Spelling suggestions: "subject:"colutions faible"" "subject:"3solutions faible""
11 |
Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince.Ersoy, Mehmet 10 September 2010 (has links) (PDF)
Dans la première partie, on dérive formellement les équations \PFS (\textbf{P}ressurised and \textbf{F}ree \textbf{S}urface) pour les écoulements mixtes en conduite fermée avec variation de géométrie. On écrit l'approximation de ces équations à l'aide d'un solveur VFRoe et d'un solveur cinétique en décentrant les termes sources aux interfaces. En particulier, on propose le décentrement d'un terme de friction, donnée par la loi de Manning-Strickler, en introduisant la notion de \emph{pente dynamique}. Enfin, on construit un schéma bien équilibré préservant les états stationnaires au repos en définissant une matrice à profil stationnaire conçue pour le schéma VFRoe. Suivant cette idée, on construit, en toute généralité, un schéma bien équilibré préservant tous les états stationnaires. Pour traiter les points de transitions (i.e. le changement de type d'écoulement surface libre vers charge et vice et versa), on étend la méthode des \og ondes fantômes\fg~ dans ce contexte et on propose un traitement complètement cinétique. Dans la deuxième partie, on étudie des équations primitives compressibles simplifiées dans le cadre de la modélisation de la dynamique de l'atmosphère. En particulier, on obtient un résultat d'existence de solutions faibles globales en temps en dimension $2$ d'espace. On établit également un résultat de stabilité de solutions faibles pour le modèle en dimension $3$ d'espace. À cet égard, on introduit un changement de variables convenable qui permet de transformer les équations initiales en un modèle plus simple à étudier. Dans la troisième et dernière partie, on présente une courte introduction à la cavitation. En particulier, on rappelle les différents types de cavitation et les modèles mathématiques de Rayleigh-Plesset pour l'étude d'une bulle isolée et un modèle de mélange plus complexe. En vue de modéliser la cavitation dans les conduites fermées, on introduit un modèle à deux couches pour prendre en compte, dans un premier temps, l'effet d'une poche d'air comprimée par la surface libre et les bords de la conduite. En particulier, le système obtenu, à $4$ équations, est généralement non hyperbolique et ses valeurs propres ne sont pas calculables explicitement. On propose alors une approximation numérique basée sur un schéma cinétique mono-couche. Dans le dernier chapitre, on dérive formellement un modèle de transport de sédiments basé sur l'équation de Vlasov couplée à des équations de Navier-Stokes compressibles avec un tenseur de viscosité anisotrope. Ce modèle est ensuite obtenu par le biais de deux analyses asymptotiques.
|
12 |
Étude mathématique et numérique du transport d'aérosols dans le poumon humain.Moussa, Ayman 02 December 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons au transport des aérosols dans les voies aériennes supérieures du poumon humain. Ce phénomène est modélisé dans notre étude par un couplage d'équations aux dérivées partielles issues de la mécanique des fluides et de la théorie cinétique. Ainsi, le fluide est décrit par des fonctions macroscopiques (vitesse, pression), par l'intermédiaire des équations de Navier-Stokes incompressibles tandis que la phase dispersée est décrite par sa densité dans l'espace des phases, grâce à une équation de transport (Vlasov ou Vlasov-Fokker-Planck). Le couplage effectué est fort, en ce sens qu'il associe à l'aérosol une force de rétroaction correspondant au retour de l'accélération de traînée fournie par le fluide: l'interaction fluide/spray se fait dans les deux sens. Enfin, les équations sont en toute généralité considérées en domaine spatial mobile, ceci afin de tenir compte de l'éventuel mouvement des bronches. Dans un premier chapitre, après quelques rappels concernant l'arbre pulmonaire et les aérosols, nous décrivons le système d'équations de Vlasov/Navier-Stokes pour lequel nous avons développé un schéma d'approximation numérique. Ce dernier aspect est abordé dans le deuxième chapitre. La méthode utilisée consiste en un couplage explicite d'une méthode ALE/éléments finis pour le fluide et d'une méthode particulaire pour la phase dispersée. L'algorithme développé nécessitant une procédure de localisation des particules dans le maillage, celle-ci a également été mise en place. Différentes exploitations du code ont ensuite été réalisées. Une première série de simulations numériques a été effectuée afin d'évaluer l'influence de la rétroaction du spray sur le fluide. On prouve ainsi que, pour des données en cohérence avec les nébuliseurs commerciaux, l'aérosol peut accélérer un fluide au repos et de ce fait influencer son propre mouvement. Une autre exploitation du code a été effectuée en collaboration avec une équipe de l'INSERM, à Tours, à l'aide de données expérimentales in vitro. Enfin, une dernière étude a été réalisée sur un conduit cylindrique présentant une constriction en son centre. Nous avons évalué l'influence du mouvement de sa paroi sur la capture de particules sur cette géométrie. Les deux derniers chapitres de cette thèse traitent de l'analyse mathématique de deux couplages fluides/cinétiques. Le premier de ces couplages est celui de Vlasov/Navier-Stokes, précédemment introduit. On prouve l'existence de solutions faibles globales périodiques du système par une méthode basée sur un schéma d'approximation voisin de celui utilisé lors de l'implémentation numérique. Le deuxième couplage est celui de Vlasov-Fokker-Planck/Navier-Stokes pour lequel nous avons obtenu l'existence de solutions fortes pour des données initiales régulières et proches d'un point d'équilibre. Nous avons ensuite étudié le comportement en temps long de solutions du système et précisé la régularité que celui-ci leur impose.
|
13 |
ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE DE MODÈLES EN CHIMIOTAXIE-FLUIDE ET APPLICATIONS À LA BIOLOGIEChamoun, Georges 23 June 2014 (has links) (PDF)
Les résultats présentés dans ce mémoire sont dédiés à l'étude théorique et numérique de modèles en chimiotaxie-fluide motivés par un large éventail de phénomènes biologiques comme la chimiotaxie de populations cellulaires dans un fluide. Les deux premiers chapitres de cette thèse portent sur la chimiotaxie dans un fluide au repos. Au début, on généralise un schéma de volumes finis au cas de modèles isotropes de Keller-Segel avec des coefficients diffusifs scalaires généraux sur des maillages admissibles. Ensuite, on propose et on étudie un schéma monotone combinant les méthodes de volumes finis et d'éléments finis non conformes et permettant une discrétisation efficace et robuste de modèles de Keller-Segel avec des tenseurs diffusifs anisotropes hétérogènes sans imposer des conditions restrictives sur le maillage du domaine en espace. Les deux derniers chapitres sont dédiés à l'étude théorique (existence globale, unicité) et l'étude numérique (extension de la méthode combinée) du système chimiotactisme-fluide complet constitué d'équations chimiotaxiques anisotropes couplées aux équations de Navier-Stokes modélisant un fluide incompressible. Ce couplage s'effectue à travers les termes décrivant d'un part le transport des cellules vivantes et du chimio-attractant par le fluide et d'autre part la force gravitationnelle exercée par ces organismes vivants sur le fluide. Les travaux de cette thèse ont donné lieu à l'écriture d'un code de calcul très développé en Fortran 95 afin de valider nos résultats par des simulations numériques.
|
14 |
Quelques résultats mathématiques sur les gaz à faible nombre de MachLiao, Xian 24 April 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En articulier, nous prenons en compte les effets de onductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. \\\\ Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. \\\\ Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. \\\\ Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe.Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel.
|
15 |
Fully linear elliptic equations and semilinear fractionnal elliptic equationsChen, Huyuan 10 January 2014 (has links)
Cette thèse est divisée en six parties. La première partie est consacrée à l'étude de propriétés de Hadamard et à l'obtention de théorèmes de Liouville pour des solutions de viscosité d'équations aux dérivées partielles elliptiques complètement non-linéaires avec des termes de gradient, ... / This thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term ...
|
Page generated in 0.0869 seconds