• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 8
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement de procédés technologiques pour une intégration 3D monolithique de dispositifs nanoélectroniques sur CMOS

Lee Sang, Bruno January 2016 (has links)
Résumé : Le transistor monoélectronique (SET) est un dispositif nanoélectronique très attractif à cause de son ultra-basse consommation d’énergie et sa forte densité d’intégration, mais il n’a pas les capacités suffisantes pour pouvoir remplacer complètement la technologie CMOS. Cependant, la combinaison de la technologie SET avec celle du CMOS est une voie intéressante puisqu’elle permet de profiter des forces de chacune, afin d’obtenir des circuits avec des fonctionnalités additionnelles et uniques. Cette thèse porte sur l’intégration 3D monolithique de nanodispositifs dans le back-end-of-line (BEOL) d’une puce CMOS. Cette approche permet d’obtenir des circuits hybrides et de donner une valeur ajoutée aux puces CMOS actuelles sans altérer le procédé de fabrication du niveau des transistors MOS. L’étude se base sur le procédé nanodamascène classique développé à l’UdeS qui a permis la fabrication de dispositifs nanoélectroniques sur un substrat de SiO2. Ce document présente les travaux réalisés sur l’optimisation du procédé de fabrication nanodamascène, afin de le rendre compatible avec le BEOL de circuits CMOS. Des procédés de gravure plasma adaptés à la fabrication de nanostructures métalliques et diélectriques sont ainsi développés. Le nouveau procédé nanodamascène inverse a permis de fabriquer des jonctions MIM et des SET métalliques sur une couche de SiO2. Les caractérisations électriques de MIM et de SET formés avec des jonctions TiN/Al2O3 ont permis de démontrer la présence de pièges dans les jonctions et la fonctionnalité d’un SET à basse température (1,5 K). Le transfert de ce procédé sur CMOS et le procédé d’interconnexions verticales sont aussi développés par la suite. Finalement, un circuit 3D composé d’un nanofil de titane connecté verticalement à un transistor MOS est réalisé et caractérisé avec succès. Les résultats obtenus lors de cette thèse permettent de valider la possibilité de co-intégrer verticalement des dispositifs nanoélectroniques avec une technologie CMOS, en utilisant un procédé de fabrication compatible. / Abstract : The single electron transistor (SET) is a nanoelectronic device very attractive due to its ultra-low power consumption and its high integration density, but he is not capable of completely replace CMOS technology. Nevertheless, the hybridization of these two technologies is an interesting approach since it combines the advantages of both technologies, in order to obtain circuits with new and unique functionalities. This thesis deals with the 3D monolithic integration of nanodevices in the back-end-ofline (BEOL) of a CMOS chip. This approach gives the opportunity to build hybrid circuits and to add value to CMOS chips without fundamentally changing the process fabrication of MOS transistors. This study is based on the nanodamascene process developed at UdeS, which is used to fabricate nanoelectronic devices on a SiO2 layer. This document presents the work done on the nanodamascene process optimization, in order to make it compatible with the BEOL of CMOS circuits. The development of plasma etching processes has been required to fabricate metallic and dielectric nanostructures useful to the fabrication of nanodevices. MIM junctions and metallic SET have been fabricated with the new reverse nanodamascene process on a SiO2 substrate. Electrical characterizations of MIM devices and SET formed with TiN/Al2O3 junctions have shown trap sites in the dielectric and a functional SET at low temperature (1.5 K). The transfer process on CMOS substrate and the vertical interconnection process have also been developed. Finally, a 3D circuit consisting of a titanium nanowire connected to a MOS transistor is fabricated and is functional. The results obtained during this thesis prove that the co-integration of nanoelectronic devices in the BEOL of a CMOS chip is possible, using a compatible process.
12

Density-functional theory for single-electron transistors / Teoria do funcional da densidade para transístores de um elétron

Zawadzki, Krissia de 27 August 2018 (has links)
The study of transport in nano-structured devices and molecular junctions has become a topic of great interest with the recent call for quantum technologies. Most of our knowledge has been guided by experimental and theoretical studies of the single-electron transistor (SET), an elementary device constituted by a quantum dot coupled to two otherwise independent free electron gases. The SET is particularly interesting because its transport properties at low temperatures are governed by the Kondo effect. A methodological difficulty has nonetheless barred theoretical progress in describing accurately realistic devices. On the one hand, Density-Functional Theory (DFT), the most convenient tool to obtain the electronic structure of complex materials, yields only qualitatively descriptions of the low-temperature physical properties of quantum dot devices. On the other hand, a quantitative description of low-temperature transport properties of the SET, such that obtained through the solution of the Anderson model via exact methods, is nonetheless unable to account for realistic features of experimental devices, such as geometry, band structure and electron-electron interactions in the electron gases. DFT describes the electron gases very well, but proves inadequate to treat the electronic correlations introduced by the quantum dot. This thesis proposes a way out of this frustrating dilemma. Our contribution is founded on renormalization-group (RG) concepts. Specifically, we show that, under conditions of experimental interest, the high and low temperatures regimes of a SET corresponds to the weakly-coupling and strongly-coupling fixed points of the Anderson Hamiltonian. Based on an RG analysis, we argue that, at this low-temperature fixed point, the entanglement between impurity and gas-electron spins introduces non-local correlations that lie beyond the reach of local- or quasi-local-density approximations, hence rendering inadequate approximations for the exchange-correlation energy functional. By contrast, the weak-coupling fixed point is within the reach of local-density approximations. With a view to describing realistic properties of quantum dot devices, we therefore propose a hybrid self-consistent procedure that starts with the weak-coupling fixed point and takes advantage of a reliable numerical method to drive the Hamiltonian to the strong-coupling fixed point. Our approach employs traditional DFT to treat the weak-coupling system and the Numerical Renormalization-Group (NRG) method to obtain properties in the strongcoupling regime. As an illustration, we apply the procedure to a single-electron transistor modeled by a generalized one-dimensional Hubbard Hamiltonian. We analyze the thermal dependence of the conductance in the SET and discuss its behavior at low-temperatures, comparing our results with other self-consistent approaches and with experimental data. / O estudo de propriedades de transporte em dispositivos nano estruturados e junções moleculares tornou-se um tópico de grande interesse com a recente demanda por novas tecnologias quânticas. Grande parte do nosso conhecimento tem sido guiado por trabalhos experimentais e teóricos de um dispositivo conhecido como transístor de um elétron (SET), o qual é constituído por um ponto quântico acoplado a dois gases de elétrons independentes. O SET é particularmente interessante devido as suas propriedades de transporte a baixas temperaturas, as quais são governadas pelo efeito Kondo. Uma dificuldade metodológica, no entanto, tem barrado novos avanços teóricos para se obter uma descrição precisa de dispositivos realistas. Por um lado, a teoria do funcional da densidade (DFT), uma das ferramentas mais convenientes para calcular a estrutura eletrônica de materiais complexos, provê uma descrição apenas qualitativa das propriedades de transporte de transístores quânticos a baixas temperaturas. Por outro lado, uma descrição quantitativa satisfatória do SET a baixas temperaturas, tal como a modelagem e solução do modelo de Anderson via métodos exatos, é incapaz de levar em conta características realistas de dispositivos complexos, tal como geometria, estrutura de bandas e interações inter eletrônicas nos gases de elétrons. Embora a DFT os descreva bem, ela é inadequada para tratar correlações introduzidas pelo ponto quântico. Na presente tese propomos uma alternativa para este dilema. Nossa contribuição é fundamentada em conceitos de grupo de renormalização (RG). Especificamente, mostramos que, em condições de interesse experimental, os regimes de altas e baixas temperaturas em um SET correspondem aos pontos fixos de acoplamento fraco e forte do Hamiltoniano de Anderson. Baseando-nos em na análise do RG, mostramos que, no ponto fixo de baixas temperaturas, o emaranhamento entre a impureza e os spins dos gases eletrônicos introduz correlações não-locais que não podem ser descritas com abordagens DFT baseadas em aproximações locais ou quase locais para o potencial de troca e correlação. Em contraste, o ponto fixo de acoplamento fraco pode ser descrito por aproximações locais. Com o objetivo de obter uma descrição realista das propriedades de transístores quânticos, propomos um procedimento auto-consistente que começa do ponto fixo de acoplamento fraco e se aproveita de um método numérico eficiente para levar o Hamiltoniano para o ponto fixo de acoplamento forte. Nossa abordagem emprega DFT para tratar o sistema no limite de acoplamento fraco e o método de Grupo de Renormalização Numérico (NRG) para obter propriedades no regime de acoplamento forte. Como ilustração, aplicamos o procedimento para um transístor de um elétron modelado através do Hamiltoniano de Hubbard generalizado. Analisamos a dependência térmica da condutância no SET discutindo seu comportamento a baixas temperatura e comparamos nossos resultados com outras abordagens auto-consistentes e resultados experimentais.
13

Étude théorique du transport électronique dans les nanodispositifs à boîtes quantiques semiconductrices / Theoretical study of electronic transport in semiconductor quantum dot-based nanodevices

Talbo, Vincent 17 December 2012 (has links)
La miniaturisation des composants, qui s’est engagée depuis l’avènement de l’électronique il y a plus de 50 ans, atteint aujourd’hui la dimension nanométrique, ouvrant la porte aux phénomènes quantiques. Ultime étape de cette miniaturisation, la boîte quantique, dans laquelle les électrons sont confinés dans les trois directions de l’espace, présente des propriétés remarquables, telles que l’augmentation du gap entre la bande de conduction et la bande de valence, ou la discrétisation des niveaux d’énergies. Autre conséquence du confinement, la forte interaction électron-électron régnant au sein de la boîte conduit à une énergie de charge importante, susceptible de bloquer l'entrée d'un électron dans la boîte sans apport d'énergie extérieur. Ce phénomène de blocage des charges est appelé blocage de Coulomb. Le transistor à un électron (SET), dispositif élémentaire tirant profit de ce phénomène, est pressenti pour quelques applications, comme la réalisation de fonctions logiques ou la détection de charge. Parmi les domaines concernés, la thermoélectricité, c’est-à-dire la possibilité de créer du courant électrique à partir d’une différence de température, s’intéresse de près aux dispositifs à un électron en raison de leurs niveaux d’énergie discrets qui conduisent à une très faible conductivité thermique. Ce travail présente le simulateur SENS (Single-Electron Nanodevice Simulation) développé dans l’équipe, et dont j’ai réalisé la partie destinée à la simulation du SET. Il s’appuie sur la résolution des équations couplées de Poisson et Schrödinger, nécessaire à la détermination des fonctions d’onde dans la boîte de silicium, elles-mêmes dépendantes des tensions appliquées aux électrodes. Les fréquences de transition tunnel sont ensuite calculées par la règle d’or de Fermi. L’étude approfondie du courant dans les SET permet d’extraire des diagrammes de stabilité en diamant, et démontre l’importance de paramètres tels que la taille de l’îlot, la dimension des barrières tunnel, la température et le nombre d’électrons occupant la boîte. L’étude du courant électronique et du courant de chaleur en présence d’une différence de température aux électrodes du SET est également faite pour juger de la pertinence de l’utilisation d’un SET en tant que générateur thermoélectrique, mais aussi comme étalon pour déterminer le coefficient Seebeck. Enfin, une étude du bruit de grenaille dans la double-jonction tunnel (SET sans la grille) est faite, démontrant le fort lien entre taux de transfert tunnel et bruit. En particulier, selon l’évolution des taux des transferts tunnel d’entrée et de sortie de l'îlot, pour un nombre d’électrons supérieur 2, il est possible d’observer une augmentation importante du bruit, qui devient alors super-Poissonien. L’étude de l’influence des paramètres géométriques démontre que le bruit de grenaille dépend essentiellement de la différence des épaisseurs de barrière tunnel. / After a continuous reduction which has begun 50 years ago, the feature size of electronic devices has now reached the nanometer scale, opening the door to quantum phenomena. The final stage of this miniaturization, the quantum dot, in which the electrons are confined in all three directions of space, has remarkable properties, such as an increase of the bandgap between the conduction band and the valence band, and the discretization of energy levels. Another consequence of confinement, the strong electron-electron interaction occurring in the dot induces a significant charging energy which may prevent an electron entering the dot if an external energy is not provided to the system. This charge blocking is called Coulomb blockade. The single electron transistor (SET), the elementary device taking advantage of Coulomb blockade, is slated for some applications, such as the realization of digital functions or charge sensors. Among the areas concerned, the thermoelectricity, i.e., the possibility of creating an electrical current from a temperature gradient, is very interested in single-electron devices due to their discrete energy levels which lead to a very low thermal conductivity.This thesis presents the simulator SENS (Single-Electron Nanodevice Simulation) developed in the team and the part I have developed specifically for the simulation of SET. It is based on a 3D solver of Poisson and Schrödinger coupled equations, necessary for the determination of the wave functions in the case of silicon, and dependent on voltages applied to the electrodes. Tunnel transfer rates are then calculated by Fermi's golden rule. In-depth study of the current in the SETs gives access to diamond stability diagrams, and demonstrates the importance of parameters such as dot size, tunnel the barriers thicknesses, the temperature and the number of electrons occupying the dot. The study of the electron current and the heat flow in the presence of a temperature difference at the electrodes of an SET is also made to consider the suitability of the use of an SET as thermoelectric generator, but also as a standard for determining the Seebeck coefficient.Finally, a study of shot noise in double-tunnel junction (SET without the gate) is made, demonstrating the strong link between tunnel transfer rate and shot noise. In particular, according to the evolution of in- and out – tunnel transfer rates, for a number of electrons in the dot greater than 2, it is possible to observe a significant increase in noise, which becomes super-Poissonian. The study of the influence of geometrical parameters shows that the shot noise depends mainly on the difference of the tunnel barrier thicknesses.
14

Imagerie directe de champ électrique par microscopie à balayage d'un transistor à électron unique / Direct imaging of electrical fields using a scanning single electron transistor

Nacenta Mendivil, Jorge P. 27 February 2019 (has links)
Dans le cadre de ce travail de doctorat, nous avons mis au point un nouveau microscope à balayage à transistor à électron unique (SET) qui fonctionne à très basse température (T = 50 mK) et à champs magnétiques intenses (18 T). Un SET se compose d'un petit îlot métallique relié aux électrodes de source et de drain par deux jonctions tunnel. En régime de blocage de Coulomb à basse température (T < 5 K), un champ électrique externe règle le courant circulant dans le SET. De plus, de petites variations du champ électrique entraînent de grandes variations du courant SET, ce qui fait de l'appareil un détecteur de charge très sensible, capable de détecter des charges inférieures à 0,01e. Ainsi, lorsque le SET scanne au-dessus d'une surface, il cartographie les propriétés électrostatiques de l'échantillon. Cependant, la mise en œuvre d'un microscope à balayage SET est extrêmement difficile car il combine la microscopie à sonde à balayage, les basses températures et les dispositifs nanoscopiques très sensibles. Pour cette raison, seuls quelques groupes ont réussi sa réalisation. Nos choix technologiques pour construire le microscope améliorent certains aspects par rapport aux instruments déjà existants.La percée est que nous fabriquons la sonde SET en utilisant des techniques lithographiques standard sur des plaquettes commerciales de silicium. C'est pourquoi il est possible de fabriquer des sondes SET par lots. De plus, grâce à une combinaison de techniques de découpage et de gravure, le SET est conçu très près du bord du substrat de Si (< 1 micromètre ). De cette façon, le SET peut être approché à quelques nanomètres de la surface de l'échantillon au moyen d'un contrôle de distance de force atomique. De plus, une électrode de grille fabriquée sur la sonde à proximité de l'îlot peut être utilisée pour régler le point de fonctionnement du SET. Une nouveauté de notre instrument est qu'avec cet électrode de grille et une boucle de rétroaction, nous avons cartographié directement le champ électrique local. Nous démontrons cette nouvelle méthode de balayage par rétroaction en imaginant un réseau interdigité d'électrodes à l'échelle nanométrique. De plus, le SET est un outil idéal pour l'étude de la localisation d'états électroniques. À l'avenir, notre microscope sera utilisé pour l'étude des systèmes d'électrons bidimensionnels en régime de l'effet Hall quantique, des isolants topologiques et de la transition métal-isolant. / In this doctoral work, we have developed a new scanning single electron transistor (SET) microscope that works at very low temperatures (T = 50 mK) and high magnetic fields (B = 18 T). A SET consists of a small metallic island connected to source and drain electrodes through two tunnel junctions. In the Coulomb blockade regime at low temperature regime (T 5 K), an external electric field tunes the current circulating through the SET. In addition,small electric field variations lead to large SET current changes that makes the device a highly sensitive charge detector, able to detect charges smaller than 0.01 e. Thus, when the SET scans above a surface, it maps the electrostatic properties of the sample. However, the implementation of a scanning SET microscope is extremely challenging since it combines scanning probe microscopy, low temperatures and sensitive nanoscopic devices. For thisreason, only a few groups have succeeded its realization. Our technological choices to build the microscope improve certain aspects with respect to the already existing instruments. The breakthrough is that we fabricate the SET probe using standard lithographic techniques on commercial silicon wafers.For that reason, batch fabrication of SET probes is possible. Furthermore, by a combination of dicing and etching techniques, the SET is engineered extremely close to the edge of the Si chip (< 1 micrometer). In this way, the SET can be approached to a few nanometer from the sample surface by means of a atomic force distance control. Additionally, an on-probe gate electrode fabricated close to the island can be used to tune the operating point of the SET. Anovelty of our instrument is that with this on-probe gate and a feedback loop we have been able to map directly the local electric field. We demonstrate this new feedback scanning method by imaging an interdigitated array of nanometer scale electrodes. Moreover, the SET is an ideal tool for the study of the localization of electronic states. In the future, our scanning SET will be used for the study of two-dimensional electron systems in the quantum Hall regime, topological insulators and the metal insulator transition.
15

Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor Integration on CMOS

Deshpande, Veeresh 27 September 2012 (has links) (PDF)
La r eduction (\scaling") continue des dimensions des transistors MOS- FET nous a conduits a l' ere de la nano electronique. Le transistor a ef- fet de champ multi-grilles (MultiGate FET, MuGFET) avec l'architecture \nano l canal" est consid er e comme un candidat possible pour le scaling des MOSFET jusqu' a la n de la roadmap. Parall element au scaling des CMOS classiques ou scaling suivant la loi de Moore, de nombreuses propo- sitions de nouveaux dispositifs, exploitant des ph enom enes nanom etriques, ont et e faites. Ainsi, le transistor mono electronique (SET), utilisant le ph enom ene de \blocage de Coulomb", et le transistor a atome unique (SAT), en tant que transistors de dimensions ultimes, sont les premiers disposi- tifs nano electroniques visant de nouvelles applications comme la logique a valeurs multiples ou l'informatique quantique. Bien que le SET a et e ini- tialement propos e comme un substitut au CMOS (\Au-del a du dispositif CMOS"), il est maintenant largement consid er e comme un compl ement a la technologie CMOS permettant de nouveaux circuits fonctionnels. Toutefois, la faible temp erature de fonctionnement et la fabrication incompatible avec le proc ed e CMOS ont et e des contraintes majeures pour l'int egration SET avec la technologie FET industrielle. Cette th ese r epond a ce probl eme en combinant les technologies CMOS de dimensions r eduites, SET et SAT par le biais d'un sch ema d'int egration unique a n de fabriquer des transistors \Trigate" nano l. Dans ce travail, pour la premi ere fois, un SET fonction- nant a temp erature ambiante et fabriqu es a partir de technologies CMOS SOI a l' etat de l'art (incluant high-k/grille m etallique) est d emontr e. Le fonctionnement a temp erature ambiante du SET n ecessite une le (ou canal) de dimensions inf erieures a 5 nm. Ce r esultat est obtenu grce a la r eduction du canal nano l "trigate" a environ 5 nm de largeur. Une etude plus ap- profondie des m ecanismes de transport mis en jeu dans le dispositif est r ealis ee au moyen de mesures cryog eniques de conductance. Des simula- tions NEGF tridimensionnelles sont egalement utilis ees pour optimiser la conception du SET. De plus, la coint egration sur la m^eme puce de MOS- FET FDSOI et SET est r ealis ee. Des circuits hybrides SET-FET fonction- nant a temp erature ambiante et permettant l'ampli cation du courant SET jusque dans la gamme des milliamp eres (appel e \dispositif SETMOS" dans la litt erature) sont d emontr es de m^eme que de la r esistance di erentielle n egative (NDR) et de la logique a valeurs multiples. Parall element, sur la m^eme technologie, un transistor a atome unique fonc- tionnant a temp erature cryog enique est egalement d emontr e. Ceci est obtenu par la r eduction de la longueur de canal MOSFET a environ 10 nm, si bien qu'il ne comporte plus qu'un seul atome de dopant dans le canal (dif- fus ee a partir de la source ou de drain). A basse temp erature, le trans- port d' electrons a travers l' etat d' energie de ce dopant unique est etudi e. Ces dispositifs fonctionnent egalement comme MOSFET a temp erature am- biante. Par cons equent, une nouvelle m ethode d'analyse est d evelopp ee en corr elation avec des caract eristiques a 300K et des mesures cryog eniques pour comprendre l'impact du dopant unique sur les caracteristiques du MOSFET a temp erature ambiante.
16

Fluctuations quantiques dans des systèmes de spins et de charges en interaction / Quantum fluctuations in interacting spin and charge systems

Ferhat, Karim 12 December 2017 (has links)
Cette thèse s'intéresse à deux types de systèmes de différents degrés de liberté en interaction, et soumis à des fluctuations quantiques.Dans le premier projet abordé dans le manuscrit, on établit un diagramme de phase d'électrons en interactions dans un cristal bidimensionnel à géométrie kagome. Ce diagramme de phase est dressé en fonction de deux paramètres étant les interactions coulombiennes entre électrons sur un même atome pour le premier, et sur des atomes plus proches voisins pour le second. Les énergies caractéristiques de ces deux interactions sont quantifiées par rapport à une énergie de référence étant celle des fluctuations quantiques. On met alors en évidence quatre phases dont deux sont nouvelles, alors que les deux autres font le lien avec la littérature déjà existante, et sont en accord avec cette dernière. Ces deux nouvelles phases émergent lorsque l'énergie de répulsion coulombienne entre électrons sur un même atome domine devant l’énergie caractéristique des fluctuations quantiques. En présence d’une forte répulsion coulombienne entre électrons sur des atomes plus proches voisins, les charges électroniques ne peuvent se délocaliser pour former des ondes de Bloch et sont soumis à ce que l’on appelle une contrainte locale de charge. Apparaissent alors sous la compétition de ces deux interactions coulombiennes, des modes unidimensionnels collectifs le long des chaines d’atomes antiferromagnétiquement ordonnées. Ces modes ont la particularité d’être stabilisés à la fois par les fluctuations des degrés de liberté de spin, et de charge des électrons. La seconde de ces nouvelles phases émerge lorsque la répulsion coulombienne entre électrons sur des atomes voisins devient faible devant les fluctuations quantiques. La contrainte locale est alors relâchée et les électrons forment des ondes de Bloch le long de ce qui s’apparente à des bulles quantiques unidimensionnelles et polarisées en spin. Ces bulles sont alors piégées dans un cristal d’électrons inversement polarisés, avec lesquels elles sont en interaction antiferromagnétique.Le second projet porte sur l’étude d’un aimant moléculaire de Terbium Double-Decker. Cette molécule peut être modélisée par trois degrés de liberté interagissant en cascade les uns avec les autres. Le premier d’entre eux est un degré de liberté de spin nucléaire porté par le noyau de l’ion terbium de la molécule. Ce spin nucléaire est en interaction d’échange avec un degré de liberté de spin électronique porté par les électrons de l’ion terbium. Enfin, en première approximation, ce spin électronique génère un champ dipolaire auquel sont soumis les deux ligands de l’aimant moléculaire. Ces deux ligands sont couplés à deux électrodes de source et de drain, assurant le transport d’électrons uniques à travers ces deniers. Le tout forme donc un transistor à électron unique dans lequel les ligands servent de boîte quantique. Par mesure de magnéto-conductance, il est donc possible par une lecture en cascade, de remonter à l’état du spin électronique et du spin nucléaire. La première étape du projet a donc consisté à établir un modèle décrivant l’aimant moléculaire couplé à ces deux électrodes, afin de prédire les mesures de conductance réalisées au travers du transistor lors des thèses de Stefen Thiele et Clément Godfrin. Les résultats théoriques et expérimentaux obtenus sont en accord quantitatifs.D’autres part, à l’aide de champs électriques radio-fréquences, il est possible de manipuler expérimentalement et de façon cohérente le spin nucléaire. Cette manipulation cohérente du spin nucléaire se fait par l’intermédiaire du nuage électronique de l’ion, et permet ainsi d’être en mesure de réaliser un algorithme quantique sur le spin nucléaire de l’ion terbium. La réalisation d’un programme de simulation a permis de guider la réalisation expérimentale de l’algorithme de Grover, lequel a été implémenté avec succès au cours de la thèse de Clément Godfrin. / This thesis focuses on two different spin and charge systems, interacting under the effect of quantum fluctuations.The first project highlights the phase diagram of interacting electrons on a kagome lattice. This diagram is driven by two Coulomb repulsions. The first is a on site repulsion, and the second a nearest neighbor one. These two repulsions are in competition with quantum fluctuations of electronic charges. Four phases are depicted, two are unknown and the two other are in agreement with the literature. The two new phases are stabilized in the strong on site repulsion regime. When nearest neighbor repulsions are strong enough to induce a charge local constraint, the system enters in a so called Heisenberg-Loop Phase. These loops are antiferromagnetically arranged and can be described by a Heisenberg-like model in which both charge and spin play surprisingly a role in the exchange interaction. The second new phase is stabilized in the regime where nearest neighbor interactions are too weak to maintain the local constraint. Then, half of the electrons are delocalized in unidimensional Bloch states similar to quantum polarized electronic bubbles. These bubbles are trapped in an inversely polarized electronic cristal formed by the other electrons. This peculiar phase is favored by both quantum charge fluctuations in the bubbles, and antiferromagnetic exchanges between their electrons and the cristal ones.The second project deals with a Terbium Double-Decker molecular magnet. This molecule is modeled by three interacting degrees of freedom. The first is a nuclear spin of the Terbium ion, and the second is the electronic spin of this same ion. The two spins interact via a magnetic exchange.In a first approximation, the effect of the electronic spin is to induce a dipolar field. Finally, the last degree of freedom is carried by two ligands under the influence of the dipolar field. The ligands play the role of a read-out quantum dot, and by conductance measurements through this last one, we can probe the electronic spin and then, the nuclear spin. The first step of this project highlights the modeling of the global system. Then numerical computations are depicted and are in a quantitative agreement with the experimental measurements realized during the thesis of Stefan Thiele and Clément Godfrin.On the other hand, by applying electrical Radio Frequency Fields, we can drive quantum fluctuations on the nuclear spin. This quantum manipulation of the spin is realized by the dynamic deformation of the electron cloud under the effect of the Radio Frequency Field. As a result, we are able to implement a Grover Quantum Algorithm on the nuclear field. This thesis focuses on the realization of a simulation program that was a tool used by Clément Godfrin to successfully implement the Grover Algorithm.
17

Density-functional theory for single-electron transistors / Teoria do funcional da densidade para transístores de um elétron

Krissia de Zawadzki 27 August 2018 (has links)
The study of transport in nano-structured devices and molecular junctions has become a topic of great interest with the recent call for quantum technologies. Most of our knowledge has been guided by experimental and theoretical studies of the single-electron transistor (SET), an elementary device constituted by a quantum dot coupled to two otherwise independent free electron gases. The SET is particularly interesting because its transport properties at low temperatures are governed by the Kondo effect. A methodological difficulty has nonetheless barred theoretical progress in describing accurately realistic devices. On the one hand, Density-Functional Theory (DFT), the most convenient tool to obtain the electronic structure of complex materials, yields only qualitatively descriptions of the low-temperature physical properties of quantum dot devices. On the other hand, a quantitative description of low-temperature transport properties of the SET, such that obtained through the solution of the Anderson model via exact methods, is nonetheless unable to account for realistic features of experimental devices, such as geometry, band structure and electron-electron interactions in the electron gases. DFT describes the electron gases very well, but proves inadequate to treat the electronic correlations introduced by the quantum dot. This thesis proposes a way out of this frustrating dilemma. Our contribution is founded on renormalization-group (RG) concepts. Specifically, we show that, under conditions of experimental interest, the high and low temperatures regimes of a SET corresponds to the weakly-coupling and strongly-coupling fixed points of the Anderson Hamiltonian. Based on an RG analysis, we argue that, at this low-temperature fixed point, the entanglement between impurity and gas-electron spins introduces non-local correlations that lie beyond the reach of local- or quasi-local-density approximations, hence rendering inadequate approximations for the exchange-correlation energy functional. By contrast, the weak-coupling fixed point is within the reach of local-density approximations. With a view to describing realistic properties of quantum dot devices, we therefore propose a hybrid self-consistent procedure that starts with the weak-coupling fixed point and takes advantage of a reliable numerical method to drive the Hamiltonian to the strong-coupling fixed point. Our approach employs traditional DFT to treat the weak-coupling system and the Numerical Renormalization-Group (NRG) method to obtain properties in the strongcoupling regime. As an illustration, we apply the procedure to a single-electron transistor modeled by a generalized one-dimensional Hubbard Hamiltonian. We analyze the thermal dependence of the conductance in the SET and discuss its behavior at low-temperatures, comparing our results with other self-consistent approaches and with experimental data. / O estudo de propriedades de transporte em dispositivos nano estruturados e junções moleculares tornou-se um tópico de grande interesse com a recente demanda por novas tecnologias quânticas. Grande parte do nosso conhecimento tem sido guiado por trabalhos experimentais e teóricos de um dispositivo conhecido como transístor de um elétron (SET), o qual é constituído por um ponto quântico acoplado a dois gases de elétrons independentes. O SET é particularmente interessante devido as suas propriedades de transporte a baixas temperaturas, as quais são governadas pelo efeito Kondo. Uma dificuldade metodológica, no entanto, tem barrado novos avanços teóricos para se obter uma descrição precisa de dispositivos realistas. Por um lado, a teoria do funcional da densidade (DFT), uma das ferramentas mais convenientes para calcular a estrutura eletrônica de materiais complexos, provê uma descrição apenas qualitativa das propriedades de transporte de transístores quânticos a baixas temperaturas. Por outro lado, uma descrição quantitativa satisfatória do SET a baixas temperaturas, tal como a modelagem e solução do modelo de Anderson via métodos exatos, é incapaz de levar em conta características realistas de dispositivos complexos, tal como geometria, estrutura de bandas e interações inter eletrônicas nos gases de elétrons. Embora a DFT os descreva bem, ela é inadequada para tratar correlações introduzidas pelo ponto quântico. Na presente tese propomos uma alternativa para este dilema. Nossa contribuição é fundamentada em conceitos de grupo de renormalização (RG). Especificamente, mostramos que, em condições de interesse experimental, os regimes de altas e baixas temperaturas em um SET correspondem aos pontos fixos de acoplamento fraco e forte do Hamiltoniano de Anderson. Baseando-nos em na análise do RG, mostramos que, no ponto fixo de baixas temperaturas, o emaranhamento entre a impureza e os spins dos gases eletrônicos introduz correlações não-locais que não podem ser descritas com abordagens DFT baseadas em aproximações locais ou quase locais para o potencial de troca e correlação. Em contraste, o ponto fixo de acoplamento fraco pode ser descrito por aproximações locais. Com o objetivo de obter uma descrição realista das propriedades de transístores quânticos, propomos um procedimento auto-consistente que começa do ponto fixo de acoplamento fraco e se aproveita de um método numérico eficiente para levar o Hamiltoniano para o ponto fixo de acoplamento forte. Nossa abordagem emprega DFT para tratar o sistema no limite de acoplamento fraco e o método de Grupo de Renormalização Numérico (NRG) para obter propriedades no regime de acoplamento forte. Como ilustração, aplicamos o procedimento para um transístor de um elétron modelado através do Hamiltoniano de Hubbard generalizado. Analisamos a dependência térmica da condutância no SET discutindo seu comportamento a baixas temperatura e comparamos nossos resultados com outras abordagens auto-consistentes e resultados experimentais.
18

Functionalized DNA origami nanostructures for electronics

Bayrak Kelling, Türkan 04 November 2020 (has links)
Desoxyribonukleinsäure (DNS) ermöglicht die Selbstorganisation von nanoskopischen Elementen zu dreidimensionalen Einheiten mit vorgegebener Form, Zusammensetzung und Größe wie sie in der Nanoelektronik, Nanophotonik und Metamaterialien Verwendung finden. In dieser Arbeit werden DNS Origami Strukturen, in der Gestaltvon Nanoformen, Nanoblätchen und Nanoröhren, als Gerüste für den Aufbau von Nanodrähten und Metall/Halbleiter/Metall Heterostrukturen aus Goldnanoteilchen, Halbleiterquantenpunkten und Halbleiterstäbchen verwendet. Die so hergestellten Einheiten wurden mittels Elektronenstrahllithographie kontaktiert um ihre elektrische Leitwerte zwischen 4:2K und Raumtemperatur zu charakterisieren. Ein neues Konzept für die lösungsbasierte Herstellung von leitenden Goldnanodrähten mittels DNS-Templates wurde eingeführt: hierbei wurden DNS-Nanoformen eingesetzt in denen positionsspezifisch angedockte Goldkeime durch auÿenstromlose Goldabscheidung wachsen. Durch konfigurierbare Verbindungsstellen können sich die einzelnen Formen zu mikrometerlangen Strukturen verbinden. Während der folgendenden Abscheidung von Gold schränken die Wände der Gussformen über das Wachstum so ein, dass sehr homogene Nanodrähte gewonnen werden können. Goldnanodrähte wurden auch C-förmig hergestellt indem Goldnanoteilchen in der gewünschten Form auf DNS Origami-Nanoblättchen angeordnet und wiederum durch außenstromlose Goldabscheidung zu durchgängigen Drähten vergröbert wurden. Einige Abschnitte der DNS-Nanoform-geprägten Drähte zeigen metallische Leitfähigkeit, während andere durch Lücken zwischen den Goldkörnern deutlich höhere Widerstände aufweisen. Alle hergestellten C-förmigen Nanodrähte stellten sich als nicht-metallisch heraus, sie zeigten Eigenschaften von Hopping-, thermionischem und Tunneltransport in Abhängigkeit von der Temperatur. Die Anwesenheit dieser verschiedenen Transportmechanismen deutet darauf hin, dass die C-förmigen Nanodrähte aus metallischen Abschnitten bestehen welche aber nur schwach miteinander verbunden sind. Zwei verschiedene Metall/Halbleiter/Metall-Heterostrukturen wurden hergestellt: Metall/Halbleiternanstäbchen/Metall-Strukturen mittels DNS-Nanoformen und Metall/Quantenpunkt/Metall-Strukturen mittels DNS-Nanoröhren-Vorlagen Goldnanoteilchen konnten durch die DNA templates mit hoher Ausbeute neben den Halbleiterelementen platziert werden. Nach der erfolgter Anordnung wurden die Goldnanoteilchen gewachsen um durchgängige Heterostrukturen zu erhalten. Die Einflüsse des Inkubationsmediums und der -zeit, des Buffers, sowie der Quantenpunkt- und Goldnanopartikelkonzentrationen auf die Abscheidungseffzienz von Goldnanotailchen auf DNS Nanoröhren wurden systematisch untersucht. Zusätzlich zur Bestimmung der Morphologie der durch Selbstorganisation hergestellten Heterostrukturen, wurden auch ihre elektrischen Eigenschaften im Hinblick auf ihre Anwendung in nanelektronischen Bauelementen, wie Einzelelektronentransitoren untersucht.:1. Introduction 2. Overview on DNA Nanotechnology 2.1. Basic Concepts of DNA 2.1.1. Nanoscale Dimensions 2.2. Self-Assembled Architectures from DNA 2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes 2.3.1. DNA Origami Method 2.3.2. Nanomolds 2.3.3. Nanosheets 2.3.4. Nanotubes 2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication 2.4.1. DNA/DNA Origami Templates 2.4.2. Metal Nanoparticle Attachment Yield 2.4.3. Metal Growth 2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires 2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires 2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires 2.6. Applications 2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication 2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept 3. Experimental Details 3.1. Preparation of Substrates 3.2. DNA Origami Preparation and Deposition 3.2.1. DNA Nanomolds and Formation of linear mold superstructures 3.2.2. DNA Nanotubes 3.2.3. DNA Nanosheets 3.3. Metallization of DNA Origami Structures 3.3.1. DNA Nanomolds 3.3.2. DNA Nanotubes 3.3.3. DNA Nanosheets 3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet 3.4. Semiconductor Nanoparticle Preparation and Assembly 3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold. 3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube 3.5. Deposition of DNA origami structures on SiO2 /Si surface 3.5.1. Deposition of DNA Nanomolds 3.5.2. Deposition of DNA Nanosheets and Nanotubes 3.6. Structural Characterization 3.6.1. Atomic Force Microscopy 3.6.2. Scanning Electron Microscopy 3.7. Electrical Characterization 4. Results and Discussion 4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires 4.1.1. Introduction 4.1.2. Results and Discussion 4.1.3. Conclusion 4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds 4.2.1. Introduction 4.2.2. Results and Discussion 4.2.3. Conclusion 4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet 4.3.1. Introduction 4.3.2. Results and Discussion 4.3.3. Conclusion 4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube 4.4.1. Introduction 4.4.2. Results and Discussion 4.4.3. Conclusion 5. Conclusion and Future Work A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet D. Supplement for heterojunctions templated by DNA Nanotube / DNA allows self-assembly of nanoscale units into three dimensional nanostructures with definite shape and size in fields such as nanoelectronics, metamaterials and nanophotonics. Different DNA origami templates, such as: nanomold, nanosheet and nanotube templates have been used to assemble gold nanoparticles, quantum dots and semiconductor rods into nanowires and metal/semiconductor/metal heterostructures. Structures have been contacted using electron-beam lithography for electrical conductance characterization at temperatures between 4:2K and room temperature has been performed. A new concept has been introduced for the solution-based fabrication of gold nanowires. To this end, DNA nanomolds have been employed, inside which electroless gold deposition is initiated by site-specifically attached seeds. Using configurable interfaces, individual mold elements self-assemble into micrometer-long mold structures. During subsequent internal gold deposition, the mold walls constrain the metal growth, such that highly homogeneous nanowires are obtained. Gold nanowires have also been manufactured in a C-shape using gold nanoparticles arranged in the desired shape on a DNA origami nanosheet and enhanced to form a continuous wire through electroless gold deposition. Some sections of the DNA nanomold-templated wires show metallic conductance, while other sections of the wires have a much higher resistance which is caused by boundaries between gold grains. All C-shaped wires have been found to be resistive showing hopping, thermionic and tunneling transport characteristics at different temperatures. The different transport mechanisms indicate that the C-shaped nanowires consist of metallic segments which are weakly coupled along the wire. Two types of metal/semiconductor/metal heterostructures have been fabricated: Metal/semiconductor-rod/metal using DNA nanomolds and metal/quantum-dot/metal structures using DNA nanotube. AuNPs were assembled with high yield adjacent to the semiconductor material using origami templates. After the assembly, the gold nanoparticles were grown to produce continuous heterostructures. The influence of the incubation medium, time, buffer, quantum dot and gold nanoparticle concentration on nanoparticle attachment yield was systematically investigated for the nanotube templates. In addition to the determination of the self-assembled heterostructures' morphology, electrical properties were investigated to evaluate their applicability nanoelectronic devices such as single electron transistors.:1. Introduction 2. Overview on DNA Nanotechnology 2.1. Basic Concepts of DNA 2.1.1. Nanoscale Dimensions 2.2. Self-Assembled Architectures from DNA 2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes 2.3.1. DNA Origami Method 2.3.2. Nanomolds 2.3.3. Nanosheets 2.3.4. Nanotubes 2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication 2.4.1. DNA/DNA Origami Templates 2.4.2. Metal Nanoparticle Attachment Yield 2.4.3. Metal Growth 2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires 2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires 2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires 2.6. Applications 2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication 2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept 3. Experimental Details 3.1. Preparation of Substrates 3.2. DNA Origami Preparation and Deposition 3.2.1. DNA Nanomolds and Formation of linear mold superstructures 3.2.2. DNA Nanotubes 3.2.3. DNA Nanosheets 3.3. Metallization of DNA Origami Structures 3.3.1. DNA Nanomolds 3.3.2. DNA Nanotubes 3.3.3. DNA Nanosheets 3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet 3.4. Semiconductor Nanoparticle Preparation and Assembly 3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold. 3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube 3.5. Deposition of DNA origami structures on SiO2 /Si surface 3.5.1. Deposition of DNA Nanomolds 3.5.2. Deposition of DNA Nanosheets and Nanotubes 3.6. Structural Characterization 3.6.1. Atomic Force Microscopy 3.6.2. Scanning Electron Microscopy 3.7. Electrical Characterization 4. Results and Discussion 4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires 4.1.1. Introduction 4.1.2. Results and Discussion 4.1.3. Conclusion 4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds 4.2.1. Introduction 4.2.2. Results and Discussion 4.2.3. Conclusion 4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet 4.3.1. Introduction 4.3.2. Results and Discussion 4.3.3. Conclusion 4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube 4.4.1. Introduction 4.4.2. Results and Discussion 4.4.3. Conclusion 5. Conclusion and Future Work A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet D. Supplement for heterojunctions templated by DNA Nanotube
19

Transistors mono-electroniques double-grille : Modélisation, conception and évaluation d’architectures logiques / Double-gate single electron transistors : Modeling, design et évaluation of logic architectures

Bounouar, Mohamed Amine 23 July 2013 (has links)
Dans les années à venir, l’industrie de la microélectronique doit développer de nouvelles filières technologiques qui pourront devenir des successeurs ou des compléments de la technologie CMOS ultime. Parmi ces technologies émergentes relevant du domaine ‘‘Beyond CMOS’’, ce travail de recherche porte sur les transistors mono-électroniques (SET) dont le fonctionnement est basé sur la quantification de la charge électrique, le transport quantique et la répulsion Coulombienne. Les SETs doivent être étudiés à trois niveaux : composants, circuits et système. Ces nouveaux composants, utilisent à leur profit le phénomène dit de blocage de Coulomb permettant le transit des électrons de manière séquentielle, afin de contrôler très précisément le courant véhiculé. Ainsi, le caractère granulaire de la charge électrique dans le transport des électrons par effet tunnel, permet d’envisager la réalisation de transistors et de cellules mémoires à haute densité d’intégration, basse consommation. L’objectif principal de ce travail de thèse est d’explorer et d’évaluer le potentiel des transistors mono-électroniques double-grille métalliques (DG-SETs) pour les circuits logiques numériques. De ce fait, les travaux de recherches proposés sont divisés en trois parties : i) le développement des outils de simulation et tout particulièrement un modèle analytique de DG-SET ; ii) la conception de circuits numériques à base de DGSETs dans une approche ‘‘cellules standards’’ ; et iii) l’exploration d’architectures logiques versatiles à base de DG-SETs en exploitant la double-grille du dispositif. Un modèle analytique pour les DG-SETs métalliques fonctionnant à température ambiante et au-delà est présenté. Ce modèle est basé sur des paramètres physiques et géométriques et implémenté en langage Verilog-A. Il est utilisable pour la conception de circuits analogiques ou numériques hybrides SET-CMOS. A l’aide de cet outil, nous avons conçu, simulé et évalué les performances de circuits logiques à base de DG-SETs afin de mettre en avant leur utilisation dans les futurs circuits ULSI. Une bibliothèque de cellules logiques, à base de DG-SETs, fonctionnant à haute température est présentée. Des résultats remarquables ont été atteints notamment en terme de consommation d’énergie. De plus, des architectures logiques telles que les blocs élémentaires pour le calcul (ALU, SRAM, etc.) ont été conçues entièrement à base de DG-SETs. La flexibilité offerte par la seconde grille du DG-SET a permis de concevoir une nouvelle famille de circuits logiques flexibles à base de portes de transmission. Une réduction du nombre de transistors par fonction et de consommation a été atteinte. Enfin, des analyses Monte-Carlo sont abordées afin de déterminer la robustesse des circuits logiques conçus à l'égard des dispersions technologiques. / In this work, we have presented a physics-based analytical SET model for hybrid SET-CMOS circuit simulations. A realistic SET modeling approach has been used to provide a compact SET model that takes several conduction mechanisms into account and closely matches experimental SET characteristics. The model is implemented in Verilog-A language, and can provide suitable environment to simulate hybrid SET-CMOS architectures. We have presented logic circuit design technique based on double gate metallic SET at room temperature. We have also shown the flexibility that the second gate can bring in order to configure the SET into P-type and N-type. Given that the same device is utilized, the circuit design approach exhibits regularity of the logic gate that simplifies the design process and leads to reduce the increasing process variations. Afterwards, we have addressed a new Boolean logic family based on DG-SET. An evaluation of the performance metrics have been carried out to quantify SET technology at the circuit level and compared to advanced CMOS technology nodes. SET-based static memory was achieved and performances metrics have been discussed. At the architectural level, we have investigated both full DG-SET based arithmetic logic blocks (FA and ALU) and programmable logic circuits to emphasize the low power aspect of the technology. The extra power reduction of SETs based logic gates compared to the CMOS makes this technology much attractive for ultra-low power embedded applications. In this way, architectures based on SETs may offer a new computational paradigm with low power consumption and low voltage operation. We have also addressed a flexible logic design methodology based on DG-SET transmission gates. Unlike conventional design approach, the XOR / XNOR behavior can be efficiently implemented with only 4 transistors. Moreover, this approach allows obtaining reconfigurable XOR / XNOR gates by swapping the cell biasing. Given that the same device is utilized, the structure can be physically implemented and established in a regular manner. Finally, complex logic gates based on DG-SET transmission gates offer an improvement in terms of transistor device count and power consumption compared to standard complementary SETs implementations.Process variations are introduced through our model enabling then a statistical study to better estimate the SET-based circuit performances and robustness. SET features low power but limited operating frequency, i.e. the parasitics linked to the interconnects reduce the circuit operating frequency as the SET Ion current is limited to the nA range. In term of perspectives: i) detailed studying the impact on SET-based logic cells of process variation and random back ground charge ii) considering multi-level computational model and their associate architectures iii) investigating new computation paradigms (neuro-inspired architectures, quantum cellular automata) should be considered for future works.
20

Energétique dans les dispositifs à un seul électron basés sur des îlots métalliques et des points quantiques / Energetics in metallic-island and quantum-dot based single-electron devices

Dutta, Bivas 19 November 2018 (has links)
Aujourd'hui, nos appareils électroniques sont de plus en plus densément composés de composants nanoélectroniques. En conséquence, la dissipation de chaleur produite dans ces circuits augmente également énormément, provoquant une déperdition d’énergie considérable, en pure perte. Les effets thermoélectriques entrent en jeu ici car ils permettent d'utiliser cette chaleur perdue pour produire un travail utile. Par conséquent, l’étude du transport thermique et de l’effet thermoélectrique dans les nanostructures revêt une importance significative du point de vue scientifique et technologique.Dans cette thèse, nous présentons nos études expérimentales du transport thermique et thermoélectrique dans différents types de dispositifs à un seul électron, où le flux électronique peut être contrôlé au niveau de l'électron unique.Tout d’abord, nous montrons la mesure du transport de chaleur contrôlé par la grille dans un transistor à un seul électron (SET), agissant comme un commutateur thermique entre deux réservoirs. Nous déterminons la conductance thermique à l’aide d’un bilan thermique en régime permanent prenant en compte les différents chemins du flux de chaleur. La comparaison de la conductance thermique du SET avec sa conductance électrique indique une forte violation de la loi de Wiedemann-Franz.Deuxièmement, nous étendons l’étude du transport thermique dans les dispositifs à un seul électron dans le régime de boîte quantique, où, outre les interactions de Coulomb, il faut également prendre en compte les différents niveaux électroniques discrets. Nous discutons du bilan thermique entre deux réservoirs de chaleur couplés par un seul niveau de point quantique, et de la dissipation des électrons tunnel dans les contacts. Cela produit des formes de diamant de Coulomb dans la carte de température électronique de la source, en fonction de la polarisation et de la tension de grille.Enfin, nous présentons la mesure du transport thermoélectrique dans une jonction à boîte quantique unique, du régime de couplage faible au régime de couplage fort Kondo. Nos expériences introduisent une nouvelle façon de mesurer le pouvoir thermoélectrique en réalisant une condition de circuit ouvert quasi-parfaite. Le pouvoir thermoélectrique dans une boîte faiblement couplée montre le comportement e-périodique avec la charge induite par la grille, alors qu’il montre une période distincte de 2e en présence de corrélation Kondo. L’étude de la dépendance thermique révèle que la résonance de Kondo n’est pas toujours au niveau de Fermi, mais qu’elle peut être légèrement décalée, en accord avec les prédictions théoriques.Cette étude ouvre la porte à l’étude de transistors à une boîte quantique unique dont les propriétés thermodynamiques sont régies par les lois de thermodynamique quantique. / At this age of technologically advanced world, the electronic devices are getting more and more densely packed with micro-electronic elements of nano-scale dimension. As a result the heat dissipation produced in these microelectronic-circuits is also increasing immensely, causing a huge amount of energy loss without any use. The textit{thermoelectric effects} come into play here as one can use this wasted heat to produce some useful work with the help of thermoelectric conversion. In order to achieve such a textit{heat engine} with a reasonably high efficiency, one needs to understand its thermal behavior at the basic level. Therefore, the study of thermal transport and thermoelectric effect in nano-structures has significant importance both from scientific and application point of view.In this thesis we present the experimental studies of thermal and thermoelectric transport in different kinds of single-electron devices, where the electronic flow can be controlled at the single electron level.First, we demonstrate the measurement of gate-controlled heat transport in a Single-Electron Transistor ($SET$), acting as a heat switch between two heat reservoirs. The measurement of temperature of the leads of the $SET$ allows us to determine its thermal conductance with the help of a steady state heat-balance among all possible paths of heat flow. The comparison of thermal conductance of the $SET$ with its electrical conductance indicates a strong violation of the Wiedemann-Franz (WF) law away from the charge degeneracy.Second, we extend the study of thermal transport in single-electron devices to the quantum limit, where in addition to the Coulomb interactions the quantum effects are also need to be taken into account, and therefore the individual discrete electronic levels take part in the transport process. We discuss the heat-balance between two heat reservoirs, coupled through a single Quantum-Dot ($QD$) level, and the dissipation of the tunneling electrons on the leads. This produces Coulomb-diamond shapes in the electronic-temperature map of the `source' lead, as a function of bias and gate voltage.Third, we present the measurement of thermoelectric transport in a single $QD$ junction, starting from the weak coupling regime to the strong coupling-Kondo regime. The experiments introduces a new way of measuring thermovoltage realizing a close to perfect open-circuit condition. The thermopower in a weakly coupled $QD$ shows an expected `$e$' periodic behavior with the gate-induced charge, while it shows a distinct `$2e$' periodic feature in the presence of Kondo spin-correlation. The temperature dependence study of the Kondo-correlated thermopower reveals the fact that the Kondo-resonance is not always pinned to the Fermi level of the leads but it can be slightly off, in agreement with the theoretical predictions.This study opens the door for accessing a single $QD$ junction to operate it as a $QD$-heat engine, where the thermodynamic properties of the device are governed by the laws of textit{quantum thermodynamics}.

Page generated in 0.0903 seconds