Spelling suggestions: "subject:"kuantum gravity"" "subject:"auantum gravity""
131 |
Kovariantní smyčková gravitace / Covariant Loop Quantum GravityIrinkov, Pavel January 2017 (has links)
In this thesis we offer a broad introduction into loop quantum gravity against the backdrop of the quantum gravity research as a whole. We focus on both the canonical and covariant version of the theory. In the latter version we investigate the dynamics of some simple configurations in the simplified setting of Ponzano-Regge model. We ascertain that the naïve approach to define a consistent dynamics, where the path integral's partition function is computed as a sum of amplitudes corresponding to all boundary and bulk states, fails in this case, on account of an appearance of divergences. This opens up space for the utilization of some more sophisticated methods.
|
132 |
Détection du pulsar de Vela et recherche de violation d'invariance de Lorentz avec le cinquième télescope de H.E.S.S. / Detection of the Vela pulsar and search for Lorentz invariance violation with the fifth H.E.S.S. telescopeChrétien, Mathieu 02 October 2015 (has links)
Le cinquième télescope (CT5) du réseau H.E.S.S. (High Energy Stereoscopic System) a été inauguré en 2012. H.E.S.S. est destiné à l’observation du ciel austral dans le domaine des rayons γ et CT5, dont le seuil est d’environ 30 GeV, a permis la détection du pulsar de Vela après 24 heures d’observations. Certains scénarios de gravitation quantique (QG) prédisent une violation d’invariance de Lorentz (LIV). Celle-ci se manifeste par l’ajout de termes ∝(E/EQG)n aux relations de dispersion du photon, où E est l’énergie du quanta de lumière, EQG l’énergie caractéristique des processus de QG et n l’ordre de la correction. Cette dépendance en énergie peut être testée par des mesures de temps de vol entre photons reçus de sources astrophysiques variables (noyaux actifs de galaxies), transitoires (sursauts γ) ou encore périodiques (pulsars). Cette thèse présente l’analyse des données recueillies par CT5 sur le pulsar de Vela. Une méthode de maximum de vraisemblance ayant déjà montré sa robustesse sur d’autres types de sources a été adaptée au cas du pulsar de Vela. Aucune déviation des relations de dispersion standard n’est observée, par conséquent des limites sont placées sur EQG. La plus contraignante est obtenue pour une correction linéaire superluminique aux relations de dispersion EQG > 7.0×1015 GeV. / The fifth telescope (CT5) of the H.E.S.S. array (High Energy Stereoscopic System) was inaugurated in 2012. H.E.S.S. is designed to scrutinize the southern γ ray sky and CT5, whose threshold is about 30 GeV, allowed the Vela pulsar detection in 24 hours observation time. Some quantum gravity (QG) scenarios predict a violation of Lorentz invariance (LIV). This could manifest by additional terms ∝(E/EQG)n to the photon dispersion relations, where E is the light quantum energy, EQG the typical scale at which QG processes are expected to occur and n the order of the correction. This energy dependence could be tested by time of flight measurements between photons emitted from variable (active galactic nuclei), transient (gamma ray bursts) or periodical (pulsars) astrophysical sources. This thesis presents the analysis of the CT5 collected data from the Vela pulsar. A maximum likelihood method already successfully applied to other source species has been adapted here to the Vela pulsar. No deviation from standard photon dispersion relations is observed, therefore limits have been placed on EQG. The most restrictive result has been obtained for a superluminal linear correction to the dispersion relations EQG > 7.0×1015 GeV.
|
133 |
Intégrabilité du chaos multiplicatif gaussien et théorie conforme des champs de Liouville / Integrability of Gaussian multiplicative chaos and Liouville conformal field theoryRemy, Guillaume 03 July 2018 (has links)
Cette thèse de doctorat porte sur l’étude de deux objets probabilistes, les mesures de chaos multiplicatif gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane en 1985 et il s’agit aujourd’hui d’un objet extrêmement important en théorie des probabilités et en physique mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, “Quantum geometry of bosonic strings”. Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme des champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Ceci est précisément ce que nous développerons pour le GMC sur le cercle unité. Nous écrirons les équations BPZ qui fournissent des relations non triviales sur le GMC. Le résultat final est la densité de probabilité pour la masse totale de la mesure de GMC sur cercle unité ce qui résout une conjecture établie par Fyodorov et Bouchaud en 2008. Par ailleurs, il s'avère que des techniques similaires permettent également de traiter un autre cas, celui du GMC sur le segment unité, et nous obtiendrons de même des formules qui avaient été conjecturées indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. La dernière partie de cette thèse consiste en la construction de la LCFT sur un domaine possédant la topologie d’une couronne. Nous suivrons les méthodes introduites par David- Kupiainen-Rhodes-Vargas même si de nouvelles techniques seront requises car la couronne possède deux bords et un espace des modules non trivial. Nous donnerons également des preuves plus concises de certains résultats connus. / Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC) measures and Liouville conformal field theory (LCFT). GMC measures were first introduced by Kahane in 1985 and have grown into an extremely important field of probability theory and mathematical physics. Very recently GMC has been used to give a probabilistic definition of the correlation functions of LCFT, a theory that first appeared in Polyakov’s 1981 seminal work, “Quantum geometry of bosonic strings”. Once the connection between GMC and LCFT is established, one can hope to translate the techniques of conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. This is precisely what we develop for GMC on the unit circle. We write down the BPZ equations which lead to non-trivial relations on the GMC. Our final result is an exact probability density for the total mass of the GMC measure on the unit circle. This proves a conjecture of Fyodorov and Bouchaud stated in 2008. Furthermore, it turns out that the same techniques also work on a more difficult model, the GMC on the unit interval, and thus we also prove conjectures put forward independently by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in 2009. The last part of this thesis deals with the construction of LCFT on a domain with the topology of an annulus. We follow the techniques introduced by David-Kupiainen- Rhodes-Vargas although novel ingredients are required as the annulus possesses two boundaries and a non-trivial moduli space. We also provide more direct proofs of known results.
|
134 |
De la renormalisation perturbative à la renormalisation non-perturbative dans les théories de champ sur groupe à interactions tensorielles / From perturbative to non-perturbative renormalization in Tensorial Group Field TheoriesLahoche, Vincent 10 October 2016 (has links)
Cette thèse présente un certain nombre d'outils permettant d'approfondir notre compréhension de la physique sous-jacente de théories des champs appelées GFTs (Group Field Theories). Ces théories trouvent leur origines dans différentes voies de recherches en gravité quantique, en particulier les mousses de spin et les tenseurs aléatoires, et on une interprétation de modèles d'espace-temps quantique, ou "pré-géométrique", les amplitudes de Feynman étant indexées par des triangulations. La compréhension du passage entre cette vision "discrète" et notre espace-temps continue reste le grand défi de ces théories, défi pour lequel la renormalisation, la construction de théories effectives, la recherche de point fixes et de transitions de phases s'avère primordiale, et c'est dans le but de comprendre les outils nécessaires à cette description que cette thèse a vu le jour. Nous nous attacherons dans un premier temps à donner une description concise de la renormalisation perturbative, et à l'établissement d'un système d'équations fermées décrivant exactement l'ordre dominant de la théorie. Dans un second temps, nous détaillerons la mise en application de méthodes non-perturbative. Le groupe de renormalisation fonctionnel en premier lieu, permettra de donner une première description non-perturbative de ces théories, et de voir apparaître certain points fixes non-triviaux. Une approche constructive enfin, discutée sur deux modèles, ouvre la voie vers un programme visant à donner une définition rigoureuse de ces théories dans un régime non-perturbatif. / This thesis presents a number of tools to deepen our understanding of the underlying physics theories called fields GFTs (Group Field Theories). These theories found their origins in different approaches of quantum gravity, in particular spin foams and random tensors, and are interpreted as quantum space-time or "pre-geometric" models, the amplitudes of Feynman being indexed by triangulations. The understanding of the passage between this "discrete" vision to our continuous space-time remains the great challenge of these theories, for which renormalization, effective theories, research of fixed points and phase transitions proves paramount, and it is the aim of this thesis to understand the tools required for this description. In a first time, we will focus to give a concise description of the perturbative renormalization, and the establishment of a closed system of equations describing exactly the leading order of the theory. Secondly, we will detail the implementation of nonperturbative methods. The functional renormalization group in the first place, providing a first non-perturbative description of these theories, and some nontrivial fixed points. Finally, a constructive approach discussed on two models open the way to a rigorous definition of these theories beyond the perturbative level.
|
135 |
Gravité quantique à boucles et géométrie discrète / Loop Quantum Gravity and Discrete GeometryZhang, Mingyi 21 July 2014 (has links)
Dans ce travail de thèse , je présente comment extraire les géométries discrètes de l'espace-temps de la formulation covariante de la gravitaté quantique à boucles, qui est appelé le formalisme de la mousse de spin. LQG est une théorie quantique de la gravité qui non-perturbativement quantifie la relativité générale indépendante d'un fond fixe. Il prédit que la géométrie de l'espace est quantifiée, dans lequel l'aire et le volume ne peuvent prendre que la valeur discrète. L'espace de Hilbert cinématique est engendré par les fonctions du réseau de spin. L'excitation de la géométrie peut être parfaitement visualisée comme des polyèdres floue qui collées à travers leurs facettes. La mousse de spin définit la dynamique de la LQG par une amplitude de la mousse de spin sur un complexe cellulaire avec un état du réseau de spin comme la frontiére. Cette thèse présente deux résultats principaux. Premièrement, la limite semi-classique de l'amplitude de la mousse de spin sur un complexe simplicial arbitraire avec une frontière est complètement étudiée. La géométrie discrète classique de l'espace-temps est reconstruite et classée par les configurations critiques de l'amplitude de la mousse de spin. Deuxièmement, la fonction de trois-point de LQG est calculé. Il coïncide avec le résultat de la gravité discrète. Troisièmement, la description des géométries discrètes de hypersurfaces nulles est explorée dans le cadre de la LQG. En particulier, la géométrie nulle est décrit par une structure singulière euclidienne sur la surface de type espace à deux dimensions définie par un feuilletage de l'espace-temps par hypersurfaces nulles. / In this thesis, I will present how to extract discrete geometries of space-time fromthe covariant formulation of loop quantum gravity (LQG), which is called the spinfoam formalism. LQG is a quantum theory of gravity that non-perturbative quantizesgeneral relativity independent from a fix background. It predicts that the geometryof space is quantized, in which area and volume can only take discrete value. Thekinematical Hilbert space is spanned by Penrose's spin network functions. The excita-tion of geometry can be neatly visualized as fuzzy polyhedra that glued through theirfacets. The spin foam defines the dynamics of LQG by a spin foam amplitude on acellular complex, bounded by the spin network states. There are three main results inthis thesis. First, the semiclassical limit of the spin foam amplitude on an arbitrarysimplicial cellular complex with boundary is studied completely. The classical discretegeometry of space-time is reconstructed and classified by the critical configurations ofthe spin foam amplitude. Second, the three-point function from LQG is calculated.It coincides with the results from discrete gravity. Third, the description of discretegeometries of null hypersurfaces is explored in the context of LQG. In particular, thenull geometry is described by a Euclidean singular structure on the two-dimensionalspacelike surface defined by a foliation of space-time by null hypersurfaces. Its quan-tization is U(1) spin network states which are embedded nontrivially in the unitaryirreducible representations of the Lorentz group.
|
136 |
Géométrie quantique dans les mousses de Spins : de la théorie topologique BF vers la relativité générale / Quantum geometry in Spin foams : from the topological BF theory towards general relativityBonzom, Valentin 23 September 2010 (has links)
La gravité quantique à boucles a fourni un cadre d’étude particulièrement bien adapté aux théories de jauge définies sans métrique fixe et invariante sous difféomorphismes. Les excitations fondamentales de cette quantification sont appelées réseaux de spins, et dans le contexte de la relativité générale donnent un sens à la géométrie quantique au niveau canonique. Les mousses de spins constituent une sorte d’intégrale de chemins adaptée aux réseaux de spins, et donc destinée à permettre le calcul des amplitudes de transition entre ces états. Cette quantification est particulièrement efficace pour les théories des champs topologiques, comme Yang-Mills 2d, la gravité 3d ou les théories BF, et des modèles ont aussi été proposés pour la gravité quantique en dimension 4.Nous discutons dans cette thèse différentes méthodes pour l’étude des modèles de mousses de spins.Nous présentons en particulier des relations de récurrence sur les amplitudes de mousses de spins. De manière générique, elles codent des symétries classiques au niveau quantique, et sont susceptible de permettre de faire le lien avec les contraintes hamiltoniennes. De telles relations s’interprètent naturellement en termes de déformations élémentaires sur des structures géométriques discrètes, telles que simplicielles. Une autre méthode intéressante consiste à explorer la façon dont on peut réécrire les modèles de mousses de spins comme des intégrales de chemins pour des systèmes de géométries sur réseau, en s’inspirant à la fois des modèles topologiques et du calcul de Regge. Cela aboutit à une vision très géométrique des modèles, et fournit des actions classiques sur réseau dont on étudie les points stationnaires. / Loop quantum gravity has provided us with a canonical framework especially devised for back-ground independent and diffeomorphism invariant gauge field theories. In this quantization the funda-mental excitations are called spin network states, and in the context of general relativity, they give ameaning to quantum geometry. Spin foams are a sort of path integral for spin network states, supposed to enable the computations of transition amplitudes between these states. The spin foam quantization has proved very efficient for topological field theories, like 2d Yang-Mills, 3d gravity or BF theories. Different models have also been proposed for 4-dimensional quantum gravity.In this PhD manuscript, I discuss several methods to study spin foam models. In particular, I present some recurrence relations on spin foam amplitudes, which generically encode classical symme-tries at the quantum level, and are likely to help fill the gap with the Hamiltonian constraints. These relations can be naturally interpreted in terms of elementary deformations of discrete geometric struc-tures, like simplicial geometries. Another interesting method consists in exploring the way spin foam models can be written as path integrals for systems of geometries on a lattice, taking inspiration from topological models and Regge calculus. This leads to a very geometric view on spin foams, and gives classical action principles which are studied in details.
|
137 |
Divergence des mousses de spins : Comptage de puissances et resommation dans le modèle platSmerlak, Matteo 07 December 2011 (has links)
L’objet de cette thèse est l’étude du modèle plat, l’ingrédient principal du programme de quantification de la gravité par les mousses de spins, avec un accent particulier sur ses divergences. Outre une introduction personnelle au problème de la gravité quantique, le manuscrit se compose de deux parties. Dans la première, nous obtenons une formule exacte pour le comptage de puissances des divergences de bulles dans le modèle plat, notamment grâce à des outils de théorie de jauge discrète et de cohomologie tordue. Dans la seconde partie, nous considérons le problème de la limite continue des mousses de spins, tant du point de vue des théories de jauge sur réseau que du point de vue de la group field theory. Nous avançons en particulier une nouvelle preuve de la sommabilité de Borel du modèle de Boulatov-Freidel-Louapre, permettant un contrôle accru du comportement d’échelle dans la limite de grands spins. Nous concluons par une discussion prospective du programme de renormalisation pour les mousses de spins. / In this thesis we study the flat model, the main buidling block for the spinfoam ap- proach to quantum gravity, with an emphasis on its divergences. Besides a personal introduction to the problem of quantum gravity, the manuscript consists in two part. In the first one, we establish an exact powercounting formula for the bubble divergences of the flat model, using tools from discrete gauge theory and twisted cohomology. In the second one, we address the issue of spinfoam continuum limit, both from the lattice field theory and the group field theory perspectives. In particular, we put forward a new proof of the Borel summability of the Boulatov-Freidel-Louapre model, with an improved control over the large-spin scaling behaviour. We conclude with an outlook of the renormalization program in spinfoam quantum gravity.
|
138 |
Short scale study of 4-simplex assembly with curvature, in euclidean Loop Quantum Gravity / Émergence de la géométrie classique, de la gravité quantique à boucle et corrections quantiquesCollet, François 29 November 2016 (has links)
Une étude d'un assemblage symétrique de trois 4-simplex en géométrie classique, de Regge et quantique. Nous étudions les propriétés géométriques et surtout la présence de courbure. Nous montrons que les géométries classique et de Regge de l'assemblage ont une courbure qui évolue en fonction de ses paramètres de bordure. Pour la géométrie quantique, une version euclidienne du modèle EPRL est utilisé avec une valeur pratique du paramètre Barbero-Immirzi pour définir l'amplitude de transition de l'ensemble et de ses composants. Un code C ++ est conçu pour calculer les amplitudes et étudier numériquement la géométrie quantique. Nous montrons qu'une géométrie classique, avec une courbure, émerge déjà à bas spin. Nous reconnaissons également l'apparition de configurations dégénérées et de leurs effets sur la géométrie attendue. / A study of symmetrical assembly of three euclidean 4-simplices in classical, Regge and quantum geometry. We study the geometric properties and especially the presence of curvature. We show that classical and Regge geometry of the assembly have curvature which evolves in function of its boundary parameters. For the quantum geometry, a euclidean version of EPRL model is used with a convenient value of the Barbero-Immirzi parameter to define the transition amplitude of the assembly and its components. A C++ code is design for compute the amplitudes and study numerically the quantum geometry. We show that a classical geometry, with curvature, emerges already at low spin. We also recognize the appearance of the degenerate configurations and their effects on the expected geometry.
|
139 |
Derivation of the Planck and Fine-Structure Constant from Assis’s Gravity ModelTajmar, Martin 15 July 2015 (has links) (PDF)
Presently, Planck’s constant is a fundamental constant that can not be derived from other onstants. Assis developed a model based on an extended Weber-type potential energy, that allows calculating gravitational-type forces from neutral oscillating electric dipoles. Here we show that the maximum possible point-mass in his model equals the Planck mass which allows us to derive Planck’s constant and the fine-structure constant. We match the exact order of magnitude only requiring a pre-factor that is present in all Weber-type theories and has to be determined empirically. This classical model allows to link electromagnetic, gravitational and quantum properties with one approach.
|
140 |
Betono užpildų mišinio struktūros tyrimas / Structure analysis of concrete aggregates mixturePocius, Gvidas 01 August 2012 (has links)
Baigiamajame magistro darbe nagrinėjama dalelių mišinio dinaminė elgsena kvazistatiniame pusiausvyros būvyje. Pagrindinis dėmesys skiriamas mišinio makro- ir mikrobūsenai charakterizuoti. Darbo tikslas – ištirti betono užpildams būdingomis fizinėmis-mechaninėmis savybėmis pasižyminčio sferinių dalelių mišinio struktūrą ir elgseną fliuktuojančioje aplinkoje kvazistatinio pusiausvyros būvio sąlygomis. Dalelių mišinio elgsenos dinaminis modeliavimas atliktas diskrečiųjų elementų metodu (DEM). Modeliuoti viendispersis ir daugiadispersis mišiniai. Pagal gautus rezultatus, mišinio makrobūsena charakterizuojama struktūros užimama tūrio dalimi (tankumu), dalelių kontaktinėmis jėgomis bei koordinacijos skaičiumi. Atskirų mišinio dalelių mikrobūsena charakterizuojama taikant unikalų geometrinį metodą, sukurtą pagal Hamiltono mechanikos, bendrosios reliatyvumo teorijos ir kvantinės gravitacijos teorijų principus. Metodui realizuoti parengtas kompiuterinis algoritmas patvirtino iškeltas hipotezes. / In the Master Thesis an investigation of dynamical behavior of the mixture of particles under quasistatic equilibrium conditions was performed. It focuses on a characterization of the macro- and microstate of the mixture. The purpose of the research is to explore structure and behavior of the mixture of spherical particles, characterized by the typical physical-mechanical properties of concrete aggregates, in a fluctuating environment under quasistatic equilibrium conditions. Dynamic simulation of the behavior of the particles was performed via the discrete element method (DEM). According to the results obtained, the macrostate of the mixture was investigated in view of a volume fraction, contact forces of particles and a coordination number. A characterization of the microstate of distinct particle was done using the unique geometrical method which had been created according to Hamiltonian mechanics, the theory of relativity and the principles of quantum gravity. The developed computer algorithm allowed to confirm the hypotheses of the method.
|
Page generated in 0.0371 seconds