• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 30
  • 14
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 23
  • 17
  • 17
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nouvelle approche de suivi non invasif de l'alcoolémie par perspiration à l'aide de multicapteurs MOX / New approach to non-invasive monitoring of alcohol by perspiration using MOX multi-sensors

Lawson, Bruno Latevi 13 December 2018 (has links)
Nous proposons dans le cadre de ce travail de thèse, une nouvelle approche de la détection non invasive de l’alcoolémie sanguine à l’aide de microcapteurs d’éthanol à base de SnO2. Cette méthodologie se base sur une détection indirecte de l’alcoolémie sanguine par une mesure des vapeurs d’éthanol émises par la perspiration cutanée suite à une consommation d’alcool. Afin de valider cette approche, il a fallu dans un premier temps démontrer la pertinence et la faisabilité de cette méthodologie de détection par la réalisation d’essais cliniques pilotes en collaboration avec une équipe médicale d’étude pharmacologique du CPCET Marseille. Les différentes mesures du taux d’éthanol réalisées dans les fluides biologiques tels que le sang et l’air expiré ont pu être précisément corrélées avec les mesures de vapeurs d’éthanol réalisées à travers la perspiration à l’aide de trois microcapteurs de gaz commerciaux à base d’oxydes métalliques intégrés à un bracelet. Ces dispositifs ont l’avantage d’être sensibles mais pas sélectifs à la nature du gaz détecté. Durant ces travaux, des couches sensibles de SnO2 ont été déposées par pulvérisation cathodique RF magnétron réactive sur un transducteur breveté par notre équipe, intégrant trois capteurs sur une même puce. L’optimisation des paramètres de dépôt et les analyses structurales des couches de SnO2, nous ont permis de réaliser un multicapteur d’éthanol démontrant des performances sous éthanol ; en termes de sensibilité sous atmosphère humide, de répétabilité et de temps de réponses et de recouvrement ainsi que du point de vue sélectivité / A new approach of a noninvasive detection of blood alcohol concentration using ethanol microsensors based on SnO2 Is developed in this work. The methodology is based on an indirect detection of blood alcohol concentration by measuring the ethanol vapor emitted through the skin perspiration after alcohol consumption. In order to validate this approach, first we demonstrated the relevance and the feasibility of this detection method by carrying out pilot clinical trials in collaboration with a medical team of pharmacological study of CPCET Marseille. The different measurements of the ethanol concentration carried out in biological fluids such as blood and exhaled air could be precisely correlated with the measurements of ethanol vapors performed through the perspiration using three commercial gas microsensors based on metal oxides integrated into a bracelet. . These devices have the advantage of being sensitive but not selective to the nature of the gas detected. During this thesis work, sensitive layers of SnO2 were deposited by reactive magnetron RF sputtering on a transducer patented by our team, integrating three sensors on the same chip. The optimization of the deposition parameters and the structural analyzes of the SnO2 layers, allowed us to develop an ethanol multi-sensor demonstrating performances under ethanol; in terms of sensitivity on humidity, repeatability and response and recovery times as well as from the point of selectivity
32

Studies on Effect of Defect Doping and Additives on Cr2O3 and SnO2 Based Metal Oxide Semiconductor Gas Sensors

Kamble, Vinayak Bhanudas January 2014 (has links) (PDF)
Metal Oxide (MO)semiconductors are one of the most widely used materials in commercial gas sensor devices. The basic principle of chemoresistive gas sensor operation stems on the high sensitivity of electrical resistance to ambient gaseous conditions. Depending on whether the oxide is "p type" or "n type", the resistance increases (or decrease), when placed in atmosphere containing reducing (or oxidizing) gases. The study of conductometric metal oxide semiconductor gas sensors has dual importance in view of their technological device applications and understanding fundamental MO-gas interactions. Metal oxides based sensors offer high thermal, mechanical and chemical stability. A large number of MOs show good sensitivities to various gases like CO, NOX, SOX, NH3, alcohols and other Volatile Organic Compounds (VOCs). VOCs are very common hazardous pollutants in the environment. Gas sensors are in great demand for their various applications such as food quality control, fermentation industries, road safety, defence, environmental monitoring and other chemical industries. The aim of the study is to explore the possibility of advancements in semiconducting MO based gas sensor devices through tuning microstructural parameters along with chemical dopants or additives. And further to investigate the underlying mechanism of conductometric MO gas sensors. The novel synthesis method employed is based on the solution combustion method coupled with ultrasonically nebulized spray pyrolysis technique. The well studied SnO2 and relatively unexplored Cr2O3 oxide systems are selected for the study. The non-equilibrium processing conditions result in unique microstructure and defect chemistry. In addition, using this technique MO - Reduced Graphene Oxide (RGO) nanocomposite films has also been fabricated and its application to room temperature gas sensor devices is demonstrated. The thesis comprises of seven chapters. the following section describe the summery of individual chapters. The Chapter 1 describes the introduction and background literature of this technology. A brief review of developments in gas sensor technology so far has been enlisted. This chapter also gives a glimpse of applications of MO semiconductors based sensors. The underlying mechanism involved in the sensing reaction and the primary factors influencing the response of a gas sensor device are enlisted. Further in the later part of the chapter focused the material selection criteria, effect of additives/dopants and future prospects of the technology. The end of this chapter highlights the objective and scope of the work in this dissertation. In the Chapter 2 the the materials selection, characterization techniques and particularly the experimental setups used are elaborated. This includes the deposition method used, which is developed in our group and the the in house built gas sensing system including its working principles and various issues have been addressed. The Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) is a novel deposition method devised, which is a combination of conventional spray pyrolysis and solution combustion technique. Spray pyrolysis is versatile, economic and simple technique, which can be used for large area deposition of porous films. The intention is to exploit the exothermicity of combustion reaction in order to have high crystallinity, smaller crystallite size with high surface area, which are extremely important in gas sensor design and its efficiency. Further the gas sensing system and its operation are discussed in detail including the advantages of vertical sensing chamber geometry, wider analyte concentration range (ppm to percentage) obtained through vapor pressure data and simultaneous multi sensor characterization allowing better comparison. Here in this work, Chromium oxide (Cr2O3) and Tin oxide (SnO2) are selected as gas sensing materials for this work as a p-type and n-type metal oxide semiconductors respectively. Nevertheless Cr2O3 is a less explored gas sensing material as compared to SnO2, which is also being used in many commercially available gas sensor devices. Thus, studying and comparing gas sensing properties of a relatively novel and a well established material would justify the potential of the novel deposition technique developed. In Chapter 3, the effect of exothermic reaction between oxidizer and fuel, on the morphology, surface stoichiometry and observed gas sensing properties of Cr2O3 thin films deposited by UNSPACM, is studied. An elaborative study on the structural, morphological and surface stoichiometry of chromium oxide films is undertaken. Various deposition parameters have been optimized. An extensive and systematic gas sensing study is carried out on Cr2O3 films deposited, to achieve unique microstructure. The crystallinity and microstructure are investigated by varying the deposition conditions. Further, the effect of annealing in oxygen gas atmospheres on the films was also investigated. The gas sensing properties are studied for various VOCs, in temperature range 200 - 375 oC. The possible sensing mechanism and surface chemical processes involved in ethanol sensing, based on empirical results, are discussed. In chapter 4, the effect of 1% Pt doping on gas sensing properties of Cr2O3 thin films prepared by UNSPACM, is investigated. The chemical analysis is done using x-ray photoelectron spectroscopy to find the chemical state of Pt and quantification is done. The gas sensing is done towards gases like NO2, Methane and Ethanol. The enhancement in sensitivity and remarkable reduction in response as well as recovery times have been modeled with kinetic response analysis to study the variation with temperature as well as concentration. Further the analysis of observations and model fittings is discussed. The Chapter 5 deals with the defects induced ferromagnetism and gas sensing studies SnO2 nanoparticles prepared by solution combustion method. The structural, chemical analysis of as-synthesized and annealed SnO2 nanoparticles reveal gradual reduction in defect concentration of as-prepared SnO2. The findings of various characterization techniques along with optical absorption and magnetic studies to investigate the defect structure of the material are presented. As defects play crucial role in gas sensing properties of the metal oxide material, the defect induced room temperature ferromagnetism in undoped SnO2 has been used as a potential tool to probe the evidence of the defects. Finally a correlation is established between observed room temperature ferromagnetism and gas sensing studies and primary role of defects in gas sensing mechanism over microstructure is realized . The Chapter 6 presents the deposition of SnO2 thin films by UNSPACM method on glass substrates for gas sensing application. The readiness of UNSPACM in making sensor materials with unform dopant distribution is demonstrated in order to improve the sensor performance in terms of response and selectivity. The chemical composition, film morphology and gas sensing studies are reported. The SnO2 is doped with Cr and Pt to enhance the sensing properties of the material. The doped Oxide films are found to show enhancement in sensitivity and improve the selectivity of the films towards specific gases like NO2 and CO. Further in Chapter 7 an effort has been made to overcome the problem of high operating temperature of metal oxide gas sensors through use of Reduced Graphene Oxide (RGO) and metal oxide nanocomposite films. Although RGO shows room temperature response towards many toxic and hazardous gases but it exhibits poor sensor signal recovery. This has been successfully solved by making nanohybrids of RGO and SnO2. It not only improves the sensor signal kinetics but it enhances the sensitivity also. Thus this chapter endeavors towards low power consumption gas sensing devices. The key findings and future aspects are summarized in the Chapter 8.
33

Estudo das propriedades morfológico-estruturais e eletroquímicas de eletrodos de SnO2 / Study of the morphological-structural and electrochemical properties of electrodes of SnO2

Longo, Claudia 28 October 1998 (has links)
Os eletrodos de filme de SnO2 suportado sobre sílica ou titânio apresentam propriedades eletroquímicas e morfológico-estruturais bastante distintas e são empregados em diferentes aplicações. Estes dois tipos de materiais foram preparados e investigaram-se suas propriedades através de diversas técnicas eletroquímicas e de análise de superfície. Os eletrodos de Ti/SnO2(Sb) apresentaram a superfície porosa e rugosidade de 500 nm. Para os filmes finos (~40 nm) depositados sobre sílica, porém, observou-se alta transparência, superfície uniforme e rugosidade de 1 nm. Mesmo entre os eletrodos transparentes, dependendo do dopante (Cl, F ou Sb), verificaram-se diferenças quanto às orientações cristalográficas predominantes, espessura, resistividade e tamanho das partículas. As investigações eletroquímicas também revelaram diferenças consideráveis entre ambos os tipos de eletrodos. Para as reações de óxido-redução do K4Fe(CN)6, p.ex., a transferência de elétrons foi muito mais rápida sobre o eletrodo de Ti/Sn)2(Sb), possivelmente porque este eletrodo apresentava maior número de portadores de carga e menor resistência ôhmica que os eletrodos transparentes. Investigou-se ainda o comportamento eletroquímico de eletrodos modificados com um filme de octadeciltriclorosilano (OTS). Os estudos revelaram que a presença do OTS não alterou o mecanismo para a reação de geração de oxigênio, porém, alterou significativamente o comportamento do eletrodo de Ti/SnO2(Sb) na eletro-oxidação do metanol. Aparentemente, o OTS induziu a formação de espécies poliméricas que bloquearam o eletrodo, indicando, portanto, que estes eletrodos modificados não são indicados para atuar como ânodos na eletro-oxidação de compostos orgânicos. Os processos de corrosão induzidos por polarização anódica ou catódica foram investigados por microscopia de forças atômicas e de efeito túnel para os eletrodos transparentes modificados ou não com OTS. As análises revelaram que os processos de corrosão iniciaram-se nos contornos dos grãos e atuaram de maneira diferenciada sobre as partículas que constituem o filme. A corrosão foi muito menos pronunciada para os eletrodos modificados com OTS, indicando que este organosilano poderia proteger a superficie do SnO2. Porém, a aplicabilidade do eletrodo Ti/SnO2(Sb)-OTS seria muito limitada, considerando que o OTS poderia promover a polimerização de espécies orgânicas na superficie do eletrodo. / The electrochemical and morphological properties of tin oxide electrodes deposited on silica or titanium substrates were investigated by electrochemical and surface analysis techniques. The Sb doped SnO2 film deposited on Ti was prepared by thermal decomposition of stannic chloride solution and investigated by SEM and interferometric microscopy. This Ti/SnO2(Sb) exhibited a porous surface, with a rms roughness of 500 run. The transparent film of SnO2 doped with Cl, F or Sb, which was deposited on silica by Spray Pyrolysis, were analyzed by XPS, XRD, SEM, AFM and STM techniques. These films were polycrystalline and had an uniform and smooth surface with a rms roughness ranging from 1 to 2 nm. Their microstructure was constituted of coalesced particles with an average diameter and height of 30 nm and 6 nm, respectively. Thickness, conductivity, grain size, and surface composition of transparent films depended on the dopant. The electrochemical behavior of both types of SnO2 electrodes were investigated by Cyclic Voltammetry and Electrochemical lmpedance Spectroscopy (EIS). For the reversibility of K4Fe(CN)O6 redox reaction, while the Ti/SnO2(Sb) electrode supported high rate for electron transfer, the transparent electrodes exhibited a poor electrochemical response, which was attributed to the high ohmic resistance. The effect of electrochemical perturbation in 0.1 M NaClO4, pH 2, on the microstructure oftransparent electrodes was investigated by in-situ STM and ex-situ AFM, SEM and other techniques. Anodic polarization at potentials near the OER region and potential cycling induces little alterations on the microstructure of the electrode, observable only in sub-micron range by AFM analysis. Cathodic polarization at potentials in the region of the HER, however, strongly damages the filmo AFM and STM examination revealed that the grain boundaries are attacked, and both vertical and lateral dimensions of the particles decrease. From the observations, it can be inferred that SnO is formed during the cathodic polarization and, destruction of the film occurs by dissolution of that more soluble oxide. In-situ STM experiments showed that, at the initial stages, the particles of the damaged film can acquire dimensions even larger than the initial size by anodic polarization. Finally, it can be concluded that a smooth and compact film, with little defects is less susceptible to corrosion.
34

ESTUDO DA SUBSTITUIÇÃO DE Nb2O5 POR Sb2O3 E EFEITO DA CALCINAÇÃO SOBRE A MICROESTRUTURA E PROPRIEDADES ELÉTRICAS DE VARISTORES DE SnO2 / Study of substitution of Nb2O5 by Sb2O3 and the effect of calcination on the microstructure and electrical properties of SnO2 - based Varistors.

Ciórcero, Juliane Rutckeviski 19 December 2011 (has links)
Made available in DSpace on 2017-07-21T20:42:35Z (GMT). No. of bitstreams: 1 JulianeCiorcero.pdf: 6092625 bytes, checksum: d6ae5b000ef3bf54c409ce74be787173 (MD5) Previous issue date: 2011-12-19 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work studied systematically the substitution of Nb2O5 by Sb2O3 in composition of a ternary varistor system and study of calcination of binary and multi-component systems and their relationship microstructure-electric property. In part I of the work, study of substitution of Nb2O5 by Sb2O3, the compositions were prepared by conventional ceramic processing and dried by "spray-dryer" Pellets were produced at 25 MPa and sintering was produced at 1350ºC/ 2h.Increasing the concentration of Sb2O3, the nonlinear behavior of ceramics was reduced, accompanied by the reduction of the breakdown electric field and increased leakage current. With increasing concentration of 0.05% Sb2O3 to 0.5% (mol%), the samples were more porous, suggesting that higher concentrations of Sb2O3 decreases the rate of sintering. This decrease was linked to the increased concentration of tin vacancies that leads to nondensifying processes. In part II, was studied the influence of calcination (700oC, 1000oC and 1200oC) of binary and multi-component systems. The compositions were prepared by the conventional method, with the addition of the calcination process. The samples were comformed at 75 MPa and sintered at 1300oC for systems calcined at 1200oC and 1300oC, and at 1350oC for systems calcined at 700oC and 1000oC. Some studied systems have showed cassiterite phase associated to the SnO phase. With the addition of dopants, there was an increase in density of the systems, and the increase in temperature of sintering also led to a slight increase in density. The addition of chromium to systems calcined at 700oC and 1000oC led to a decrease in the breakdown electric field, with the exception of the systems 99.5% +0.5% Sb2O3 + 0.5% Co3O4 e 99.5% +0.5% Sb2O3 + 0.5% Co3O4 (excess) + 0.05% Cr2O3 (excess), where there was a decrease of breakdown electric field with the addition of chromium, and this can be explained because of their densities. All samples calcined at 1200oC regardless of the composition, showed very similar microstructure, high porosity and small grain size. The sample that presented the best varistor behavior with the lower leakage current was the FCC25% (75% of varistor formulation, 99,4%SnO2. 0,5%Co3O4. 0,05%Nb2O5. 0,05%Cr2O3 and 25% of conductive formulation, 99,0%SnO2. 0,5%Co3O4. 0,5%Sb2O3). / Neste trabalho estudou-se sistematicamente a substituição do Nb2O5 por Sb2O3 na composição de um sistema varistor ternário e estudo da calcinação de sistemas binários e multicomponentes e sua relação microestruturapropriedade elétricas. Na Parte I do trabalho, estudo da substituição do Nb2O5 por Sb2O3, as composições foram preparadas via processamento cerâmico convencional e secadas via “spray-dryer”. A conformação foi realizada a 25 MPa e a sinterização foi realizada a 1350C por 2 horas. Com o aumento da concentração de Sb2O3 o comportamento não linear da cerâmica foi reduzido, acompanhado da redução do campo elétrico de ruptura e aumento da corrente de fuga. Com o aumenta da concentração de Sb2O3 de 0,05% para 0,5% em mol, as amostras apresentaram-se mais porosas, sugerindo que concentrações mais elevadas de Sb2O3 diminuem a taxa de sinterização. Esta diminuição foi associada ao aumento da concentração de vacâncias de estanho que conduz a processos não densificantes. Na parte II, estudou-se a influência da calcinação (700oC, 1000oC e 1200oC) de sistemas binários e multicomponentes. As composições foram preparadas pelo método convencional, com a adição do processo de calcinação. As amostras foram conformadas a 75 MPa e sinterizados a 1300oC para os sistemas calcinados a 1200OC e 1300OC e 1350OC por 2 horas para os sistemas calcinados a 700OC e 1000OC. Alguns sistemas estudados apresentaram a fase cassiterita associada a fase SnO. Com a adição de dopantes ocorreu um aumento na densidade dos sistemas e o aumento da temperatura de sinterização também levou a um leve aumento na densidade. A adição de cromo aos sistemas calcinados a 700OC e 1000OC levou a uma diminuição do campo elétrico de ruptura, com exceção dos sistemas, 9,5%+0,5%Sb2O3 + 0,5% Co3O4 e 99,5%+0,5%Sb2O3 + 0,5% Co3O4 (excesso) + 0,05% Cr2O3 (excesso), onde ocorreu a diminuição do campo elétrico de ruptura com a adição de cromo, podendo isto ser explicado através de suas densidades. Todas as amostras calcinadas a 1200oC, independentemente da composição, apresentaram microestrutura muito semelhantes, apresentaram alta porosidade e pequeno tamanho de grão. A amostra que apresentou o melhor comportamento varistor, com menor corrente de fuga foi a FCC25% (75% da formulação varistora, 99,4%SnO2.0,5%Co3O4. 0,05%Nb2O5.0,05%Cr2O3 e 25% da formulação condutora, 99,0%SnO2. 0,5%Co3O4. 0,5%Sb2O3).
35

Pressure-induced disorder in bulk and nanometric SnO2 / Désordre induite par la pression sur le SnO2 massif et nanométrique

Thomeny Girao, Helainne 24 September 2018 (has links)
Les matériaux nanométriques ont fait l'objet d'un intérêt de recherche important car ils présentent de nouvelles propriétés physiques et chimiques par rapport aux échantillons massifs. En ce qui concerne les nanomatériaux, l'effet de taille et l'énergie de surface sont généralement invoqués, même si les concepts sous-jacents ne sont pas clairs. Dans cette thèse, la question principale à laquelle nous voulons répondre est : quels sont les principaux paramètres qui régissent la stabilité structurelle du SnO2 à l’échelle nanométrique sous haute pression comparé aux échantillons de SnO2 massifs ? La combinaison de la haute pression et de la taille des particules est particulièrement importante pour comprendre la structure de ces nanoparticules et l'effet des défauts et de l'énergie de surface sur leur stabilité de phase, car, en gardant la taille des particules constante, l'augmentation de la pression permettra l'exploration les paysages énergétiques du système. De plus, la pression et la taille sont deux paramètres qui peuvent être utilisés conjointement pour stabiliser les nouvelles phases. L'intérêt de l'étude des nanoparticules sous haute pression est au moins double : (i) acquérir une compréhension fondamentale de la thermodynamique lorsque l'énergie interfaciale devient de la même ampleur que l'énergie interne (ii) pour stabiliser de nouvelles structures potentiellement potentielles intérêt en tant que matériaux fonctionnels. Dans ce travail, nous avons utilisé la spectroscopie Raman comme principale méthode de caractérisation. Pour les échantillons de SnO2 massif, nous avons utilisé la théorie de la percolation pour expliquer la désordre « partiel » du sous-réseau oxygène qui apparaît lorsque la pression augmente, ce qu’on appelle désordre « partiel » induite par la pression. Et, en étudiant les nanoparticules de SnO2, nous avons utilisé des simulations ab initio pour expliquer l'apparition de ce type de désordre, cet à dire, le désordre du sous-réseau anionique lorsque la pression augmente. De cette façon, nous proposons d'obtenir une compréhension fondamentale du SnO2 massif et nanométrique, sous pression / Nanosized materials have been the focus of an extensive interest research as they present new physical and chemical properties in comparison to their bulk equivalent. When dealing with nanomaterials, the size effect and the surface energy are generally invoked, even though the underlying concepts are not clear. In this thesis, the main question that we want to answer is: what are the main parameters which govern the structural stability at the SnO2 nanometric under high pressure in comparison to its bulk counterpart? The combination of high pressure and particle size is particularly important in order to understand the nanoparticle structure, and the effect of the defects and of the surface energy on phase stability. By maintaining the size of the particle constant, the pressure will allow the energy landscapes of the system to be explored. In addition, pressure and size are two parameters that can be used conjointly in order to stabilize new phases. So, the interest of studying nanoparticles under the high-pressure is at least two-fold: (i) to gain a fundamental understanding of thermodynamics when the interfacial energy reaches the same magnitude as the internal energy (ii) to stabilize new structures that may have potential interest as functional materials. In this work, we used Raman spectroscopy as the main characterization method. In the study of SnO2 bulk samples, we used percolation to explain the “partial” disorder of the oxygen sublattice which appears in the powders when the pressure increases; and for studying SnO2 nanoparticles, we used ab initio simulations to explain the appearance of this kind of disorder, i.e. the anionic sublattice disorder in SnO2 nanoparticle samples. In this way, we propose to obtain a fundamental understanding of SnO2 bulk and nanoparticles under pressure
36

Elaboration of plasmonic nano-composites and study of their specific catalytic activities / Élaboration de nanocomposites plasmoniques et étude des activités catalytiques spécifiques

Ishchenko, Olga 30 September 2016 (has links)
L’objective est d’améliorer l’activité photocatalytique de TiO2 sous irradiations UV et Visible. Pour contourner les limites de TiO2 intrinsèque nous envisageons une fabrication de nanocomposite plasmonique à base de nanofils de TiO2 périodiquement organisés et assemblés avec des nanoparticules plasmoniques. Pour la fabrication des nanofils de TiO2 mécaniquement stables, deux approches ont été réalisées. La première approche est basée sur la croissance sélective en phase vapeur, la deuxième approche consiste en l’utilisation d’un moule de membranes AAO et d’un dépôt de films conformes par ALD. En parallèle les films de TiO2déposés par ALD sont assemblés avec les nanoparticules plasmoniques d’or. Les différentes architectures de TiO2 sont valorisées par des tests photocatalytiques (UV et Visible) sur les polluants modèles. Une nouvelle approche de la fabrication des films mesoporeux d’H-TiO2 avec efficacité photocatalytique à la fois sous irradiation UV et Visible est développée. / The objective of this thesis is to improve the photo-response of well-known photocatalytic material such as TiO2, which is usually only active in the UV range. The basic idea is to assemble several approaches within one device to improve the photocatalytic properties: fabrication of periodically-organised TiO2 nanostructures and their assembly with plasmonic nanoparticles. Two fabrication strategies were investigated for these purposes. The first approach consists of selective vapour phase growth. The second approach implements the use of an AAO template. In parallel, TiO2 films deposited by ALD and assembled with plasmonic gold nanoparticles are investigated. The photocatalytic measurements on various TiO2 architectures were performed in both irradiation ranges UV and Vis. A new fabrication approach of mesoporous H-TiO2 films was developed giving promising results of photocatalytic efficiency improvement in both UV and Visible ranges.
37

Etude d'oxydes métalliques nanostructurés (ZnO,SnO2) pour applications photovoltaïques, notamment oxydes transparents conducteurs et cellules solaires à colorant / Investigation of nanostructured metallic oxides (ZnO, SnO2) for photovoltaic applications, namely transparent conductive oxides and dye solar cells

Rey, Germain 23 May 2012 (has links)
Les nanostructures d'oxydes métalliques jouent un rôle essentiel dans les cellules photovoltaïques à colorants, puisque ces matériaux permettent la réalisation du contact électrique transparent en face avant et de la photoanode. L'oxyde stannique (SnO2) et l'oxyde de zinc (ZnO) ont été employés respectivement, car leurs propriétés optiques, électroniques et structurales sont particulièrement bien adaptées aux cellules solaires à colorant. Le contact électrique transparent, obtenu par pyrolyse d'aérosol, se présente sous forme d'une couche mince de SnO2 dopé par du fluor composée de grains nanométriques. Les propriétés électriques et optiques de ce composant ont été optimisées en vue de son intégration dans des cellules à colorants. Une étude approfondie du transport électronique au sein de la couche a permis de quantifier l'influence des différents mécanismes de diffusion suivant les cas considérés. La photoanode a été réalisée, directement à la surface de la couche mince de SnO2, par dépôt chimique de nanofils de ZnO à partir de précurseurs en phase vapeur. Le diamètre et la densité surfacique des nanofils sont contrôlés respectivement par les conditions de croissance et le degré d'oxydation du substrat. Les photoanodes à base de nanofils ont été intégrées dans des cellules à colorant. La limitation des performances de ces cellules est due à la faible surface développée par le ZnO qui conduit à la fixation d'une trop faible quantité de colorant à la surface de ce dernier. Afin de remédier à ce problème, des nanoparticules de ZnO ont été élaborées par bain chimique à la surface des nanofils. Les cellules solaires à base de structures composites présentent des performances supérieures à celles réalisées à partir de nanofils ou de nanoparticules. Les photoanodes composites permettent d'obtenir à la fois un transport efficace des électrons et de développer une surface importante et de ce fait, elles présentent des performances prometteuses. / Metallic oxide nanostructures play a critical role in dye-sensitized solar cells as front transparent electrodes and photoanodes. The use of stannic oxide (SnO2) and zinc oxide (ZnO) have been motivated by their particularly suitable structural, electrical and optical properties for dye-sensitized solar cells. Fluorine doped-SnO2 transparent electrodes have been deposited by spray pyrolysis in the form of thin films and consist of nanoscale grains. Their optical and electrical properties have been optimized in order to integrate them into dye-sensitized solar cells. The electron transport has been investigated in details and the influence of each scattering mechanism has quantitatively been assessed. ZnO photoanodes have directly been grown on the SnO2 surface by chemical vapor deposition in the form of nanowires. The nanowire diameter and surface density have been controlled by the growth conditions and the substrate surface oxidation, respectively. The nanowire-based photoanodes have subsequently been integrated into dye-sensitized solar cells. The relatively low efficiency of these cells has been found to be due to the small ZnO surface area, which limits the amount of dye anchored to its surface. In order to circumvent this limitation, ZnO nanoparticles have been deposited on the nanowire surface by chemical bath deposition. The nanocomposite photoanodes lead to the fabrication of dye-sensitized solar cells with promising efficiency by combining both efficient electron transport and high developed surface area.
38

Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells / Elaboration et caractérisation des oxydes transparents conducteurs dopés aux terres rares pour la conversion des photons pour le photovoltaïque

Bouras, Karima 31 March 2016 (has links)
Ce travail a porté sur la synthèse et caractérisations structurales, optiques et électriques des films d’oxyde d'étain (SnOx) dopés avec des éléments de terres rares (RE: Néodyme, Praséodyme ou Ytterbium). L’objectif est de démontrer la conversion de photons UV voire Visible en photons rouges via ces films RE :SnOx, tout en conservant leurs propriétés d’oxydes transparents conducteurs. Les films ont été produits par des méthodes chimiques (sol-gel, précipitation) ou physiques (pulvérisation cathodique). Grâce à des analyses fines, nous avons pu corréler les propriétés structurales et de composition des couches RE :SnOx avec leurs propriétés d’émission de photons. Nous avons pu établir les conditions optimales de conversion photonique dans des systèmes à une seule ou double terre rare. Les mécanismes régissant le transfert dans ces films ont été avancés. Enfin, nous avons appliqué ces couches minces RE :SnOx optimisés sur des cellules solaires en silicium et en CIGS et nous avons montré une amélioration des paramètres photovoltaïques du dispositif ainsi qu’un net gain dans la réponse spectrale de la cellule dans l’UV. / Spectral conversion using lanthanide doped materials with excellent performances is a great challenging topic and of particular interest for photovoltaic. This work aims at functionalizing transparent conductive oxide materials with rare earth elements for photons conversion purpose without affecting transparency and transport properties of the TCO. The spectral conversion targeted in this thesis is of type “down”, in other words, we aim at converting high energy UV photons into low energy visible or NIR photons useful to solar cells. For this purpose we investigated the doping process of SnO2 as a host material with different rare earths such as Nd, Tb, Pr, and Yb. To understand the insertion process and the optical activation of the rare earth, RE-doped SnO2 nanoparticles (powders) have been synthesised by two chemical methods: co-precipitation and sol-gel. The results have shown an efficient insertion of the RE into the SnO2 structure with excellent emission properties. In view of application of RE-doped SnOx thin films to solar cells, studies concerning NIR emitting RE have been conducted (Nd, Yb, and co-doping with Yb and Nd) using sputtering. Several deposition parameters and post deposition treatments have been done in order to find the best chemical environment favourable to the RE emission. We have precisely identified the region of the UV light converted into NIR photons and proposed several energy transfer mechanisms occurring between the host SnOx and the REs. In case of co-doping, a second spectral conversion process has been identified; visible photons can be efficiently converted into NIR photons through energy transfer from Nd3+ to Yb3+ ions. Finally, application of these conversion layers to solar cells such as CIGS and Si based have shown an improvement of the cells characteristics, among others the Field factor, the cell efficiency and the increase of the spectral response of the cell in the UV region, thanks to the conversion of the UV photons into NIR photons. The good electrical properties of the RE-doped SnOx layers have been highlighted as well. We believe that these conversion layers will provide a step ahead towards better solar cells performances.
39

Nouvelles structures électroluminescentes organiques pour applications signalétiques et petits afficheurs / New structures of organic light-emitting diodes for signage applications and displays

Murat, Yolande 11 May 2017 (has links)
La filière OLED (diode électroluminescente organique) est depuis quelques annéesfortement industrialisée notamment depuis leur utilisation dans les smartphones et les téléviseurs.Cependant, les procédés de fabrication, notamment l’évaporation thermique sous vide, restent coûteuxet ne peuvent pas être utilisés pour développer des applications à faible valeur ajoutée (petitsafficheurs, signalétique, éclairage). Ces travaux de thèse ont pour objectif de développer une OLEDperformante et stable fabriquée à coût réduit afin de répondre à cette problématique. La voie liquide aété privilégiée afin de diminuer les coûts de fabrication de l’OLED et il a été choisi de développer unestructure inverse pour améliorer la stabilité. Dans ce travail de thèse, le polymère PEIE(polyéthylénimine éthoxylate) a été utilisé pour diminuer le travail de sortie de la cathode transparente.Nous avons montré qu’il était possible d’atteindre des performances supérieures en structure inversequ’en structure conventionnelle à partir du même polymère émissif, le Super Yellow. Afin desimplifier le procédé de dépôt, nous avons montré qu’un mélange binaire {PEIE et matériau bloqueurde trous} pouvait être déposé en une seule fois tout en conservant un fonctionnement optimal. Uneétude par TOF-SIMS (Spectrométrie de Masse d’Ions Secondaires à Temps de Vol) a permis de mettreen évidence une ségrégation verticale du mélange binaire. Par ailleurs, l’électrode en oxyde d’étainindium(ITO), qui représente généralement plus d’un quart du coût de fabrication, a été remplacéeavec succès par une électrode de SnO2 (oxyde d’étain), déposée par ALD (dépôt de couches mincesatomiques). / OLED (Organic Light-Emitting Diode) technology has been exploited on an industrialscale for several years, principally in smartphones, TV displays, and similar devices. However, currentfabrication processes, such as thermal evaporation under high vacuum, are expensive and cannot beused for low-cost applications (signage, lighting, etc.). This work aims to develop high-performance,stable, low-cost OLEDs. Fabrication by solution processing was chosen to reduce the processing costsin any future commercialization of the work, while the inverted architecture was used to optimizedevice stability. In this work, ethoxylated polyethylenimine (PEIE) was used to reduce the workfunction of the transparent cathode. It was shown that higher performances could be obtained withinverted OLEDs compared to direct devices incorporating the same emissive polymer (Super Yellow).Furthermore, it was demonstrated that a binary blend, (PEIE and a hole blocking material) could bedeposited in a single step without reducing the OLED device’s performance – greatly simplifying thefabrication process. A TOF-SIMS (Time of Flight-Secondary Ion Mass Spectrometry) study wasconducted which demonstrated a vertical phase segregation of the binary blend. Finally, the indiumtinoxide (ITO) electrode, which represents at least 25% of the fabrication cost, was successfullyreplaced with a tin oxide (SnO2) layer, deposited by ALD (Atomic Layer Deposition).
40

Estudo das propriedades morfológico-estruturais e eletroquímicas de eletrodos de SnO2 / Study of the morphological-structural and electrochemical properties of electrodes of SnO2

Claudia Longo 28 October 1998 (has links)
Os eletrodos de filme de SnO2 suportado sobre sílica ou titânio apresentam propriedades eletroquímicas e morfológico-estruturais bastante distintas e são empregados em diferentes aplicações. Estes dois tipos de materiais foram preparados e investigaram-se suas propriedades através de diversas técnicas eletroquímicas e de análise de superfície. Os eletrodos de Ti/SnO2(Sb) apresentaram a superfície porosa e rugosidade de 500 nm. Para os filmes finos (~40 nm) depositados sobre sílica, porém, observou-se alta transparência, superfície uniforme e rugosidade de 1 nm. Mesmo entre os eletrodos transparentes, dependendo do dopante (Cl, F ou Sb), verificaram-se diferenças quanto às orientações cristalográficas predominantes, espessura, resistividade e tamanho das partículas. As investigações eletroquímicas também revelaram diferenças consideráveis entre ambos os tipos de eletrodos. Para as reações de óxido-redução do K4Fe(CN)6, p.ex., a transferência de elétrons foi muito mais rápida sobre o eletrodo de Ti/Sn)2(Sb), possivelmente porque este eletrodo apresentava maior número de portadores de carga e menor resistência ôhmica que os eletrodos transparentes. Investigou-se ainda o comportamento eletroquímico de eletrodos modificados com um filme de octadeciltriclorosilano (OTS). Os estudos revelaram que a presença do OTS não alterou o mecanismo para a reação de geração de oxigênio, porém, alterou significativamente o comportamento do eletrodo de Ti/SnO2(Sb) na eletro-oxidação do metanol. Aparentemente, o OTS induziu a formação de espécies poliméricas que bloquearam o eletrodo, indicando, portanto, que estes eletrodos modificados não são indicados para atuar como ânodos na eletro-oxidação de compostos orgânicos. Os processos de corrosão induzidos por polarização anódica ou catódica foram investigados por microscopia de forças atômicas e de efeito túnel para os eletrodos transparentes modificados ou não com OTS. As análises revelaram que os processos de corrosão iniciaram-se nos contornos dos grãos e atuaram de maneira diferenciada sobre as partículas que constituem o filme. A corrosão foi muito menos pronunciada para os eletrodos modificados com OTS, indicando que este organosilano poderia proteger a superficie do SnO2. Porém, a aplicabilidade do eletrodo Ti/SnO2(Sb)-OTS seria muito limitada, considerando que o OTS poderia promover a polimerização de espécies orgânicas na superficie do eletrodo. / The electrochemical and morphological properties of tin oxide electrodes deposited on silica or titanium substrates were investigated by electrochemical and surface analysis techniques. The Sb doped SnO2 film deposited on Ti was prepared by thermal decomposition of stannic chloride solution and investigated by SEM and interferometric microscopy. This Ti/SnO2(Sb) exhibited a porous surface, with a rms roughness of 500 run. The transparent film of SnO2 doped with Cl, F or Sb, which was deposited on silica by Spray Pyrolysis, were analyzed by XPS, XRD, SEM, AFM and STM techniques. These films were polycrystalline and had an uniform and smooth surface with a rms roughness ranging from 1 to 2 nm. Their microstructure was constituted of coalesced particles with an average diameter and height of 30 nm and 6 nm, respectively. Thickness, conductivity, grain size, and surface composition of transparent films depended on the dopant. The electrochemical behavior of both types of SnO2 electrodes were investigated by Cyclic Voltammetry and Electrochemical lmpedance Spectroscopy (EIS). For the reversibility of K4Fe(CN)O6 redox reaction, while the Ti/SnO2(Sb) electrode supported high rate for electron transfer, the transparent electrodes exhibited a poor electrochemical response, which was attributed to the high ohmic resistance. The effect of electrochemical perturbation in 0.1 M NaClO4, pH 2, on the microstructure oftransparent electrodes was investigated by in-situ STM and ex-situ AFM, SEM and other techniques. Anodic polarization at potentials near the OER region and potential cycling induces little alterations on the microstructure of the electrode, observable only in sub-micron range by AFM analysis. Cathodic polarization at potentials in the region of the HER, however, strongly damages the filmo AFM and STM examination revealed that the grain boundaries are attacked, and both vertical and lateral dimensions of the particles decrease. From the observations, it can be inferred that SnO is formed during the cathodic polarization and, destruction of the film occurs by dissolution of that more soluble oxide. In-situ STM experiments showed that, at the initial stages, the particles of the damaged film can acquire dimensions even larger than the initial size by anodic polarization. Finally, it can be concluded that a smooth and compact film, with little defects is less susceptible to corrosion.

Page generated in 0.0244 seconds