• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 12
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On integrable deformations of semi-symmetric space sigma-models / Deformações integráveis do modelo sigma da supercorda em espaços semi-simétricos

René Negrón Huamán 05 October 2018 (has links)
In this thesis we review some aspects of Yang-Baxter deformations of semi-symmetric space sigma models. We start by giving a short review of the sigma model description of superstrings and then we offer a self contained introduction to the Yang-Baxter deformation technique. We then show how to obtain an integrable deformation of the hybrid sigma model. Also, we show that the gravity dual of beta-deformed ABJM theory can be obtained as a Yang-Baxter deformation. This is done by selecting a convenient combination of Cartan generators in order to construct an Abelian r-matrix satisfying the classical Yang-Baxter equation. / Nesta tese revisamos alguns aspectos das deformações de Yang-Baxter de modelos sigma em espaços semi-simétricos. Damos uma breve revisão do modelo sigma de supercordas e, em seguida, oferecemos uma introdução ao método de deformação de Yang-Baxter. Em seguida, mostramos como obter uma deformação integrável do modelo sigma híbrido. Além disso, mostramos que o dual gravitacional da teoria ABJM beta-deformada pode ser obtida como uma deformação de Yang-Baxter. Isso é feito selecionando-se uma combinação conveniente de geradores de Cartan para construir uma matriz r Abeliana satisfazendo a equação clássica de Yang-Baxter.
22

Symmetries of Maldacena - Wilson Loops from Integrable String Theory

Münkler, Hagen 09 October 2017 (has links)
In der vorliegenden Arbeit werden versteckte Symmetrien innnerhalb der N=4 supersymmetrischen Yang--Mills Theorie oder der nach der AdS/CFT Korrespondenz dualen Beschreibung durch eine String-Theorie in AdS5 x S5 besprochen. Dabei betrachten wir die Maldacena--Wilson Schleife, die sich für diese Untersuchungen besonders eignet, da ihr Vakuum-Erwartungswert für glatte Kurven nicht divergiert und die vermutete Dualität zu Streuamplituden wenigstens konzeptionell eine Möglichkeit bietet, etwaige Symmetrien zu anderen Observablen zu übertragen. Ihre Beschreibung durch Minimalflächen in AdS5 erlaubt es, Symmetrien mithilfe der Integrabilität der zugrunde liegenden klassischen String-Theorie zu konstruieren. Dieser Zugang wurde bereits in der Herleitung der Yang'schen Symmetrie der Maldacena--Wilson Schleife bei starker Kopplung sowie in der Beschreibung von Deformationen gleiches Flächeninhalts von Minimalflächen in AdS3 verwendet. Diese beiden Ergebnisse werden in der vorliegenden Arbeit miteinander verbunden und erweitert. Im Sinne einer systematischen Herangehensweise besprechen wir zunächst die Symmetriestruktur der zugrunde liegenden String-Theorie. Diese Diskussion lässt sich auf die Diskussion von String-Theorien in symmetrischen Räumen verallgemeinern. Dabei zeigt sich, dass die Symmetrie, welche die Deformationen gleiches Flächeninhalts in AdS3 erzeugt, in der Symmetriestruktur dieser Modelle eine zentrale Rolle einnimmt: Sie wirkt als Aufsteige-Operator auf den unendlich vielen erhalten Ladungen und generiert somit den Spektralparameter. Weiterhin lässt sie sich anwenden, um ausgehend von der globalen Symmetrie sämtliche Symmetrien des zugrunde liegenden Modells zu konstruieren. Sie wird daher als die Master-Symmetrie dieser Modelle bezeichnet. Zusätzlich wird die Algebra der Symmetrie-Variationen sowie der erhaltenen Ladungen ausgearbeitet. Für den konkreten Fall von Minimalflächen in AdS5 diskutieren wir die Deformation der Minimalflächenlösung für den Fall eines lichtartigen Vierecks. Diese liefert die duale Beschreibung der Streuamplitude für vier Gluonen. Damit unternehmen wir einen ersten Schritt zur Übertragung der Master-Symmetrie auf Streuamplituden. Weiterhin berechnen wir die Variation der Randkurven der Minimalflächen unter der Master- und Yang'schen Symmetrie für allgemeine, glatte Randkurven. Das Ergebnis dieser Rechnung führt auf eine Verallgemeinerung der Master-Symmetrie zu einer Variation, die von der Kopplungskonstanten abhängt und für beliebige Werte der Kopplungskonstanten eine Symmetrie der Maldacena--Wilson Schleife darstellt. Unsere Diskussion erklärt das Scheitern vorheriger Versuche, die entsprechende Symmetrie im Spezialfall von Minimalflächen in AdS3 zu schwacher Kopplung zu übertragen. Wir besprechen verschiedene Ansätze, die Yang'sche Symmetrie zu schwacher oder beliebiger Kopplung zu übertragen, schlussfolgern aber letztendlich, dass eine Yang'sche Symmetrie der Maldacena--Wilson Schleife nicht vorzuliegen scheint. Die Situation ändert sich, wenn wir Wilson Schleifen in Superräumen betrachten. Diese sind die natürlichen supersymmetrischen Erweiterungen der Maldacena--Wilson Schleife. Für die Yang'sche Invarianz ihres Vakuum-Erwartungswerts wurden wichtige Anhaltspunkte gefunden und sowohl die Beschreibung dieser Operatoren als auch der Beweis der Yang'schen Invarianz bei schwacher Kopplung wurden parallel zur Arbeit an der vorliegenden Dissertation vervollständigt. Wir diskutieren das Gegenstück zu diesem Ergebnis bei starker Kopplung. Dort wird die Wilson Schleife durch eine Minimalfläche beschrieben, welche im Superraum der Superstring-Theorie vom Typ IIB in AdS5 x S5 liegt. Der Vergleich der bei starken Kopplung etablierten Invarianz mit den entsprechenden Generatoren bei schwacher Kopplung zeigt, dass die Symmetrie-Generatoren einen lokalen Anteil enthalten, der auf nicht-triviale Weise vom Wert der Kopplungskonstanten abhängt. Zusätzlich finden wir sogenannte Bonus-Symmetrien. Diese sind die analogen Generatoren in den höheren Ordnungen zum Hyperladungs-Generator, der selbst keine Symmetrie darstellt. Wir zeigen, dass diese Symmetrien in allen höheren Ordnungen der Yang'schen Algebra vorliegen. / This thesis discusses hidden symmetries within N=4 supersymmetric Yang--Mills theory or its AdS/CFT dual, string theory in AdS5 x S5. Here, we focus on the Maldacena--Wilson loop, which is a suitable object for this study since its vacuum expectation value is finite for smooth contours and the conjectured duality to scattering amplitudes provides a conceptual path to transfer its symmetries to other observables. Its strong-coupling description via minimal surfaces in AdS5 allows to construct the symmetries from the integrability of the underlying classical string theory. This approach has been utilized before to derive a strong-coupling Yangian symmetry of the Maldacena--Wilson loop and describe equiareal deformations of minimal surfaces in AdS3. These two findings are connected and extended in the present thesis. In order to discuss the symmetries systematically, we first discuss the symmetry structure of the underlying string model. The discussion can be generalized to the discussion of generic symmetric space models. For these, we find that the symmetry which generates the equiareal deformations of minimal surfaces in AdS3 has a central role in the symmetry structure of the model: It acts as a raising operator on the infinite tower of conserved charges, thus generating the spectral parameter, and can be employed to construct all symmetry variations from the global symmetry of the model. It is thus referred to as the master symmetry of symmetric space models. Additionally, the algebra of the symmetry variations and the conserved charges is worked out. For the concrete case of minimal surfaces in AdS5, we discuss the deformation of the four-cusp solution, which provides the dual description of the four-gluon scattering amplitude. This marks the first step toward transferring the master symmetry to scattering amplitudes. Moreover, we compute the master and Yangian symmetry variations of generic, smooth boundary curves. The results leads to a coupling-dependent generalization of the master symmetry, which constitutes a symmetry of the Maldacena--Wilson loop at any value of the coupling constant. Our discussion clarifies why previous attempts to transfer the deformations of minimal surfaces in AdS3 to weak coupling were unsuccessful. We discuss several attempts to transfer the Yangian symmetry to weak or arbitrary coupling, but ultimately conclude that a Yangian symmetry of the Maldacena--Wilson loop seems not to be present. The situation changes when we consider Wilson loops in superspace, which are the natural supersymmetric generalizations of the Maldacena--Wilson loop. Substantial evidence for the Yangian invariance of their vacuum expectation value has been provided at weak coupling and the description of the operator as well as its weak-coupling Yangian invariance were subsequently established in parallel to the work on this thesis. We discuss the strong-coupling counterpart of this finding, where the Wilson loop in superspace is described by minimal surfaces in the superspace of type IIB superstring theory in AdS5 x S5. The comparison of the strong-coupling invariance derived here with the respective generators at weak coupling shows that the generators contain a local term, which depends on the coupling in a non-trivial way. Additionally, we find so-called bonus symmetry generators. These are the higher-level recurrences of the superconformal hypercharge generator, which does not provide a symmetry itself. We show that these symmetries are present in all higher levels of the Yangian.
23

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 22 January 2009 (has links) (PDF)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.
24

Photoemissivity near a chiral critical point within the quark-meson model

Wunderlich, Falk 13 March 2018 (has links) (PDF)
The interplay of thermodynamic properties of strongly interacting matter and its emission of photons is investigated. For this purpose the Lagrangian of the quark meson model (in the literature also dubbed "linear sigma model" or "linear sigma model with quarks") is extended by an electromagnetic sector. Based on this extended Lagrangian both the grand-canonical potential and the generating functional of correlation functions are calculated in a consistent manner. From the former, the phase structure and various thermodynamical properties are determined. Especially, the dependence of certain landmarks (critical point, intersections of the phase boundary with the coordinate axes, etc.) of the phase diagram with respect to the model parameters is investigated in detail. With the help of the generating functional in turn, the photon propagator can be computed whose imaginary part is connected to the emission rate of photons. The leading order of the result with respect to the number of participating particles and the power of the quark-meson coupling is expressed in terms of tree level diagrams, which are calculated likewise. On this basis, the photon emissivity with respect to temperature, chemical potential and photon frequency is calculated and analyzed addressing various questions. The dependence of the particle masses with respect to temperature and chemical potential leaves notable imprints on the emissivities of the individual production processes. Especially a first-order phase transition can easily be identified, since, there, the emissivity may jump - depending on the temperature - by a factor of about ten. Contrarily, within our analysis, we do not find signatures in the photon emissivities that specifically mark a critical end point. Moreover, it is investigated on which parameters the photon emission rate depends in the low- and high-frequency regions. With these results the behavior of the emissivity with respect to temperature and chemical potential can be understood and many peculiarities of the emissivities can be explained. / Das Zusammenspiel der thermodynamischen Eigenschaften von stark wechselwirkender Materie und deren Emission von Photonen wird untersucht. Dazu wird die Lagrangedichte des Quark-Meson-Modells (auch: Linear-Sigma-Modell oder Linear-Sigma-Modell mit Quarks) um einen elektromagnetischen Sektor erweitert. Aus der so erweiterten Lagrangedichte werden auf konsistente Weise sowohl das großkanonische Potential als auch das erzeugende Funktional der Korrelationsfunktionen ermittelt. Aus ersterem werden die Phasenstruktur des Modells sowie zahlreiche thermodynamische Eigenschaften berechnet. Insbesondere wird die Abhänigkeit einiger Orientierungspunkte (kritischer Punkt, Schnittpunkte der Phasengrenze mit den Koordinatenachsen usw.) des Phasendiagramms von den Modellparametern detailiert untersucht. Mit Hilfe des erzeugenden Funktionals wiederum kann der Photonenpropagator bestimmt werden, dessen Imaginärteil mit der Emissionsrate von Photonen zusammenhängt. Die führende Ordnung in einer Entwicklung nach der Anzahl der beteiligten Teilchen und der Potenz der Quark-Meson-Kopplung lässt sich durch Baumgraphen-Diagramme darstellen, die ebenfalls berechnet werden. Auf dieser Basis wird die Photon-Emissivität in Abhängigkeit von Temperatur, chemischem Potential und Photon-Frequenz berechnet und unter verschiedenen Gesichtspunkten analysiert. Die Abhängigkeit der Teilchenmassen von Temperatur und chemischem Potential hinterlässt teilweise ausgeprägte Signaturen in den Emissivitäten der einzelnen sub-Prozesse. Insbesondere ein Phasenübergang erster Ordnung zeigt sich deutlich, da an diesem die Emissivität - abhänging von der Temperatur - um einen Faktor der Größenordnung zehn springen kann. Jedoch finden wir im Rahmen dieser Analyse keine spezifischen Signaturen in den Photonen-Emissivitäten, die einen kritischen Punkt auszeichnen. Des weiteren wird untersucht von welchen Parametern die Photonen-Emissionsrate in den Bereichen niedriger oder hoher Photonen-Frequenzen abhängt. Mit diesen Ergebnissen kann das Verhalten der Emissivität in Abhängigkeit von Temperatur und chemischem Potential gut verstanden und zahlreiche Auffälligkeiten in den Emissivitäten erklärt werden.
25

Supersymmetric Quantum Mechanics, Index Theorems and Equivariant Cohomology

Nguyen, Hans January 2018 (has links)
In this thesis, we investigate supersymmetric quantum mechanics (SUSYQM) and its relation to index theorems and equivariant cohomology. We define some basic constructions on super vector spaces in order to set the language for the rest of the thesis. The path integral in quantum mechanics is reviewed together with some related calculational methods and we give a path integral expression for the Witten index. Thereafter, we discuss the structure of SUSYQM in general. One shows that the Witten index can be taken to be the difference in dimension of the bosonic and fermionic zero energy eigenspaces. In the subsequent section, we derive index theorems. The models investigated are the supersymmetric non-linear sigma models with one or two supercharges. The former produces the index theorem for the spin-complex and the latter the Chern-Gauss-Bonnet Theorem. We then generalise to the case when a group action (by a compact connected Lie group) is included and want to consider the orbit space as the underlying space, in which case equivariant cohomology is introduced. In particular, the Weil and Cartan models are investigated and SUSYQM Lagrangians are derived using the obtained differentials. The goal was to relate this to gauge quantum mechanics, which was unfortunately not successful. However, what was shown was that the Euler characteristics of a closed oriented manifold and its homotopy quotient by U(1)n coincide.
26

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 28 November 2008 (has links)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.
27

Non compact conformal field theories in statistical mechanics / Théories conformes non compactes en physique statistique

Vernier, Eric 27 April 2015 (has links)
Les comportements critiques des systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique en 1+1 dimensions, ainsi que certains aspects des systèmes sans interactions en 2+1 dimensions, sont efficacement décrits par les méthodes de la théorie des champs conforme et de l'intégrabilité, dont le développement a été spectaculaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant toujours à une compréhension exacte, parmi lesquels celui de la transition entre plateaux dans l'Effet Hall Quantique Entier. La raison principale en est que de tels problèmes sont généralement associés à des théories non unitaires, ou théories conformes logarithmiques, dont la classification se révèle être d'une grande difficulté mathématique. Se tournant vers la recherche de modèles discrets (chaînes de spins, modèles sur réseau), dans l'espoir en particulier d'en trouver des représentations en termes de modèles exactement solubles (intégrables), on se heurte à la deuxième difficulté représentée par le fait que les théories associées sont la plupart du temps non compactes, ou en d'autres termes qu'elles donnent lieu à un continuum d'exposants critiques. En effet, le lien entre modèles discrets et théories des champs non compactes est à ce jour loin d'être compris, en particulier il a longtemps été cru que de telles théories ne pouvaient pas émerger comme limites continues de modèles discrets construits à partir d'un ensemble compact de degrés de libertés, par ailleurs les seuls qui donnent a accès à une construction systématique de solutions exactes.Dans cette thèse, on montre que le monde des modèles discrets compacts ayant une limite continue non compacte est en fait beaucoup plus grand que ce que les quelques exemples connus jusqu'ici auraient pu laisser suspecter. Plus précisément, on y présente une solution exacte par ansatz de Bethe d'une famille infinie de modèles(les modèles $a_n^{(2)}$, ainsi que quelques résultats sur les modèles $b_n^{(1)}$, où il est observé que tous ces modèles sont décrits dans un certain régime par des théories conformes non compactes. Parmi ces modèles, certains jouent un rôle important dans la description de phénomènes physiques, parmi lesquels la description de polymères en deux dimensions avec des interactions attractives et des modèles de boucles impliqués dans l'étude de modèles de Potts couplés ou dans une tentative de description de la transition entre plateaux dans l'Effet Hall par un modèle géométrique compact.On montre que l'existence insoupçonnéede limite continues non compacts pour de tels modèles peut avoir d'importantes conséquences pratiques, par exemple dans l'estimation numérique d'exposants critiques ou dans le résultats de simulations de Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la transition theta décrivant l'effondrement des polymères en deux dimensions, et des perspectives pour une potentielle compréhension de la transition entre plateaux en termes de modèles sur réseaux sont présentées. / The critical points of statistical mechanical systems in 2 dimensions or quantum mechanical systems in 1+1 dimensions (this also includes non interacting systems in 2+1 dimensions) are effciently tackled by the exact methods of conformal fieldtheory (CFT) and integrability, which have witnessed a spectacular progress during the past 40 years. Several problems have however escaped an exact understanding so far, among which the plateau transition in the Integer Quantum Hall Effect,the main reason for this being that such problems are usually associated with non unitary, logarithmic conformal field theories, the tentative classification of which leading to formidable mathematical dificulties. Turning to a lattice approach, andin particular to the quest for integrable, exactly sovable representatives of these problems, one hits the second dificulty that the associated CFTs are usually of the non compact type, or in other terms that they involve a continuum of criticalexponents. The connection between non compact field theories and lattice models or spin chains is indeed not very clear, and in particular it has long been believed that the former could not arise as the continuum limit of discrete models built out of acompact set of degrees of freedom, which are the only ones allowing for a systematic construction of exact solutions.In this thesis, we show that the world of compact lattice models/spin chains with a non compact continuum limit is much bigger than what could be expected from the few particular examples known up to this date. More precisely we propose an exact Bethe ansatz solution of an infinite family of models (the so-called $a_n^{(2)}$ models, as well as some results on the $b_n^{(1)}$ models), and show that all of these models allow for a regime described by a non compact CFT. Such models include cases ofgreat physical relevance, among which a model for two-dimensional polymers with attractive interactions and loop models involved in the description of coupled Potts models or in a tentative description of the quantum Hall plateau transition by somecompact geometrical truncation. We show that the existence of an unsuspected non compact continuum limit for such models can have dramatic practical effects, for instance on the output of numerical determination of the critical exponents or ofMonte-Carlo simulations. We put our results to use for a better understanding of the controversial theta transition describing the collapse of polymers in two dimensions, and draw perspectives on a possible understanding of the quantum Hall plateautransition by the lattice approach.
28

Field Theoretic Lagrangian From Off-shell Supermultiplet Gauge Quotients

Katona, Gregory 01 January 2013 (has links)
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic bosonic component fields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge-quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or "proper" Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected "Adinkraic network". Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, [phi] = 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 - > 4 supersymmetric extension to the Chiral-Chiral and Chiral-twistedChiral multiplet, while a subset admits two inequivalent such extensions. In a natural proiii gression, a continuum of observably and usefully inequivalent, finite-dimensional off-shell representations of worldline N = 4 extended supersymmetry are explored, that are variate from one another but in the value of a tuning parameter, Ref [53]. Their dynamics turns out to be nontrivial already when restricting to just bilinear Lagrangians. In particular, we find a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlations to group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.

Page generated in 0.0574 seconds