• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 18
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 22
  • 16
  • 15
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Room-temperature aluminum gallium arsenic antimonide/indium gallium arsenic antimonide heterojunction phototransistors for the 2 micron region

Swaminathan, Krishna. January 2009 (has links)
Thesis (M.Mat.S.E.)--University of Delaware, 2007. / Principal faculty advisor: Robert L. Opila, Dept. of Materials Science & Engineering. Includes bibliographical references.
42

Atomistic simulations of H2 and He plasmas modification of thin-films materials for advanced etch processes / Modification de matériaux en couches minces par plasmas H2 ou He : simulations atomistiques pour procédés de gravure innovants

Martirosyan, Vahagn 15 December 2017 (has links)
Ce travail de thèse aborde l’un des défis technologiques liés au développement de nouvelles générations de transistors (FinFET, FDSOI), pour lesquels la gravure de couches ultraminces révèle plusieurs problèmes. En particulier, la gravure des espaceurs nitrure (SiN) doit être réalisée avec une précision nanométrique sans endommager les couches sous-jacentes, étape qui ne peut plus être réalisée par des plasmas conventionnels continus. Afin de dépasser cette limitation, une approche innovante a été récemment développée (dite Smart-Etch), qui s’appuie sur l'implantation d’ions légers et se déroule en deux étapes. Premièrement, le matériau à graver est exposé à un plasma ICP ou CCP d’hydrogène (H2) ou d’hélium (He); dans une deuxième étape, la couche modifiée est retirée sélectivement par gravure humide ou exposition à des réactifs gazeux. Afin d’appréhender les mécanismes fondamentaux de la première étape et assister le développement de cette nouvelle technologie, des simulations de dynamique moléculaire (MD) ont été réalisées pour étudier l'interaction des plasmas H2/He avec des couches de Si/SiN. La MD a été utilisée pour examiner comment la modification de ces substrats est affectée par l’énergie ionique, la dose ionique, la composition ionique ou le rapport flux de radicaux/ flux d’ions (dans le cas d’un plasma H2). En accord avec les expériences, les simulations de bombardement ionique He+ ou Hx+ (x = 1-3) sur Si/SiN montrent que l’implantation ionique est auto-limitée, et que l’évolution de la surface se déroule en deux étapes : une rapide modification en volume (sans gravure) suivie d'une saturation lente et de la formation d'une couche implantée stable en régime permanent (état stationnaire). Les mécanismes d'endommagement induit par les ions (rupture des liaisons Si-Si ou Si-N, piégeage/désorption d’He ou H2, formation de groupes SiHx (x = 1-3) en profondeur), sont étudiés et permettent d’apporter de nouveaux éléments de compréhension aux technologies Smart-Cut et Smart-Etch. L’exposition de substrats Si/SiN à un plasma H2 (impacts d’ions Hx+ et de radicaux H) a également été étudiée pour différentes conditions plasma. Dans ce cas, une transformation auto-limitée est observée mais les couches modifiées/hydrogénées sont simultanément gravées pendant l'implantation ionique, à un taux 10 fois inférieur pour SiN par rapport à Si. Les simulations montrent que modifier des substrats Si/SiN avec une précision nanométrique nécessite un contrôle prudent de l’énergie et du flux des ions incidents. En particulier, les faibles doses ioniques doivent être évitées car l’évolution de la surface ne peut pas être contrôlée précisément en régime transitoire (modification rapide). Dans les plasmas H2, les énergies ioniques élevées induisent des couches modifiées plus épaisses mais des taux d'hydrogénation plus faibles et moins homogènes. La composition ionique et le rapport flux de radicaux/ flux ions (Γ) doivent également être controllés avec précaution, notamment car la vitesse de gravure du matériau augmente avec Γ, ce qui empêche entre-autre la possibilité du Smart-Etch pour le silicium. Les simulations MD réalisées dans cette thèse permettent de clarifier divers phénomènes inexpliqués observés dans le Smart-Etch expérimentalement, et de révéler quelques problèmes possibles dans ce nouveau procédé. Finalement, une gamme de paramètres plasma est proposée pour optimiser cette première étape de Smart-Etch et contrôler la modification de SiN avec une précision sous-nanométrique. / This PhD thesis focuses on technological challenges related to the development of advanced transistors (FinFET, FDSOI), where the etching of thin films reveals several issues. In particular, the etching of silicon nitride spacers should be achieved with a nanoscale precision without damaging the underlayers, a step which cannot be addressed by conventional CW plasmas. To overpass this limitation, an innovative approach was recently developed (so-called Smart Etch), which is based on light ion implantation and composed of two steps. First, the material to be etched is modified by exposure to a hydrogen (H2) or helium (He) ICP or CCP plasma; in a second step, the modified layer is selectively removed using wet etching or gaseous reactants only. To support the fundamental understanding of the first step and assist the development of this new technology, molecular dynamics (MD) simulations were performed to study the interaction between silicon/silicon nitride films and hydrogen/helium plasmas. MD was used to investigate how the substrates modification is affected by the ion energy, the ion dose, the ion composition or the radical-to-ion flux ratio (in the case of a H2 plasma). In agreement with experiments, simulations of He+ or Hx+ (x=1-3) ion bombardment of Si/SiN show that a self-limited ion implantation takes place with a surface evolution composed of two stages: a rapid volume modification (with no etching) followed by a slow saturation and the formation of a stable He- or H- implanted layer at steady state. The mechanisms of ion-induced damage (Si-Si or Si-N bond breaking, He or H2 trapping/desorption, SiHx (x=1-3) complex creation) are investigated and allow to bring new insights to both the Smart Cut and Smart Etch technologies. Si/SiN exposure to various H2 plasma conditions (with both Hx+ ions and H radicals) was then studied. In this case, a self-limited transformation is observed but the H-modified layers are simultaneously etched during the ion implantation, at a rate ~10 times smaller for SiN compared to Si. Simulations show that to modify Si/SiN thin films with a nanoscale precision by H2 or He plasmas, both the ion energy and the ion flux have to be controlled very cautiously. In particular, low ion doses, where the substrate evolution is in rapid modification stage, must be avoided since the substrate evolution cannot be precisely controlled. In H2 plasmas, high ion energies induce thicker modified layers but smaller and less homogeneous hydrogenation rates. The ion composition and the radical-to-ion flux ratio Γ must be considered as well, since the etch rate increases with Γ, compromising even the possibility to achieve a Smart Etch of silicon. The MD simulations performed in this thesis enable to clarify various unexplained phenomena seen in the Smart-Etch experimentally, and reveal some possible issues in this new process. In the end, a range for plasma parameters is proposed to optimize this first step of the Smart Etch process and to control the modification of SiN with a sub-nanoscale precision.
43

Caractérisation et développement d'un procédé de gravure séquentiel contrôlé à l'échelle nanométrique / Characterization and development of a nanoscale controlled sequential etching process for SiN spacers

Chambettaz, Florentin 04 April 2018 (has links)
La miniaturisation des dispositifs de la microélectronique nécessite la mise au point de procédé de gravure toujours plus précis. Le sujet de cette thèse s’inscrit dans cette problématique, en effet un procédé de gravure séquentielle contrôlée à l’échelle nanométrique a été proposé pour pallier aux défauts inhérents à la gravure plasma directe. Ce procédé de gravure destiné dans notre cas à la gravure d’espaceurs en SiN, se décompose en deux étapes. La première étape est une implantation d’atome léger. L’implantation d’espèces chimiques légères telles que de l’Hydrogène ou de l’Hélium présente l’avantage de modifier la structure du matériau sans induire une pulvérisation dommageable pour le dispositif à graver. La couche modifiée par l’implantation est ensuite gravée de manière sélective vis-à-vis du matériau pristine via un plasma « downstream » ou plasma déporté.L’implantation d’hydrogène ayant principalement été étudiée au cours de ces travaux, différentes caractérisations visant à quantifier l’hydrogène implanté ainsi que l’épaisseur modifiée ont été réalisées. En effet, des mesures de réflectométrie des rayons X ont permis de déterminer l’épaisseur modifiée en fonction de la puissance d’autopolarisation ainsi que de la durée d’implantation. Des profils d’implant hydrogène sur du SiN ont également été effectués au travers de caractérisations électriques. Les profils de densité de charge obtenus ont été comparés à des profils de liaisons Si-H et N-H obtenus à partir de mesures spectroscopiques infra-rouge en réflexion multiple, et ces mesures ont également été comparées à des profils de spectrométrie de masse à ionisation secondaire. Ces profils permettent de quantifier l’hydrogène implanté en fonction de la profondeur, et ont également fournis des informations vis-à-vis de l’influence du rayonnement UV et de la configuration chimique du matériau implanté. Une présence significative d’oxyde à la surface du matériau implanté a également été observée par le biais de mesures spectroscopique de photoélectrons X.L’étape de retrait a principalement été étudiée via des mesures ellipsométriques cinétiques in situ, et des mesures spectroscopique de photoélectrons X pour différentes conditions de température, et pour différents mélanges chimiques. Les mesures ellipsométriques ont permis d’observer la formation de sels durant la gravure, alors que les analyses spectroscopiques de photoélectrons X ont montré que la surface du matériau été désoxydée par le plasma de retrait, parallèlement une quantité importante de fluor a été mesurée à la surface du matériau.Les études réalisées sur les étapes d’implantation et de retrait ont permis de graver de manière satisfaisante des échantillons patternés dans les conditions adéquates. / The miniaturization of microelectronics devices requires the development of ever more accurate etching processes. The subject of this thesis is part of this problematic: a controlled sequential etching process at the nanoscale has been developed to overcome the inherent defects of direct plasma etching. This etching process intended in our case for the etching for SiN spacers, is divided in two steps. The first step is a light atom implantation. The implantation of light chemical species such as Hydrogen or Helium has the advantage of modifying the structure of the material without inducing a damaging sputtering for the device to be etched. In the second step, the layer modified by the implantation is etched selectively regarding the pristine material via a remote plasma.Hydrogen implantation was mainly studied during this work: different characterizations to quantify the implanted hydrogen as well as the modified thickness were carried out. X-ray reflectometry measurements were used to determine the modified thickness as a function of the self-polarization power and the duration of implantation. Hydrogen implant profiles on SiN were also carried out through electrical characterizations. The charge density profiles observed were compared to Si-H and N-H bond profiles obtained from infrared spectroscopic measurements in multiple reflections. These measurements were also compared to secondary ionization mass spectrometry profiles. These profiles make it possible to quantify implanted hydrogen as a function of depth, and have also provided information regarding the influence of UV radiation and the chemical configuration of the implanted material. A significant presence of oxide on the surface of the implanted material has also been observed through X-ray photoelectron spectroscopic measurements.The removal step was mainly studied via kinetic ellipsometric in situ measurements and X-ray photoelectron spectroscopic measurements for different temperature conditions and for different chemical mixtures. The ellipsometric measurements made it possible to observe the formation of salts during etching, whereas the X-ray photoelectron spectroscopic analysis showed that the surface of the material was deoxidized by the remote plasma, while a large quantity of fluorine was measured at the same time on the material surface. The studies carried out on the implantation and removal steps made it possible to succesfully etch patterned samples under the appropriate conditions.
44

Characterization and optimization of high density plasma etching processes for advanced memories application / Caractérisation et optimisation des procédés de gravure plasma haute densité pour application sur des dispositifs de type mémoires électroniques avancées

Rizquez Moreno, Maria Mercedes 08 November 2016 (has links)
Parmi d’autres caractéristiques, la mémoire électronique idéale doit présenter une faible consommation d'énergie, haute densité et de la rapidité en lecture/écriture/effacement. Différents types de mémoires ont été ainsi développées. Un exemple en l’eSTM (Embedded Select Trench Memory). Ce travail de thèse étudie la caractérisation et l'optimisation des procédés de gravure plasma utilisés dans la fabrication de cette nouvelle technologie développée par STMicroelectronics Rousset, l'eSTM. Ce travail a été fortement lié à la caractérisation des parois du réacteur, le plasma lui-même et la surface de la plaquette de silicium. La caractérisation chimique des surfaces exposées aux plasmas a permis de caractériser et d'optimiser ce nouveau procédé de gravure. De plus, cette étude vise également à comprendre les dépôts sur les parois du réacteur qui se produisent pendant la gravure de la tranchée de l’eSTM. Ces interactions sont responsables de l’absence de reproductibilité des procédés de gravure. La gravure plasma est contrôlée par la formation d'une couche de passivation se formant en surface des flancs du silicium. La maitrise de cette couche par les conditions du plasma (pression, puissance source débit de gaz...) a permis de développer un model innovant afin d'optimiser le CD de la tranchée. De plus, cette thèse a également porté sur l'étude des dérives des CD au niveau des STI (Shallow Trench Isolation). Des mesures correctives ont été développées afin de contrôler les sources de variations en créant une nouvelle stratégie de gravure pour corriger la dispersion des CD entre lots (25 plaquettes de silicium). / Among other characteristics, the ideal memory should have low power consumption, fast read/write/erase and high density solution. Different types of memories have been developed to pursuit these specific properties. Example of this attempt is the eSTM (Embedded Select Trench Memory). This PhD work studies the characterization and optimization of the plasma etching processes for this new technology developed by STMicroelectronics, the eSTM. This work has been highly related to the characterization of the reactor walls, the plasma itself and the wafer surface. The main objectives of this thesis are to understand the fundamental mechanisms of the etching processes and to propose innovative solutions to reduce the variations of CD by reaching the good control of the process desired. This thesis would help for the enhancement of our knowledge on the physical phenomena which happens during this process, especially the passivation. This would offer the possibility of optimize the etch process and get the best CD (Critical Dimension) in terms of electrical results. The emphasis, was put on the characterization to get the maximum knowledge about the interactions taking place during the process, such as plasma-surface interactions and plasma-reactor wall interactions. Furthermore, this thesis was also focused on the optimization of the process drifts at STI (Shallow Trench Isolation) level, since the reproducibility of production processes generates serious concerns in making the component of the chips. Therefore, corrective actions were developed to control the source of variations by creating a regulation loop able to correct the CD dispersion between lots (25wafers).
45

A Study on Plasma Process-Induced Damage during Fabrication of Si Devices and Methodology for Optical Measurement / Siデバイス製造過程におけるプラズマプロセス誘起ダメージとその光学的測定方法論の研究

Matsuda, Asahiko 23 May 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17788号 / 工博第3767号 / 新制||工||1576(附属図書館) / 30595 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 木村 健二, 教授 立花 明知 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
46

A Study of Plasma-Induced Surface Roughness and Ripple Formation during Silicon Etching in Inductively Coupled Chlorine Plasmas / 誘導結合塩素プラズマを用いたシリコンエッチングにおけるプラズマ誘起表面ラフネスとリップル形成に関する研究

Nakazaki, Nobuya 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19687号 / 工博第4142号 / 新制||工||1639(附属図書館) / 32723 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 稲室 隆二, 教授 青木 一生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
47

A Study on Plasma Process-Induced Defect Creation in Si-Based Devices / シリコン系デバイスにおけるプラズマプロセス誘起欠陥生成に関する研究

Sato, Yoshihiro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24580号 / 工博第5086号 / 新制||工||1974(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 江利口 浩二, 教授 土屋 智由, 教授 平方 寛之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
48

Low-Loss Hollow Waveguide Platforms for Optical Sensing and Manipulation

Lunt, Evan J. 11 August 2010 (has links) (PDF)
This dissertation presents a method for fabricating integrated hollow and solid optical waveguides on planar substrates. These waveguides are antiresonant reflecting optical waveguides (ARROWs), where high-index cladding layers confine light to hollow cores through optical interference. Hollow waveguides that can be filled with liquids or gases are an important new building block for creating highly-integrated optical sensors. The method developed for fabricating these integrated waveguides employs standard processes and materials used in the microelectronics industry, allowing for parallel, low-cost fabrication. Dielectric cladding layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD). After the lower cladding layers have been deposited, a sacrificial material is deposited and patterned using photolithography to produce the hollow-core shape. After the sacrificial cores are defined, they are coated with additional PECVD dielectric layers to form the sides and tops of the waveguides. Integrated solid-core waveguides can be easily created by etching a ridge into the top dielectric cladding layer. Finally, the ends of the sacrificial cores are exposed and removed with an acid solution, resulting in hollow waveguides. Improved optical performance for integrated ARROW platforms can be achieved by only using a single over-coating for the cladding on the sides and top of the hollow waveguide. Such a structure resulted in 70% improvement in optical throughput for the platforms and increased sensitivity for optical manipulation and fluorescence detection of single particles, including viruses. Reduced loss for the hollow waveguides can be obtained by surrounding the core with a terminal layer of air on the sides and top of the waveguide. Such devices were created by forming the hollow waveguides on top of a pedestal on the silicon substrate. This process produces the ideal geometry for hollow ARROW waveguides, and loss measurements of waveguides with air-filled cores had loss coefficients of 1.54/cm, which is the lowest achieved for air-core ARROWs.
49

Low-Photoluminescence Hollow Waveguide Platforms for High-sensitivity Integrated Optical Sensors

Zhao, Yue 06 March 2012 (has links) (PDF)
This dissertation presents research on the fabrication of optofluidic sensor platforms, which consist of integrated hollow waveguides and solid waveguides. Antiresonant reflecting optical waveguides (ARROWs) filled with liquids or gases, can be used for high-sensitivity sensing in applications of biotechnology, chemical synthesis, and analytical chemistry. The fabrication method developed for integrated ARROW sensing platforms utilizes standard microfabrication processes and materials. Dielectric cladding layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) or sputtering. A sacrificial material is then patterned over the bottom cladding layers by photolithography. Additional dielectric layers are deposited around the core, forming the structure of the waveguides. Integrated solid-core waveguides can be easily created by etching a ridge into the topmost dielectric cladding layer. The hollow core waveguides are then formed by wet etching the sacrificial core material. The coupling efficiency between solid core and hollow core waveguides is extremely important for the platform's overall sensitivity. Efficiencies can be enhanced from 18% to 67% by adjusting the thickness of the thick top oxide. Experimental results prove that optical throughput was improved by 17.1× with this improved interface transmission. Sputtered films were investigated as an alternative to for producing cladding layers. The experimental results reveal that sputtered layers show poor adhesion and mechanical strength which make them unreliable for hollow waveguides with small dimension. High-sensitivity ARROW platforms were obtained by employing hybrid layers (PECVD SiO2 and sputtered Ta2O5) as claddings and building waveguides on self-aligned pedestals. The photolumiscence background was only 1/10 that of previous devices made with SiO2/SiN and the average signal-to-noise ratio was improved by 12×.
50

Poly(dimethylsiloxane) Based Micro- and Nanofluidic Device Fabrication for Electrophoresis Applications

Pussadee, Nirut 04 November 2010 (has links)
No description available.

Page generated in 0.0667 seconds