiques de la dynamique du potentiel de membrane, observées expérimentalement. Nous définissons ensuite un modèle stochastique en dimension infinie pour prendre en compte le caractère aléatoire des mécanismes des canaux ioniques et la propagation des potentiels d'action. Il s'agit d'un processus de Markov déterministe par morceaux (PDMP) contrôlé, à valeurs dans un espace de Hilbert. Nous définissons une large classe de PDMPs contrôlés en dimension infinie et prouvons le caractère fortement Markovien de ces processus. Nous traitons un problème de contrôle optimal à horizon de temps fini. Nous étudions le processus de décision Markovien (MDP) inclus dans le PDMP et montrons l'équivalence des deux problèmes. Nous donnons des conditions suffisantes pour l'existence de contrôles optimaux pour le MDP, et donc le PDMP. Nous discutons des variantes pour le modèle d'Optogénétique stochastique en dimension infinie. Enfin, nous étudions l'extension du modèle à un espace de Banach réflexif, puis, dans un cas particulier, à un espace de Banach non réflexif. / The aim of this thesis is to propose different mathematical neuron models that take into account Optogenetics, and study their optimal control. We first define a controlled version of finite-dimensional, deterministic, conductance based neuron models. We study a minimal time problem for a single-input affine control system and we study its singular extremals. We implement a direct method to observe the optimal trajectories and controls. The optogenetic control appears as a new way to assess the capability of conductance-based models to reproduce the characteristics of the membrane potential dynamics experimentally observed. We then define an infinite-dimensional stochastic model to take into account the stochastic nature of the ion channel mechanisms and the action potential propagation along the axon. It is a controlled piecewise deterministic Markov process (PDMP), taking values in an Hilbert space. We define a large class of infinite-dimensional controlled PDMPs and we prove that these processes are strongly Markovian. We address a finite time optimal control problem. We study the Markov decision process (MDP) embedded in the PDMP. We show the equivalence of the two control problems. We give sufficient conditions for the existence of an optimal control for the MDP, and thus, for the initial PDMP as well. The theoretical framework is large enough to consider several modifications of the infinite-dimensional stochastic optogenetic model. Finally, we study the extension of the model to a reflexive Banach space, and then, on a particular case, to a nonreflexive Banach space.
536

Contrôle en mécanique des fluides et couches limites / Control in fluid mechanics and boundary layers

Marbach, Frédéric 27 September 2016 (has links)
Cette thèse est consacrée à l'étude du contrôle de quelques équations aux dérivées partielles non linéaires issues de la mécanique des fluides. On s'intéresse notamment à l'équation de Burgers et à l'équation de Navier-Stokes. L'objectif principal est de démontrer des résultats de contrôle globaux en temps petit y compris en présence de couches limites. On montre que cela est possible en introduisant une nouvelle méthode dite "de la dissipation bien préparée". Cette méthode consiste à procéder en deux phases : une phase très courte non visqueuse suivi d'une phase plus longue d'auto-dissipation de la couche limite. Aussi bien pour Burgers que pour Navier-Stokes avec des conditions au bord de glissement avec frottement, on démontre que cette dissipation est suffisante si elle a été bien préparée. De plus, on étudie une question de contrôlabilité locale pour l'équation de Burgers lorsqu'un seul contrôle scalaire est utilisé. On démontre en améliorant une technique de noyau quadratique que le système n'est pas localement contrôlable en temps petit. / This thesis is devoted to the study of the controllability of non linear partial differential equations in fluid mechanics. We are mostly interested in Burgers equation and Navier-Stokes equation. Our main goal is to prove small-time global results, even in the presence of boundary layers. We prove that it is possible to obtain such results by introducing a new method named: ``well prepared dissipation''. This method proceeds in two phases: first, a quick phase using the inviscid behavior of the system, then a longer phase during which the boundary layer dissipates all by itself. Both for Burgers and for Navier-Stokes with Navier slip-with-friction boundary conditions, we prove that this dissipation is sufficient if it has been well prepared. Moreover, we study a question of local null controllability for the Burgers equation with a single scalar control. We prove by enhancing a second order kernel approach that the system is not small time locally null controllable.
537

Autour des équations de contrainte en relativité générale / On the Constraint Equations in General Relativity

Valcu, Caterina 25 September 2019 (has links)
Le but à long terme de mon travail de recherche est de trouver une alternative viable à la méthode conforme, qui nous permettrait de mieux comprendre la structure géométrique de l'espace des solutions des équations de contrainte. L'avantage du modèle de Maxwell (the drift model) par rapport aux modèles plus classiques est la présence des paramètres supplémentaires. Le prix à payer, par contre, sera que la complexité analytique du système correspondant. Ma thèse a été structuré en deux parties : a. Existence sous la condition de petitesse des données initiales. Nous avons montré que le système de Maxwell est raisonnable dans le sens où nous pouvons le résoudre, malgré sa forte nonliniarité, sous des conditions de petitesse sur ses coefficients, en dimension 3, 4 et 5. Par conséquent, l'ensemble des solutions est non-vide. b. Stabilité Nous montrons la stabilité des solutions du système: ce résultat est obtenu en dimension 3,4 et 5, dans le cas où la métrique est conformément plate, et le drift et petit / The long-term goal of my work is to find a viable alternative to the conformal method, which would allow us to better understand the geometry of the space of solutions of the constraint equations. The advantage of Maxwell's model (the drift model) is the presence of additional parameters. Its downside, however, is that it proves to be much more difficult from an analytic standpoint. My thesis is structued in two parts: a. Existence under suitable smallness conditions. We show that Maxwell's system is sufficiently reasonable: it can be solved even given the presence of focusing non linearities. We prove this under smallness conditions of its coefficients, and in dimensions 3,4 and 5. An immediate consequence is that the set of solutions is non-empty. b. Stability. We verify that the solutions of the system are stable: this result holds in dimensions 3,4 and 5, when the metric is conformally flat and the drift is small
538

Nonlinear Dirichlet Forms

Claus, Burkhard 07 September 2021 (has links)
In den letzten fünfzig Jahren haben eine Vielzahl von Mathematikern, allen voran Brezis, Pazy und Crandall, eine Theorie der nichtlinearen Halbgruppen entwickelt. Die Ergebnisse dieser Theorie ähneln denen des linearen Gegenstücks stark. Insbesondere zeigten sie, dass jedes konvexe und unterhalbstetige Funktional auf einem Hilbertraum eine Kontraktionshalbgruppe erzeugt. Dies ist eine Verallgemeinerung des Satzes von Lumer-Phillips, aus dem sich folgern lässt, dass jede abgeschlossene Bilinearform eine Halbgruppe erzeugt. Eine solche Bilinearform heißt Dirichletform genau dann, wenn die erzeugte lineare Halbgruppe submarkovsch ist. Da solche Halbgruppen nicht nur eine wichtige Rolle in der Theorie parabolischer Differentialgleichungen spielen, sondern auch in der Analyse von Markovprozessen auftauchen, bildet die Theorie der bilinearen Dirichletformen eine fruchtbare Überschneidung aus Funktionalanalysis, Stochastik und der Theorie partieller Differentialgleichungen. In einem Artikel aus dem Jahr 2003 definieren F. Cipriani und G. Grillo nichtlineare Dirichletformen analog als genau die konvexen und unterhalbstetigen Funktionale, die nichtlineare submarkovsche Halbgruppen generieren. Sie zeigen auch, dass, ähnlich wie im bilinearen Fall, diese Definition durch Ungleichungen für das Funktional charakterisiert werden kann, ohne die Halbgruppe explizit zu untersuchen. Diese Dissertation baut auf dieser Publikation auf. Das Ziel ist, Konzepte und Resultate der bekannten linearen Theorie in diesem neuen Kontext wiederzugewinnen. Zum Beispiel definieren wir im ersten Teil einen Energieraum für eine große Klasse von Funktionalen. Im Falle einer Dirichletform nennen wir diesen Banachraum den Dirichletraum der Form. Der Dirichletraum ist, wie im bilinearen Fall, ein Verband unter der punktweisen Ordnung und die Verbandsoperationen sind in vielen Beispielen stetig. Danach führen wir eine Kapazität ein und nutzen diese, um quasistetige Funktionen zu definieren. All diese Konzepte ähneln ihrem bilinearen Gegenstück stark und erfüllen vergleichbare Eigenschaften. In den folgenden Kapiteln nutzen wir diese Potentialtheorie um eine Reihe von Resultaten, hauptsächlich über die Regularität bestimmter Störungen, zu beweisen. Diese Störungen sind oft mit Randwertproblemen assoziiert. Wichtige Beispiele für nichtlineare Dirichletformen sind die Energien der p-Laplaceoperatoren und deren fraktionellen Versionen auf Gebieten des Euklidischer Raums oder allgemeinen riemannschen Mannigfaltigkeiten.
539

Some numerical techniques for approximating semilinear parabolic (stochastic) partial differential equations

Mukam, Jean Daniel 11 October 2021 (has links)
Partial differential equations (PDEs) and stochastic partial differential equations (SPDEs) are powerful tools in modeling real-world phenomena in many fields such as geo-engineering. For instance processes such as oil or gas recovery from hydrocarbon reservoirs and mining heat from geothermal reservoirs can be modeled by PDEs or SPDEs. An important task is to understand the behavior of such phenomena. This can be achieved through explicit solutions of equations. Since explicit solutions of many PDEs and SPDEs are rarely known, developing numerical schemes is a good alternative to provide approximations of these explicit solutions. The study of numerical solutions of PDEs and SPDEs is therefore an active research area and has attracted a lot of attentions since at least two decades. The aims of this dissertation is to develop numerical schemes to approximate semilinear parabolic PDEs and SPDEs in space and in time. The approximation in space is done via the standard Galerkin finite element method and the approximation in time, which is the core of our work is done via various numerical integrators. This dissertation consists of two general parts. The first part of this thesis deals with autonomous PDEs and SPDEs. Here, our main interest is on semilinear PDEs and SPDEs where the nonlinear part is stronger than the linear part also called (stochastic) reactive dominated transport equations, or stiff problems. For such problems, many numerical techniques in the current scientific literature lose their good stability properties. We develop a new explicit exponential integrator (called exponential Rosenbrock-type method) and a new semi-implicit method (called linear implicit Rosenbrock-type method), appropriate for such PDEs and SPDEs. We analyze the strong convergence of our novel fully discrete schemes towards the mild solution of the (S)PDE and obtain convergence orders similar to existing ones in the literature. The second part of this thesis focuses on numerical approximations of semilinear non-autonomous parabolic PDEs and SPDEs. Such equations are more realistic than the autonomous ones and find applications in many fields such as fluid mechanics, quantum field theory, electromagnetism, etc. Numerics of non-autonomous semilinear parabolic PDEs and SPDEs are far from being well understood in the literature. We fill that gap in this thesis by developing a new exponential integrator (called Magnus-type method) and the semi-implicit method for such problems and provide their strong convergence towards the mild solution. Moreover, for both autonomous and non-autonomous SPDEs driven by additive noise, we achieve optimal convergence order in time 1 or approximately 1. Numerical simulations are provided to illustrate our theoretical findings in both autonomous and non-autonomous cases.
540

Structures actives dans un fluide visqueux : modélisation, analyse mathématique et simulations numériques / Active structures in a viscous fluid : model, mathematical analysis and numerical simulations

Vergnet, Fabien 03 July 2019 (has links)
Le transport de micro-organismes et de fluides biologiques au moyen de cils et flagelles est un phénomène universel que l’on retrouve chez presque tous les êtres vivants. Le but de cette thèse est la modélisation, l’analyse mathématique et la simulation numérique de problèmes d’interaction fluide-structure qui font intervenir des structures actives, capables de se déformer d’elles-mêmes grâce à des contraintes internes, et un fluide à faible nombre de Reynolds, modélisé par les équations de Stokes. Le Chapitre 2 traite de la modélisation de ces structures actives en considérant la loi de Saint Venant-Kirchhoff dans les équations de l’élasticité et en ajoutant un terme d’activité au second tenseur de contraintes de Piola-Kirchhoff. Les équations fluide et structures sont couplées à l’interface fluide-structure et l’étude mathématique d’un problème linéarisé et discrétisé en temps est ensuite réalisée. Une reformulation sous forme d’un problème point-selle est proposée et utilisée pour la simulation numérique du problème. Le Chapitre 3 s’intéresse à l’analyse du problème d’interaction fluide-structure quasi-statique avec une structure active, pour lequel nous montrons l’existence et l’unicité, pour des données petites, d’une solution forte localement en temps. Le Chapitre 4 présente une nouvelle méthode de type domaine fictif (la méthode de prolongement régulier ) pour la résolution numérique de problèmes de transmission. La méthode est d’abord développée pour un problème de transmission de Laplace, puis étendue aux problèmes de transmission de Stokes et d’interaction fluide-structure. / The transport of microorganisms and biological fluids by means of cilia and flagella is an universal phenomenon found in almost all living beings. The aim of this thesis is to model, analyze and simulate mathematical fluid-structure interaction problems involving active structures, capable of deforming themselves through internal stresses, and a low Reynolds number fluid, modeled by Stokes equations. In Chapter 2, these active structures are modeled as elastic materials satisfying Saint Venant-Kirchhoff law for elasticity whose activity comes from the addition of an activity term to the second Piola-Kirchhoff stress tensor. Elasticity and Stokes equations are coupled on the fluid-structure interface and the mathematical study of the linearized problem discretized in time is realized. Then, the problem is formulated as a saddle-point problem which isused for numerical simulations. Chapter 3 focuses on the analysis of a quasi-static fluid-structure with an active structure, for which we show existence and uniqueness, for small data, of a strong solution locally in time. Chapter 4 presents a new fictitious domain method (the smooth extension method) for the numerical resolution of transmission problems. The method is first developed for a Laplace transmission problem and further extended to Stokes transmission and fluid-structure interaction problems.

Page generated in 0.1646 seconds