• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 120
  • 70
  • 24
  • 12
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 719
  • 719
  • 719
  • 168
  • 156
  • 140
  • 127
  • 126
  • 124
  • 103
  • 101
  • 100
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Impacto do sedimento sobre espécies que interagem = modelagem e simulações de bentos na Enseada Potter / Sediment impact upon interacting species : modeling and numerical simulation of benthos at Potter Cove

Carmona Tabares, Paulo Cesar, 1976- 08 August 2012 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T04:55:31Z (GMT). No. of bitstreams: 1 CarmonaTabares_PauloCesar_D.pdf: 24565019 bytes, checksum: 8ebe9aed1d258a0712f49e9711f8d107 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho, construímos um modelo matemático para avaliar as conjecturas existentes acerca do impacto que tem o material inorgânico particulado (sedimento) nas populações bentônicas predominantes na Enseada Potter. Na construção do modelo são utilizadas informações do fenômeno, proporcionadas pelas pesquisas permanentes na região de estudo. Como resultado, logramos comprovar mediante simulações numéricas, o efeito que produz o sedimento na distribuição e abundância das espécies do substrato marinho, constatando neste ecossistema particular as consequências do aquecimento global nessa parte da região antártica. A modelagem é feita com um sistema de equações diferenciais parciais não- lineares sobre um domínio bidimensional irregular (descritiva da região original), o qual é discretizado nas variáveis espaciais por elementos finitos de primeira ordem e na variável temporal pelo Método de Crank-Nicolson. A resolução do sistema não-linear resultante é aproximada através de um método preditor-corretor cuja solução aproximada é visualizada e valorada qualitativamente usando gráficos evolutivos obtidos por simulações em ambiente MATLAB / Abstract: In this work, we built a mathematical model to evaluate existing conjectures about the impact that inorganic particulate material (sediment) has upon predominating benthic populations in Potter Cove. For the mathematical model, phenomena information was that provided by permanent researches in the study area. As a result, by means of numerical simulations, we were able to confirm the effect of sediment over distribution and abundance for species of marine substrate, verifying in this particular ecosystem, the effects of global warming in this specific Antarctic region. Modeling is done with a system of nonlinear partial differential equations over an irregular two-dimensional domain (descriptive of the original region), which is discretized in the spatial variables by first order finite elements and in the time variable by Crank-Nicolson. The resolution of the resulting nonlinear system is approximated by a predictor-corrector method and the solution is displayed and qualitatively valorized using evolutive graphics, obtain in a MATLAB environment / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
512

Auto-adjunticidade não-linear e leis de conservação para equações evolutivas sobre superfícies regulares / Nonlinear self-adjointness and conservation laws for evolution equations on regular surfaces

Silva, Kênio Alexsom de Almeida, 1979- 21 August 2018 (has links)
Orientador: Yuri Dimitrov Bozhkov / Tese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T22:59:33Z (GMT). No. of bitstreams: 1 Silva_KenioAlexsomdeAlmeida_D.pdf: 5129062 bytes, checksum: 0bae8b75b0ea90b8799bc1dd7496d766 (MD5) Previous issue date: 2013 / Resumo: Nesta tese estudamos o conceito novo de equações diferenciais não - linearmente auto-adjuntas para duas classes gerais de equações evolutivas de segunda ordem quase lineares. Uma vez que essas equações não provêm de um problema variacional, não podemos obter leis de conservação via o Teorema de Noether. Por isto aplicamos tal conceito e o Novo Teorema sobre Leis de Conservação de Nail H. Ibragimov, o qual possibilita-nos a determinação de leis de conservação para qualquer equação diferencial. Obtivemos em ambas as classes, equações não - linearmente auto-adjuntos e leis de conservação para alguns casos particularmente importantes: a) as equações do fluxo de Ricci geométrico, do fluxo de Ricci 2D, do fluxo de Ricci modificada e a equação do calor não-linear, na primeira classe; b) as equações do fluxo geométrico hiperbólico e do fluxo geométrica hiperbólica modificada, na segunda classe de equações evolutivas / Abstract: In this thesis we study the new concept of nonlinear self-adjoint deferential equations for two general classes of quasilinear 2D second order evolution equations. Since these equations do not come from a variational problem, we cannot obtain conservation laws via the Noether's Theorem. Therefore we apply this concept and the New Conservation Theorem of Nail H. Ibragimov, which enables one to establish the conservation laws for any deferential equation. We obtain in classes, nonlinear self-adjoint equations and conservation laws for important particular cases: a) the Ricci flow geometric equation, Ricci flow 2D equation, the modified Ricci flow equation and the nonlinear heat equation in the first class; b) the hyperbolic geometric flow equation and the modified hyperbolic geometric flow equation in the second class of evolution equations / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
513

Estabilidade de soluções ondas viajantes periodicas para as equações de Boussinesq e de Korteweg - de Vries / Stability of periodic travelling wave solutions for the Boussinesq and Korteweg- de Vries equations

Paiva, Lynnyngs Kelly Arruda Saraiva de 24 June 2005 (has links)
Orientadores: Jaime Angulo Paiva, Marcia A. G. Scialom / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T09:39:02Z (GMT). No. of bitstreams: 1 Paiva_LynnyngsKellyArrudaSaraivade_D.pdf: 1499074 bytes, checksum: 7fef4b8257781913440ab95a338aedcc (MD5) Previous issue date: 2005 / Doutorado / Matematica / Doutor em Matemática
514

Study of Optimal Control Problems in a Domain with Rugose Boundary and Homogenization

Sardar, Bidhan Chandra January 2016 (has links) (PDF)
Mathematical theory of partial differential equations (PDEs) is a pretty old classical area with wide range of applications to almost every branch of science and engineering. With the advanced development of functional analysis and operator theory in the last century, it became a topic of analysis. The theory of homogenization of partial differential equations is a relatively new area of research which helps to understand the multi-scale phenomena which has tremendous applications in a variety of physical and engineering models, like in composite materials, porous media, thin structures, rapidly oscillating boundaries and so on. Hence, it has emerged as one of the most interesting and useful subject to study for the last few decades both as a theoretical and applied topic. In this thesis, we study asymptotic analysis (homogenization) of second-order partial differential equations posed on an oscillating domain. We consider a two dimensional oscillating domain (comb shape type) consisting of a fixed bottom region and an oscillatory (rugose) upper region. We introduce optimal control problems for the Laplace equation. There are mainly two types of optimal control problems; namely distributed control and boundary control. For distributed control problems in the oscillating domain, one can apply control on the oscillating part or on the fixed part and similarly for boundary control problem (control on the oscillating boundary or on the fixed part the boundary). We consider all the four cases, namely distributed and boundary controls both on the oscillating part and away from the oscillating part. The present thesis consists of 8 chapters. In Chapter 1, a brief introduction to homogenization and optimal control is given with relevant references. In Chapter 2, we introduce the oscillatory domain and define the basic unfolding operators which will be used throughout the thesis. Summary of the thesis is given in Chapter 3 and future plan in Chapter 8. Our main contribution is contained in Chapters 4-7. In chapters 4 and 5, we study the asymptotic analysis of optimal control problems namely distributed and boundary controls, respectively, where the controls act away from the oscillating part of the domain. We consider both L2 cost functional as well as Dirichlet (gradient type) cost functional. We derive homogenized problem and introduce the limit optimal control problems with appropriate cost functional. Finally, we show convergence of the optimal solution, optimal state and associate adjoint solution. Also convergence of cost-functional. In Chapter 6, we consider the periodic controls on the oscillatory part together with Neumann condition on the oscillating boundary. One of the main contributions is the characterization of the optimal control using unfolding operator. This characterization is new and also will be used to study the limiting analysis of the optimality system. Chapter 7 deals with the boundary optimal control problem, where the control is applied through Neumann boundary condition on the oscillating boundary with a suitable scaling parameter. To characterize the optimal control, we introduce boundary unfolding operators which we consider as a novel approach. This characterization is used in the limiting analysis. In the limit, we obtain two limit problems according to the scaling parameters. In one of the limit optimal control problem, we observe that it contains three controls namely; a distributed control, a boundary control and an interface control.
515

The hierarchical preconditioning having unstructured grids

Globisch, G., Nepomnyaschikh, S. V. 30 October 1998 (has links) (PDF)
In this paper we present two hierarchically preconditioned methods for the fast solution of mesh equations that approximate 2D-elliptic boundary value problems on unstructured quasi uniform triangulations. Based on the fictitious space approach the original problem can be embedded into an auxiliary one, where both the hierarchical grid information and the preconditioner by decomposing functions on it are well defined. We implemented the corresponding Yserentant preconditioned conjugate gradient method as well as the BPX-preconditioned cg-iteration having optimal computational costs. Several numerical examples demonstrate the efficiency of the artificially constructed hierarchical methods which can be of importance in the industrial engineering, where often only the nodal coordinates and the element connectivity of the underlying (fine) discretization are available.
516

Commande robuste de systèmes à retard variable : Contributions théoriques et applications au contrôle moteur / Robust control of variable time-delay systems : Theoretical contributions and applications to engine control

Bresch-Pietri, Delphine 17 December 2012 (has links)
Cette thèse étudie la compensation robuste d'un retard de commande affectant un système dynamique. Pour répondre aux besoins du domaine applicatif du contrôle moteur, nous étudions d'un point de vue théorique des lois de contrôle par prédiction, dans les cas de retards incertains et de retards variables, et présentons des résultats de convergence asymptotique. Dans une première partie, nous proposons une méthodologie générale d'adaptation du retard, à même de traiter également d'autres incertitudes par une analyse de Lyapunov-Krasovskii. Cette analyse est obtenue grâce à une technique d'ajout de dérivateur récemment proposée dans la littérature et exploitant une modélisation du retard sous forme d'une équation à paramètres distribués. Dans une seconde partie, nous établissons des conditions sur les variations admissibles du retard assurant la stabilité du système boucle fermée. Nous nous intéressons tout particulièrement à une famille de retards dépendant de la commande (retard de transport). Des résultats de stabilité inspirés de l'ingalité Halanay sont utilisés pour formuler une condition de petit gain permettant une compensation robuste. Des exemples illustratifs ainsi que des résultats expérimentaux au banc moteur soulignent la compatibilité de ces lois de contrôle avec les impératifs du temps réel ainsi que les mérites de cette approche. / This thesis addresses the general problem of robust compensation of input delays. Motivated by engine applications, we theoretically study prediction-based control laws for uncertain delays and time-varying delays. Results of asymptotic convergence are obtained. In a first part, a general delay-adaptive scheme is proposed to handle uncertainties, through a Lyapunov-Krasovskii analysis induced by a backstepping transformation (applied to a transport equation) recently introduced in the literature.In a second part, conditions to handle delay variability are established. A particular class of input-dependent delay is considered (transport). Halanay-like stability results serve to formulate a small-gain condition guaranteeing robust compensation. Illustrative examples and experimental results obtained on a test bench assess the implementability of the proposed control laws and highlight the merits of the approach.
517

Stabilisation rapide et observation en plusieurs instants de systèmes oscillants / Rapid stabilization and observation of oscillating systems at different time instants

Vest, Ambroise 27 September 2013 (has links)
Ce travail est constitué de deux parties indépendantes traitant chacune d'un problème issu de la théorie du contrôle des équations aux dérivées partielles. La première partie est consacrée à l'étude d'un feedback explicite et déjà connu, s'appliquant à des systèmes linéaires, réversibles en temps et éventuellement munis d'un opérateur de contrôle non-borné. On justifie le caractère bien posé du problème en boucle fermée via la théorie des semi-groupes puis on étudie le taux de décroissance des solutions du système régulé. La seconde partie concerne un problème d'observation pour la corde vibrante : on détermine comment choisir des instants d'observation pour que la position de la corde à ces instants permette de retrouver les conditions initiales tout en préservant une certaine régularité. La méthode, qui repose sur des résultats d'approximation diophantienne, est ensuite étendue à d'autres systèmes. En utilisant une méthode de dualité on démontre aussi un résultat de contrôlabilité exacte. / This works contains two independent parts, each one dealing with the control of partial differential equations. In the first part, we study an explicit and already known feedback law that applies to linear, time-reversible systems, with a possibly unbounded control operator. We prove the well-posedness of the closed-loop problem in the semi-group framework and we study the decay rate of the solutions. In the second part, we give conditions on the choice of some time instants, such that the positions of a vibrating string (or beam) at these times enable to recover the initial data. The method relies on Diophantine approximation results. Using a duality method, we give a related exact controllability result.
518

A fast and efficient solver for viscous-plastic sea ice dynamics

Seinen, Clint 04 October 2017 (has links)
Sea ice plays a key role in the global climate system. Indeed, through the albedo effect it reflects significant solar radiation away from the oceans, while it also plays a key role in the momentum and heat transfer between the atmosphere and ocean by acting as an insulating layer between the two. Furthermore, as more sea ice melts due to climate change, additional fresh water is released into the upper oceans, affecting the global circulation of the ocean as a whole. While there has been significant effort in recent decades, the ability to simulate sea ice has lagged behind other components of the climate system and most Earth System Models fail to capture the observed losses of Arctic sea ice, which is largely attributed to our inability to resolve sea ice dynamics. The most widely accepted model for sea ice dynamics is the Viscous- Plastic (VP) rheology, which leads to a very non-linear set of partial differential equations that are known to be intrinsically difficult to solve numerically. This work builds on recent advances in solving these equations with a Jacobian-Free Newton- Krylov (JFNK) solver. We present an improved JFNK solver, where a fully second order discretization is achieved via the Crank Nicolson scheme and consistency is improved via a novel approach to the rheology term. More importantly, we present a significant improvement to the Jacobian approximation used in the Newton iterations, and partially form the action of the matrix by expressing the linear and nearly linear terms in closed form and approximating the remaining highly non-linear term with a second order approximation of its Gateaux derivative. This is in contrast with the previous approach which used a first order approximation for the Gateaux derivative of the whole functional. Numerical tests on synthetic equations confirm the theoretical convergence rate and demonstrate the drastic improvements seen by using a second order approximation in the Gateaux derivative. To produce a fast and efficient solver for VP sea ice dynamics, the improved JFNK solver is then coupled with a non- oscillatory, central differencing scheme for transporting sea ice as well as a novel method for tracking the ice domain using a level set method. Two idealized test cases are then presented and simulation results discussed, demonstrating the solver’s ability to efficiently produce Viscous-Plastic, physically motivated solutions. / Graduate
519

Computational Fluid Dynamics in a Terminal Alveolated Bronchiole Duct with Expanding Walls: Proof-of-Concept in OpenFOAM

Myers, Jeremy 01 January 2017 (has links)
Mathematical Biology has found recent success applying Computational Fluid Dynamics (CFD) to model airflow in the human lung. Detailed modeling of flow patterns in the alveoli, where the oxygen-carbon dioxide gas exchange occurs, has provided data that is useful in treating illnesses and designing drug-delivery systems. Unfortunately, many CFD software packages have high licensing fees that are out of reach for independent researchers. This thesis uses three open-source software packages, Gmsh, OpenFOAM, and ParaView, to design a mesh, create a simulation, and visualize the results of an idealized terminal alveolar sac model. This model successfully demonstrates that OpenFOAM can be used to model airflow in the acinar region of the lung under biologically relevant conditions.
520

Analyse asymptotique de réseaux complexes de systèmes de réaction-diffusion / Asymptotic analysis of complex networks of reaction-diffusion systems

Phan, Van Long Em 09 December 2015 (has links)
Le fonctionnement d'un neurone, unité fondamentale du système nerveux, intéresse de nombreuses disciplines scientifiques. Il existe ainsi des modèles mathématiques qui décrivent leur comportement par des systèmes d'EDO ou d'EDP. Plusieurs de ces modèles peuvent ensuite être couplés afin de pouvoir étudier le comportement de réseaux, systèmes complexes au sein desquels émergent des propriétés. Ce travail présente, dans un premier temps, les principaux mécanismes régissant ce fonctionnement pour en comprendre la modélisation. Plusieurs modèles sont alors présentés, jusqu'à celui de FitzHugh-Nagumo (FHN), qui présente une dynamique très intéressante.C'est sur l'étude théorique mais également numérique de la dynamique asymptotique et transitoire du modèle de FHN en EDO, que se concentre la seconde partie de cette thèse. A partir de cette étude, des réseaux d'interactions d'EDO sont construits en couplant les systèmes dynamiques précédemment étudiés. L'étude du phénomène de synchronisation identique au sein de ces réseaux montre l'existence de propriétés émergentes pouvant être caractérisées par exemple par des lois de puissance. Dans une troisième partie, on se concentre sur l'étude du système de FHN dans sa version EDP. Comme la partie précédente, des réseaux d'interactions d'EDP sont étudiés. On entreprend dans cette partie une étude théorique et numérique. Dans la partie théorique, on montre l'existence de l'attracteur global dans l'espace L2(Ω)nd et on donne des conditions suffisantes de synchronisation. Dans la partie numérique, on illustre le phénomène de synchronisation ainsi que l'émergence de lois générales telles que les lois puissances ou encore la formation de patterns, et on étudie l'effet de l'ajout de la dimension spatiale sur la synchronisation. / The neuron, a fundamental unit in the nervous system, is a point of interest in many scientific disciplines. Thus, there are some mathematical models that describe their behavior by ODE or PDE systems. Many of these models can then be coupled in order to study the behavior of networks, complex systems in which the properties emerge. Firstly, this work presents the main mechanisms governing the neuron behaviour in order to understand the different models. Several models are then presented, including the FitzHugh-Nagumo one, which has a interesting dynamic. The theoretical and numerical study of the asymptotic and transitory dynamics of the aforementioned model is then proposed in the second part of this thesis. From this study, the interaction networks of ODE are built by coupling previously dynamic systems. The study of identical synchronization phenomenon in these networks shows the existence of emergent properties that can be characterized by power laws. In the third part, we focus on the study of the PDE system of FHN. As the previous part, the interaction networks of PDE are studied. We have in this section a theoretical and numerical study. In the theoretical part, we show the existence of the global attractor on the space L2(Ω)nd and give the sufficient conditions for identical synchronization. In the numerical part, we illustrate the synchronization phenomenon, also the general laws of emergence such as the power laws or the patterns formation. The diffusion effect on the synchronization is studied.

Page generated in 0.1427 seconds