• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 9
  • 7
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 33
  • 32
  • 30
  • 24
  • 22
  • 21
  • 20
  • 19
  • 18
  • 18
  • 16
  • 15
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Vésicules polymères biorésorbables et stimulables pour des applications en vectorisation

Sanson, Charles 11 January 2010 (has links)
L’auto-assemblage de copolymères à blocs amphiphiles est un outil puissant de la chimie supramoléculaire pour la conception de nano-objets complexes et fonctionnels. Dans ces travaux de thèse, l’étude approfondie d’un copolymère à blocs « hybride » synthétique-b-peptidique poly(triméthylène carbonate)-b-poly(acide glutamique) pour des applications de vectorisation a été menée. Des morphologies vésiculaires, obtenues par auto-assemblage en voie « co-solvant » et présentant une grande stabilité ainsi qu’un caractère stimulable ont été mises en évidence. Une transition inédite en température, par des phénomènes de fusion et de fission, a pu être observée. L’encapsulation dans ces vésicules polymères d’un principe actif anti-tumoral et de nanoparticules magnétiques, à des taux très élevés, permet d’améliorer le contraste en IRM ainsi que de moduler la libération de la molécule par une variation des paramètres environnementaux (pH, T) ou par un effet d’hyperthermie magnétique. / Block copolymer self-assembly is a powerful tool within supramolecular chemistry to design smart and functional nano-objects. In this thesis work, comprehensive study of hybrid poly(trimethylene carbonate)-b-poly(glutamic acid) block copolymers for drug delivery applications has been conducted. Highly stable vesicular morphologies presenting stimuli-responsive behaviour were prepared using a solvent-injection method. In particular, original temperature responsiveness mediated by fusion and fission events has been evidenced. Dual loading of an anticancer drug and superparamagnetic nanoparticles in these vesicles, at very high loading contents, allows enhancing MRI contrast and controlling drug release kinetics by varying environmental conditions (pH, T) or by using a magnetic hyperthermia effect.
102

Enzymatisch aktivierbare Biokonjugate als oberflächenspezifische Adhäsive

Meißler, Maria 15 March 2018 (has links)
In der vorliegenden Arbeit wurde gezeigt, dass enzymresponsive Peptid-Poly(ethylenglycol)-Konjugate (Peptid-PEG-Konjugate) effizient biotransformiert und proteinresistente Beschichtungen ausbilden können. Die oberflächenspezifische Haftung eines linearen Biokonjugates auf Basis einer literaturbekannten Adhäsionsdomäne für Titandioxid-Oberflächen wurde durch Verlängerung mit einer proteolytisch spaltbaren Erkennungssequenz und einer Suppressionsdomäne temporär unterbunden. Aus einer Serie unterschiedlich modifizierter Biokonjugate wurde eine anionische Suppressionsdomäne als besonders leistungsfähige haftungsunterdrückende Einheit identifiziert. Die Prozessierung des nicht-bindenden Vorläufers mit einer spezifischen Cysteinprotease hervorgehend aus dem Tabakätzvirus (TEV Protease) bewirkte die Abtrennung der eingeführten Modifikation. Durch die Biotransformation wurden die Haftungseigenschaften der polymergebundenen Adhäsionsdomäne zurückgebildet. Das aktivierte Biokonjugat ermöglichte die nicht-kovalente PEGylierung der Metalloxid-Oberfläche. Das Konzept wurde auf divalente Peptid-PEG-Konjugate unter Verwendung verzweigter Adhäsionsdomänen und verlängerter Suppressionsdomänen übertragen. Die proteolytisch aktivierte Dimer-Beschichtung zeigte eine erhöhte Stabilität im Vergleich zum linearen Biokonjugat und demonstrierte vielversprechende Antifouling-Eigenschaften gegenüber der unspezifischen Adsorption eines Modellproteins für Serumproteine des menschlichen Blutes auf Titandioxid-Oberflächen. / The present thesis has shown that enzyme-responsive peptide-poly(ethylene glycol) (peptide-PEG) conjugates can be efficiently biotransformed to create protein-resistant coatings. The surface-specific adsorption of a linear bioconjugate is temporarily suppressed by extending a titanium dioxide adhesion domain known from literature with a proteolytically cleavable recognition site and a suitable interfering domain. From a series of differently modified bioconjugates, an anionic interfering domain was identified as particularly effective to suppress adhesive functions. The enzymatic processing of the non-binding precursor with a specific cysteine protease derived from tobacco etch virus (TEV protease) resulted in the separation of the introduced modification. The adhesive properties of the polymer-bound binding sequence were reproduced by the biotransformation process. The activated bioconjugate allowed the non-covalent PEGylation of the metal oxide surface. The concept was applied to divalent peptide-PEG conjugates using branched adhesion domains and extended interfering domains. The proteolytically activated dimer coating showed increased stability against dilution compared to the linear bioconjugate and demonstrated promising antifouling properties against the non-specific adsorption of a model protein for human blood serum proteins to titanium dioxide surfaces.
103

Development of new highly conjugated molecules and their application in the field of renewable energy and biomaterials / Développement de nouvelles molécules hautement conjuguées et leurs applications dans le domaine des énergies renouvelables et des biomatériaux

Bessi, Matteo 06 December 2018 (has links)
Ces dernières années, les matériaux fonctionnels hybrides ont commencé à être employés pour des applications de la haute technologie, allant des senseurs bio/médicaux, à la production d’énergie renouvelable. Pour cette raison, ils sont devenus le centre de plusieurs études dans le domaine des sciences des matériaux. Simultanément, des molécules conjuguées ont été examinée intensément à cause de leurs propriétés venant de leurs longs systèmes π, allant de la possibilité de conduire l’électricité, à leur capacité d’absorber la lumière dans une grande fenêtre spectrale. Le travail de cette thèse se concentre sur l’introduction de tels systèmes dans deux sortes de matériaux hybrides, les dispositifs photovoltaïques pour la production d’électricité (en particuliers les cellules solaires à pigment photosensible) et de carburants alternatifs (hydrogène), et pour les hydrogels biocompatibles sensibles aux stimuli (capables de conduire l’électricité et de réagir sous irradiation), et sur l’étude de leur influence sur les caractéristiques du matériau final. / In recent years hybrid functional materials began to be employed in a series of technologically advanced applications spanning from bio/medical sensors, to renewable energy generation. For this reason, they became the focus of several studies in the field of materials science. At the same time, conjugated molecules have also been intensively investigated, due to the properties arising by the presence of long π-conjugated systems, from the possibility to conduct electricity to the ability to absorb light in a wide range of wavelengths. This PhD work focused on the introduction of such systems in two different kinds of hybrid materials, namely photovoltaic devices for the production of electricity (in particular Dye Sensitzed Solar Cells) and alternative fuels (hydrogen), and biocompatible stimuli-responsive hydrogels (capable to conduct electricity and to react upon irradiation), and on the study of their influence on the characteristics of the final material.
104

Lipid Bilayers Supported by Multi-Stimuli Responsive Polymers

Kaufmann, Martin 25 March 2013 (has links) (PDF)
Artificial lipid bilayers formed on solid surface supports are widespread model systems to study physical, chemical, as well as biological aspects of cell membranes and fundamental interfacial interactions. The approach to use a thin polymer film representing a cushion for lipid bilayers prevents incorporated membrane proteins from pinning to the support and mimics the native environment of a lipid bilayer in certain aspects of the extracellular matrix and intracellular structures. A key component for cell anchorage to extracellular fibronectin is the transmembrane adhesion receptor alpha(5)beta(1) integrin. Its transport dynamics and clustering behavior plays a major role in the assembly of focal adhesions, which mediate mechanical forces and biochemical signals of cells with their surrounding. The system investigated herein is envisioned to use extrinsically controlled stimuli-responsive polymer cushions to tune the frictional drag between polymer cushion and mobile membranes with incorporated integrins to actively regulate lipid membrane characteristics. To attain this goal, a temperature- and pH-responsive polymer based on poly(N-isopropylacrylamide) copolymers containing varying amounts of carboxyl-group-terminated comonomers at different aliphatic spacer lengths (PNIPAAm-co-carboxyAAM) was surface-grafted to a poly(glycidyl methacrylate) anchorage layer. The swelling transitions were characterized using atomic force microscopy, ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) and found to be tunable over a wide range of temperature and pH. In agreement with the behavior of the polymers in solution, longer alkyl spacers decreased the phase transition temperature T(P) and higher contents of carboxylic acid terminated comonomers increased T(P) at alkaline conditions and decreased T(P) at acidic conditions. Remarkably, the point where the degree of carboxyl group deprotonation balances the T(P)-lowering effect of the alkyl spacer was distinctive for each alkyl spacer length. These findings illustrate how the local and global balance of hydrophilic and hydrophobic interactions along the copolymer chain allows to adjust the swelling transition to temperatures below, comparable, or above those observed for PNIPAAm homopolymers. Additionally, it could be shown that surface-grafting leads to a decrease in T(P) for PNIPAAm homopolymers (7°C) and copolymers (5°C - 10°C). The main reason is the increase in local polymer concentration of the swollen film constrained by dense surface anchorage in comparison to the behavior of dilute free chains in solution. In accordance with the Flory-Huggins theory, T(P) decreases with increasing concentration up to the critical concentration. Biological functionalization of the PNIPAAm-co-carboxyAAm thin films was demonstrated for the cell adhesion ligand peptide cRGD via carbodiimide chemistry to mimic extracellular binding sites for the cell adhesion receptors integrin. The outcome of QCM-D measurements of cRGD-functionalized surfaces showed a maintained stimuli-responsiveness with slight reduction in T(P). A drying/rehydration procedure of a 9:1 lipid mixture of the cationic lipid dioleoyl-trimethylammoniumpropane (DOTAP) and the zwitterionic dioleoyl-phosphatidylcholine (DOPC) was utilized to form lipid bilayer membranes on PNIPAAm-co-carboxyAAM cushions. Fluorescence recovery after photobleaching (FRAP) revealed that lipid mobility was distinctively higher (6.3 - 9.6) µm2 s-1 in comparison to solid glass support ((3.0 - 5.9) µm2 s-1). In contradiction to the initial expectations, modulation of temperature and pH led to poor variations in lipid mobility that did not correlate with the PNIPAAm cushion swelling state. The results suggested a weak coupling of the lipid bilayer with PNIPAAm polymer cushions that can be slightly tuned by electrostatic interactions. The transmembrane adhesion receptor alpha(5)beta(1) integrin was reconstituted into liposomes consisting of DOPC/sphingomyelin/cholesterol 2:2:1 for the formation of polymer cushioned bilayers. PNIPAAm- co-carboxyAAM and maleic acid (MA) copolymers were used as cushions, both with the option for cRGD functionalization. On the MA copolymer cushions, fusion of proteoliposomes resulted in supported bilayers with mobile lipids as confirmed by FRAP. However, incorporated integrins were immobile. In an attempt to explain this observation, the medium-sized cytoplasmic integrin domain was accounted to hamper the movement by steric interactions with the underlying polymer chains in conjunction with electrostatic interactions of the cationic cytoplasmic domain with the oppositely charged MA copolymer. On the PNIPAAm-co-carboxyAAM cushion only a drying/rehydration procedure lead to bilayer formation. However, again the integrins were immobile, presumably due to the harsh treatment during preparation. Nevertheless, the results of the investigated set of PNIPAAm copolymer films suggest their application as temperature- and pH-responsive switchable layers to control interfacial phenomena in bio-systems at different physiological conditions. The PNIPAAm-co-carboxyAAm cushioned bilayer system represents a promising step towards extrinsically controlled membrane – substrate interactions.
105

Amphiphilic dendrimers for siRNA delivery / Dendrimères amphiphiles pour la délivrance de siARN

Chen, Chao 29 September 2015 (has links)
Le défi majeur de la thérapie génique à base de siARN est sa délivrance sûre et efficace. Récemment, notre groupe a mis au point des dendrimères amphiphiles comme vecteurs robustes et efficaces de délivrance non-virale de siARN, qui combinent les avantages de délivrance des vecteurs lipidiques et polymèriques. J’ai effectué au cours de ma thèse de doctorat une analyse de la relation structure/activité (SAR) d'une série de dendrimères comportant des queues hydrophobes de différentes longueurs. Nos résultats démontrent qu’un équilibre optimal entre la longueur de la chaîne alkyle hydrophobe et la partie hydrophile dendritique joue un rôle crucial sur leur capacité d’auto-assemblage, ainsi que sur leur activité de transport des siRNA. En outre, en combinant bola-amphiphiles et nos dendrimères amphiphiles, nous avons développé un nouveau dendrimère bola-amphiphile dont nous avons étudié les propriétés d’auto-assemblage et l'efficacité de transport du siARN correspondant. Ce dendrimère bola-amphiphile particulier a été en mesure de réagir à des espèces réactives de l'oxygène pour la délivrance spécifique, ouvrant ainsi de nouvelles perspectives pour la conception de vecteurs stimuli-déclencheurs pour siARN ciblés. Enfin, nous avons étudié l’«effet d'éponge à protons» des vecteurs dendritiques amphiphiles à l'aide de la technique du film Langmuir en monocouche. Nos résultats ont prouvé le gonflement des vecteurs dendritiques amphiphiles par protonation, offrant ainsi des données expérimentales permettant de soutenir sans ambiguïté l’hypothèse de l'«effet d'éponge à protons». / A key challenge in RNAi-based gene therapy is the safe and effective siRNA delivery. Recently, our group has established amphiphilic dendrimers as robust and effective nonviral delivery vectors for siRNA, which combine the beneficial delivery features of both lipid and dendritic polymer vectors while overcoming their shortcomings.With the desire to understand the underlying mechanism of amphiphilic dendrimers for efficient delivery, I performed a structure/activity relationship (SAR) analysis of a series of dendrimers featuring hydrophobic tails of different lengths during my PhD thesis. We systematically investigated these dendrimers for their self-assembling characters and their capacities for both binding and delivery of siRNA. Our results demonstrate that an optimal balance between the hydrophobic alkyl chain length and the hydrophilic dendritic portion plays a crucial role in the self-assembly and the delivery activity towards siRNA.Furthermore, we developed a novel bola-amphiphilic dendrimer by combining bola-amphiphiles and our amphiphilic dendrimers and studied their self-assembly properties and the corresponding siRNA delivery efficiency. This peculiar bola-amphiphilic vector was able to respond to reactive oxygen species for specific delivery, opening a new perspective for the design of stimuli-trigged vectors for targeted siRNA delivery.Finally, I studied the “proton sponge effect” of the amphiphilic dendrimer vectors using the Langmuir monolayer film technique. Our results gave direct evidence of swelling of the amphiphilic dendrimers upon protonation, offering unambiguous experimental data to support the “proton sponge effect”.
106

DEVELOPMENT OF NOVEL MULTI-RESPONSIVE MATERIALS CHARACTERIZED BY POTENTIAL CONTROLLED RELEASE PROPERTIES

Chikh Alard, Ibaa 05 December 2018 (has links) (PDF)
With the emergence of novel and more effective drug therapies, increased importance is being placed upon the methods by which these drugs are being delivered to the body. In conventional drug delivery systems, there is very little control over the release of drug. The effective concentration at the target site can be achieved by intermittent administration of grossly excessive doses, which, often results in constantly, unpredictable variations in plasma concentrations, with the risk of reaching levels below or above the therapeutic range leading to marked side effects. A plethora of formulation strategies mainly based on polymeric/lipid nanoparticles, are described in literature. Even though these systems are therapeutically advantageous in comparison to conventional systems, they remain insensitive to the changing metabolic states of the body although the symptoms of most metabolic diseases follow a rhythmic pattern.A more appropriate and effective approach of managing some of these conditions lies in the chronotherapy. This approach allows for pulsed or self-regulated drug delivery which is adjusted to the staging of biological rhythms, since the onset of certain diseases exhibits strong circadian temporal dependence. In order to reach the objective of mimicking the biophysical and biochemical processes of pathological states, many innovations in material design for drug delivery systems (DDS) that are able to release the therapeutic payload-on-demand were done to release the therapeutic agent only when it is required, according to the physiological need. The development of multidisciplinary research teams has brought huge advantages in the design, fabrication and utilization of such smart systems, especially in the pharmaceutical field. Interestingly, numerous smart polymeric materials exhibit a response to a specific stimulus. A step further, the elaboration of purpose-built monomers can give rise to compounds with tunable sensitivities or multi-stimuli responsiveness. These smart polymers demonstrate an active responsiveness to environmental (or external) signals and change their physicochemical properties as designed (e.g. conformation, solubility, shape, charge or size). As far as the stimuli are concerned, they consist of physical (e.g. temperature, ultrasound, light, electricity, magnetic or mechanical stress), chemical (e.g. pH, ionic strength) and biological signals (e.g. enzymes, biomolecules). Due to the intrapersonal variabilities which may make internal stimuli hazardous, externally controlled systems rely on externally applied stimuli that are produced by stimuli-generating devices, which results in pulsed drug delivery. This type of delivery may be rapid and allows a transient release of a determined amount of drug within a short period of time immediately after a pre-determined off-release period. A novel strategy for the formation of multi-stimuli responsive materials endowed with pH, magnetic and light sensitivity was achieved. The approach relied on the incorporation of magnetic tetrahalogenoferrate(III) anions along a polymeric backbone based on poly(2-(N,N-dimethylamino) ethyl meth-acrylate) (PDMAEMA). Starting from the same PDMAEMA, quaternized pending amine groups with various halide derivatives gave rise to magnetic materials after anion metathesis. Measuring the magnetic susceptibility of these materials exhibited that the magnetic susceptibility increased as the substituted group size decreased (become smaller) which was apparently related to the steric hindrance around the ionic pendants. Additionally, a good correlation between the magnetic susceptibility and ferric content was found. Additional experimental and theoretical Raman analyses allowed the determination of the nature of the magnetic species constituting the materials. This strategy further offers the opportunity to tailor the magnetic response through partial ammonium salt formation. In order to merge the magnetic properties of ferric-based materials with another stimuli-responsive functionality, random copolymers containing DMAEMA (D) with diazobenzene (A) unit were prepared. So, three copolymers PDA were synthesized (with targeted D/A ratios 4/6 (PDA4), 6/4 (PDA6) and 8/2 (PDA8)). Meanwhile, different degrees of amine quaternization (10, 50 and 100 %) were applied, which led to the following polymeric salts PDAX/Y where X = 4, 6, 8 (referring to the percentage of the DMAEMA unit) and Y = 10, 50 and 100 (referring to the percentage of quaternized amine groups). Finally, the aforementioned materials were converted into magnetic polymers by anion exchange. As a result, magnetic responses correlated well with amount of iron oxide in these compounds and the amount of ionic pending groups along the backbone. Moreover, the remaining tertiary amines conferred pH sensitivity to the polymers whereas the diazobenzene units ensured light responsiveness through the well-established trans-to-cis isomerization.In order to functionalize these materials in the pharmaceutical field, an intelligent delivery system was prepared. Firstly, an attempt to formulate riboflavin-5’-phosphate sodium (RPS) loaded on PDA8 microspheres was made using double emulsion evaporation method. Meanwhile, prednisolone (PRD) microspheres were prepared using s/o/w emulsion technique. Subsequently, coating systems of cochineal red tablets were developed. These tablets were coated with polymer solution (using each of three types of copolymers: PDA8, PDA6, and PDA4) until the desired percentage of the coating was achieved (10, 15, and 20 % w/w). The cumulative release profiles of cochineal red tablets coated with PDA8, PDA6, and PDA4 showed a pH-sensitive release behavior. The release in the neutral media (pH ≈ 7.0) was very slow (less than 3 % after one hour). Then, after changing the pH to 1.2, an increase in the release of cochineal was observed. Furthermore, the cumulative release of cochineal red was at the highest value for the PDA8 and the lowest for PDA4 depending on the percentage of PDMAEMA moieties. Moreover, by increasing the percentage of the coating from (10, 15 to 20 % w/w), the cumulative release of cochineal decreased. Therefore, the copolymer PDAX can be used for controlling the release of drug by changing the pH value.Finally, the cochineal tablets coated with PDA6 (10 %) showed features of light sensitivity. The release of cochineal red from coated tablets was only due to the switching in the conformational trans/cis isomerization of azobenzene moieties upon irradiation, which was confirmed by comparing the release of coated tablets with uncoated tablets upon irradiation. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
107

Etude des propriétés interfaciales et luminescentes de microgels stimulables. / Study of interfacial and luminescent properties of stimuli-sensitive microgels

Pinaud, Florent 09 June 2015 (has links)
Les microgels sont des particules colloïdales de polymère réticulé gonflées par un solvant. Déformables et poreuses, elles peuvent changer d’état de gonflement lors de l’application d’un stimulus. Ce travail de thèse a pour but de développer de nouveaux concepts tirant profit des propriétés stimulables et de la déformabilité intrinsèque des microgels tout en approfondissant les connaissances sur le comportement de ces objets en solution et aux interfaces. Les microgels de poly(N-alkylacrylamide) sont utilisés comme modèles. Dans un premier temps, notre travail a porté sur l’étude d’un nouveau type de microgels électrochimiluminescents grâce à l’incorporation d’un complexe métallique de ruthénium dans la matrice polymère. A la transition de phase, ces microgels présentent une exaltation de l’intensité ECL jusqu’à 2 ordres de grandeur, en lien avec la distance entre les sites redox. Le concept est ensuite transposé à des microgels sensibles aux saccharides et à des systèmes comportant deux luminophores, un donneur ECL et un accepteur d’énergie pouvant donner lieu à un transfert d’énergie par résonance. La deuxième partie de la thèse est consacrée à l’adsorption de microgels à une interface liquide-liquide plane, en vue de mieux comprendre l’origine de la stabilité des émulsions stabilisées par ce genre d’objets. De façon analogue aux protéines flexibles, les microgels changent de conformation à l’interface, passant d’un état étendu à un état comprimé, à l’origine de variations de l’élasticité interfaciale. Les microgels ainsi adsorbés sont fonctionnalisés de façon régiosélective dans l’eau et permettent de produire des microgels non symétriques, dits Janus, susceptibles de s’auto-assembler. / Microgels are colloidal particles made of cross-linked polymer swollen by a solvent. Soft and porous, they can adapt their swelling degree in response to a stimulus. The main objective of this work is to develop new concepts taking advantage of microgels’ stimuli-responsive properties and intrinsicsoftness while deepening understanding of their properties in solution and at interfaces. Poly(Nalkylacrylamide) microgels are used as a model. Initially our work focused on the study of a new type of electrochemiluminescent (ECL) microgels thanks to the incorporation of a ruthenium complex in the polymer matrix. At the volume phase transition, these microgels exhibit an amplification of the ECL intensity up to 2 orders of magnitude, related to the decrease of the distance between redox sites. This concept is then transposed to saccharides-sensitive microgels and systems bearing two luminophores, an ECL donor and an energy acceptor in order to give rise to resonance energy transfer. The second part of this manuscript is devoted to adsorption of microgels at a planar liquid-liquid interface, to improve knowledge on the origin of the stability of emulsions stabilized by such objects. Such as flexible proteins, microgels can change their conformation at the interface, from an extended to a compressed state, causing variation in the interfacial elasticity. When microgels are adsorbed they can also be functionalized regioselectively in water to produce non-symmetrical microgels, called Janus, able to self-assemble.
108

Functional nanoparticles for biomedical applications / Les nanoparticules fonctionnelles pour des applications biomédicales

Beyazit, Selim 12 December 2014 (has links)
Cette thèse décrit le développement de nouvelles méthodes pour obtenir des nanoparticules fonctionnelles polyvalentes qui peuvent potentiellement être utilisées pour des applications biomédicales telles que la vectorisation de médicaments, des essais biologiques et la bio-imagerie. Les nanomatériaux sont des outils polyvalents qui ont trouvé des applications comme vecteurs de médicaments, la bio-imagerie ou les biocapteurs. En particulier, les nanoparticules de type core-shell ont attiré beaucoup d'attention en raison de leur petite taille, une relation surface/volume élevée, et une biocompatibilité. Dans ce contexte, nous proposons dans la première partie de la thèse (Chapitre 2), une nouvelle méthode pour obtenir des nanoparticules core-shell via la polymérisation radicalaire en émulsion et vivante combinées. Des particules cœurs de polystyrène de 30 à 40 nm, avec une distribution de taille étroite et portant à la surface des groupements iniferter ont été utilisés pour amorcer la polymérisation supplémentaire d'une couche de polymère. Des nanoparticules core-shell ont été préparées de cette façon. Différents types d’enveloppes : anionique, zwitterioniques, à empreintes moléculaires, thermosensibles, ont ainsi été greffées. Notre méthode est une plate-forme polyvalente permettant d'ajouter des fonctionnalités multiples soit dans le noyau et/ou l'enveloppe pour les études d'interaction cellulaire et de toxicité, ainsi que des matériaux récepteurs pour l'imagerie cellulaire. Dans la deuxième partie de la thèse (Chapitre 3), nous décrivons un procédé nouveau et polyvalent pour la modification de surface des nanoparticules de conversion ascendante (UCP). Ce sont des nanocristaux fluorescents dopés de lanthanides qui ont récemment attiré beaucoup d'attention. Leur fluorescence est excitée dans le proche infrarouge, ce qui les rend idéales comme marqueurs dans des applications biomédicales telles que les tests biologiques et la bio-imagerie, l'auto-fluorescence étant réduite par rapport à des colorants organiques et les quantum dots. Cependant, les UCP sont hydrophobes et non-compatible avec les milieux aqueux, donc une modification de leur surface est essentielle. La stratégie que nous proposons utilise l'émission UV ou visible après excitation en proche infrarouge des UCP, comme source de lumière secondaire pour la photopolymérisation localisée de couches minces hydrophiles autour les UCP. Notre méthode offre de grands avantages comme la facilité d'application et la fonctionnalisation de surface rapide pour fixer divers ligands, et fournit une plateforme pour préparer des UCP encapsulée de polymères pour des différentes applications. Des hydrogels stimuli-sensibles sont des matériaux qui changent leurs propriétés physicochimiques en réponse à des stimuli externes tels que la température, le pH ou la lumière. Ces matériaux intelligents jouent un rôle critique dans des applications biomédicales telles que la vectorisation de médicaments ou l'ingénierie tissulaire. La troisième partie de cette thèse (Chapitre 4) propose un nouveau procédé de préparation d'hydrogels photo et pH sensible. Deux composantes, l'un photosensible à base dl'acide 4-[(4-méthacryloyloxy) phénylazo] benzoïque et l'autre cationic contenant des unités 2-(diéthylamino)éthyl méthacrylate, ont été synthétisés. Leur association donne des particules monodispersées de 100 nm photo et pH sensibles. Ces nanoparticules peuvent être potentiellement utilisées pour la vectorisation de médicaments, en particulier de biomolécules telles que protéines ou siARN. En conclusion, nous avons conçu plusieurs nouvelles méthodes efficaces, polyvalentes, génériques et facilement applicables pour obtenir des nanoparticules et nanocomposites de polymères fonctionnels qui peuvent être appliqués dans de différents domaines biomédicaux comme la vectorisation de médicaments, les biocapteurs, les tests biologiques et la bio-imagerie. / This thesis describes the development of novel methods to obtain versatile, functional nanoparticles that can potentially be used for biomedical applications such as drug delivery, bioassays and bioimaging. Nanomaterials are versatile tools that have found applications as drug carriers, bioimaging or biosensing. In particular, core-shell type nanoparticles have attracted much attention due to their small size, high surface to volume ratio and biocompatibility. In this regard, we propose in the first part of the thesis (Chapter 2), a novel method to obtain core-shell nanoparticles via combined radical emulsion and living polymerizations. Polystyrene core seeds of 30-40 nm, with a narrow size distribution and surface-bound iniferter moieties were used to further initiate polymerization of a polymer shell. Core-shell nanoparticles were prepared in this way. Different types of shells : anionic, zwitterionic, thermoresponsive or molecularly imprinted shells, were thus grafted. Our method is a versatile platform with the ability to add multi-functionalities in either the core for optical sensing or/and the shell for cell interaction and toxicity studies, as well as receptor materials for cell imaging. In the second part of the thesis (Chapter 3), we describe a novel and versatile method for surface modification of upconverting nanoparticles (UCPs). UCPs are lanthanide-doped fluorescent nanocrystals that have recently attracted much attention. Their fluorescence is excitated in the near infrared, which makes them ideal as labels in biomedical applications such as bioimaging and bioassays, since the autofluorescence background is minimized compared to organic dyes and quantum dots. However, UCPs are hydrophobic and non-compatible with aqueous media, therefore prior surface modification is essential. The strategy that we propose makes use oft he UV or Vis emission light of near-infrared photoexcited upconverting nanoparticles, as secondary light source for the localized photopolymerization of thin hydrophilic shells around the UCPs. Our method offers great advantages like ease of application and rapid surface functionalization for attaching various ligands and therefore can provide a platform to prepare polymeric-encapsulated UCPs for applications in bioassays, optical imaging and drug delivery. Stimuli responsive hydrogels are materials that can change their physico-chemical properties in response to external stimuli such as temperature, pH or light. These smart materials play critical roles in biomedical applications such as drug delivery or tissue engineering. The third part of the thesis (Chapter 4) proposes a novel method for obtaining photo and pH-responsive supramolecularly crosslinked hydrogels. Two building blocks, one containing photoresponsive 4-[(4-methacryloyloxy)phenylazo] benzoic acid and the other, consisting of cationic 2-(diethylamino)ethyl methacrylate units, were first synthesized. Combining the two building blocks yielded photo and pH responsive monodisperse 100-nm particles. These nanoparticles can be eventually utilized for drug delivery, especially delivery of biomolecules such as siRNAs or proteins. In conclusion, we have designed several new efficient, versatile, generic and easily applicable methods to obtain functionalized polymer nanoparticles and nanocomposites that can be applied in various biomedical domains like drug delivery, biosensing, bioassays and bioimaging.
109

Synthèse et caractérisation de copolymères stimulables à base de N,N-diéthylacrylamide / Synthesis and characterization of stimuliresponsive copolymers based on N,N-diethylacrylamide

Zhang, Xuewei 25 January 2010 (has links)
Ce travail de thèse concerne la synthèse et la caractérisation d'homo et de copolymères stimulables à base de N,N-diéthylacrylamide (DEAm). Des homopolymères ont été préparés par polymérisation radicalaire contrôlée par transfert réversible par addition-fragmentation (RAFT). Cette polymérisation a été conduite en présence de trois agents de transfert différents et s'est avérée contrôlée quelles que soient les conditions expérimentales. Deux types de copolymères ont ensuite été préparés, de type PEG-b-PDEAm et PDEAm-b-polypeptides par polymérisation RAFT et combinaison RAFT/ polymérisation par ouverture de cycle (ROP), respectivement. Ces copolymères double hydrophiles ont été caractérisés et leur comportement en solution aqueuse a été évalué. Nous avons montré la formation de micelles c?ur-couronne au dessus de la LCST. Nous avons également développé une stratégie de synthèse originale dans le cas des PDEAm-b-polypeptides puisque la ROP a été réalisée en utilisant un macroamorceur de type thiol. Après déprotection des copolymères sensibles au pH et à la température ont été obtenus et montre des propriétés de structuration différentes en fonction de ces deux stimuli. / This manuscript deals with the synthesis and characterization of responsive copolymers containing N,N-diethylacrylamide (DEAm). Homopolymers were prepared by controlled radical polymerization, especially Reversible Addition-Fragmentation Transfer (RAFT). Polymerization was achieved using three different chain transfer agents and was controlled whatever the experimental conditions. PEG-b-PDEAm and PDEAm-b-polypeptides were synthesized by RAFT polymerization and RAFT/Ring Opening Polymerization (ROP) respectively. These double hydrophilic block copolymers were characterized and their behavior in aqueous solution was evaluated. We showed that core/corona micelles were obtained above the lower critical solution temperature. We also developed a new strategy for the synthesis of PDEAm-b-polypeptides as ROP was achieved using a thiol macroinitiator. After deprotection pH- and thermo-sensitive copolymers were afforded which proved different structuration as a function of both stimuli.
110

High-Energy Electron-Treatment of Collagen and Gelatin Hydrogels: Biomimetic Materials, Stimuli-Responsive Systems and Functional Surfaces

Riedel, Stefanie 23 September 2019 (has links)
Biological hydrogels such as collagen and gelatin are highly attractive materials for tissue engineering and biomedicine. Due to their excellent biocompatibility and biodegradability, they represent promising candidates in regenerative medicine, cell culture, tissue replacement and wound dressing applications. Thereby, precisely tuned material properties are indispensable for customization. High-energy electron-treatment is a highly favourable crosslinking technique to tailor the material properties. In five sub-projects, this thesis investigates the potential of high-energy electron-treatment to precisely modify collagen hydrogels, to develop thermo- as well as hydration-sensitive systems and functional surfaces from gelatin for biomedical applications. The first sub-project focusses on the modification of collagen hydrogels by electron-induced crosslinking with potential application as biomimetic extracellular matrix material. Thereby, it is shown that the material properties can be precisely tailored by adapting electron-induced crosslinking while high cytocompatibility is maintained. Within the second sub-project, an electron-crosslinking-induced shape-memory effect in gelatin is described in order to develop a thermo-responsive system. The effect is described experimentally as well as theoretically to demonstrate the fundamental physical processes. The third sub-project develops an electroncrosslinked hydration-sensitive gelatin system. The work discusses how swelling of electroncrosslinked gelatin is influenced by the pH-value and salt concentration of the swelling liquid. Thereby, response of the hydration-sensitive gelatin system can be further modified towards biological actuatoric systems. The fourth sub-project develops a two-step process to mechanically pattern gelatin surfaces. Within the first step, thin gelatin surfaces are mechanically patterned by a highly focussed electron beam. In a second step, they are stabilized by homogeneous electron-crosslinking for applications at physiological conditions. Another method to develop functional gelatin surfaces is described in the last sub-project. Here, gelatin is topographically patterned via a moulding technique. The resulting micro-structures are then stabilized via electron-crosslinking. In addition, the presented work investigates pattern transfer, long time stability at physiological conditions as well as cytocompatibility.:1 Introduction and Objective 1.1 Biomimetic ECM Models 1.2 Stimuli-Responsive Hydrogels 1.3 Functional Hydrogel Surfaces 2 General Background 2.1 Hydrogels 2.1.1 Collagen 2.1.2 Gelatin 2.2 Polymer Crosslinking 2.2.1 High-Energy Electron-Treatment of Polymers 2.2.2 Electron-Irradiation-Induced Crosslinking of Gelatin 2.3 High-Energy Electron Accelerator 3 Cumulative Part 3.1 High-Energy Electron-Induced Modification of Collagen 3.2 Thermo-Responsive Gelatin System 3.3 Hydration-Responsive Gelatin System 3.4 Mechanically Patterned Gelatin Surfaces 3.5 Topographically Patterned Gelatin Surfaces 4 Summary and Conclusion 5 Outlook Bibliography Author Contributions List of Abbreviations List of Figures Acknowledgements Scientific Curriculum Vitae Publication List Selbstständigkeitserklärung / Biologische Hydrogele wie Kollagen und Gelatine sind wichtige Materialien vor allem in biomedizinischen Anwendungsbereichen. Durch deren exzellente Biokompatibilität und biologische Abbaubarkeit werden sie vor allem bei der Züchtung von biomimetischem Gewebe, in der Zellkultur, als Gewebeersatz in der regenerativen Medizin oder auch als Wundverband eingesetzt. In der Verwendung solcher Materialien besteht eine wesentliche Herausforderung darin, deren Eigenschaften so präzise wie möglich einzustellen, um speziell angepasste Substrate und Gewebe entwickeln zu können. Eine äußerst vorteilhafte Methode zu Adaptierung der Materialeigenschaften ist die elektronenstrahlbasierte Vernetzung, die auf die Verwendung zusätzlicher chemischer Vernetzer verzichtet. Die vorgelegte Arbeit untersucht in fünf Teilprojekten das Potential von Elektronenstrahlvernetzung zur Modifizierung von Kollagen- sowie Gelatinehydrogelen für biomedizinische Anwendungen. Das erste Teilprojekt fokussiert sich auf die Auswirkungen hochenergetischer Elektronen auf Kollagenhydrogele und deren Eigenschaften für potentielle Anwendungen als biomimetisches Modell der extrazellulären Matrix. Dabei wird gezeigt, dass sich die Materialeigenschaften in Abhängigkeit der Elektronenbestrahlung präzise einstellen lassen und dass diese Gele eine hohe Zellkompatibilität aufweisen. Das zweite Teilprojekt beschreibt den Effekt des thermischen Formgedächtnisses in Gelatine nach Elektronenstrahlvernetzung und dessen Potential für die Entwicklung biologischer Aktuatoren. Die Effizienz des Formgedächtniseffekts wird in diesem Teilprojekt ausführlich theoretisch beschrieben und mit experimentellen Untersuchungen an Gelatine verglichen. Im dritten Teilprojekt wird ein elektronenstrahlvernetztes, hydrations-responsives Gelatinesystem beschrieben. Zusätzlich wird der Einfluss von pH-Wert und Salzkonzentration der Quelllösung auf das Quellen von elektronenstrahlvernetzter Gelatine untersucht um das Reaktionsverhalten noch präziser einstellen zu können. Das vierte Teilprojekt beschreibt einen Zwei-Schritt-Prozess, bei dem dünne Gelatineschichten mittels hochenergetischer Elektronen mechanisch funktionalisiert werden können. Dabei wird in einem ersten Schritt die Oberfläche durch hoch fokussierte Elektronen mechanisch strukturiert, um im zweiten Schritt mittels homogener Elektronenstrahlvernetzung für die Anwendung unter physiologischen Bedingungen stabilisiert zu werden. Eine weitere Methode zur Funktionalisierung der Oberfläche von Gelatinehydrogelen wird im letzten Teilprojekt dieser Arbeit dokumentiert. Dabei werden topographische Mikrostrukturen auf Gelatineoberflächen aufgebracht und mittels Elektronenstrahlvernetzung stabilisiert. Dieses Teilprojekt untersucht zusätzlich den Strukturtransfer, die Langzeitstabilität unter physiologischen Bedingungen sowie die Zellkompatibilität.:1 Introduction and Objective 1.1 Biomimetic ECM Models 1.2 Stimuli-Responsive Hydrogels 1.3 Functional Hydrogel Surfaces 2 General Background 2.1 Hydrogels 2.1.1 Collagen 2.1.2 Gelatin 2.2 Polymer Crosslinking 2.2.1 High-Energy Electron-Treatment of Polymers 2.2.2 Electron-Irradiation-Induced Crosslinking of Gelatin 2.3 High-Energy Electron Accelerator 3 Cumulative Part 3.1 High-Energy Electron-Induced Modification of Collagen 3.2 Thermo-Responsive Gelatin System 3.3 Hydration-Responsive Gelatin System 3.4 Mechanically Patterned Gelatin Surfaces 3.5 Topographically Patterned Gelatin Surfaces 4 Summary and Conclusion 5 Outlook Bibliography Author Contributions List of Abbreviations List of Figures Acknowledgements Scientific Curriculum Vitae Publication List Selbstständigkeitserklärung

Page generated in 0.0846 seconds