• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 105
  • 10
  • 10
  • 8
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 341
  • 341
  • 97
  • 87
  • 81
  • 78
  • 73
  • 73
  • 72
  • 66
  • 64
  • 54
  • 45
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Optimerad design av drönare : Projekt i samarbete med Vattenfall

Johansson, Oliver, Svantesson, Tim January 2024 (has links)
The use of drones is becoming increasingly common in the industry due to their efficiency and safety in environments that are difficult to access. The development of industrial drones has created a new need for specialized drones with unique functions. This has led to a growing interest in additive manufacturing as a production method. Additive manufacturing, previously primarily used for prototyping, is now emerging as a viable manufacturing method. This evolution has in turn opened new design methods intended for additive manufacturing, such as topology optimization. The purpose of this project was to redesign a drone to increase its strength, reduce its weight and improve water resistance and appearance. This was achieved using a classic product development process where a concept was developed and refined using simulation tools and a product requirement specification derived from interviews and observations of the existing drone. The product was developed using SolidWorks tools such as Topology Optimization, The Finite Element (FEM) and Computer Aided Design (CAD). The result of the work is a detailed design and a prototype developed using Topology simulations based on the product requirement specification. This project lays the foundation for continued production and development of the drone. The conclusion drawn from the work is that the new product is an improved version in several aspects compared to the previous product.
292

Characterization of Additive Manufacturing Constraints for Bio-Inspired, Graph-Based Topology Optimization

Palmer, Asa Edward Easton January 2021 (has links)
No description available.
293

[en] AN EFFECTIVE COMPATIBILITY SCHEME IN MULTISCALE TOPOLOGY OPTIMIZATION OF STRUCTURES / [pt] UM ESQUEMA EFICAZ DE COMPATIBILIDADE NA OTIMIZAÇÃO TOPOLÓGICA MULTIESCALA DE ESTRUTURAS

GIOVANNY ALBERTO MENESES ARBOLEDA 17 August 2021 (has links)
[pt] Os recentes avanços das técnicas de manufatura aditiva vêm ampliando a sua flexibilidade em fabricar peças complexas em escala cada vez menores. Neste contexto, o projeto de microestruturas porosas vem se destacando na comunidade científica devido a capacidade de se otimizar a topologia da célula para atender aos requisitos de projeto. No entanto, existem vários desafios que dificultam a fabricação de peças obtidas pelo método de otimização topológica multiescala, dentre eles, a conectividade das microestruturas. A otimização topológica multiescala consiste na otimização tanto da macroescala, estrutura global, quanto da microescala, microestrutura do material. O objetivo principal deste trabalho é desenvolver um esquema eficaz para garantir a transição entre as diferentes microestruturas de material obtidas na otimização multiescala. As metodologias multiescala de otimização topológica simultânea de ambas as escalas e os procedimentos de homogeneização são descritos. Apresentam-se os principais aspectos numéricos e computacionais destes métodos, assim como exemplos ilustrativos. / [en] Recent advances in additive manufacturing techniques have increased their flexibility in making complex parts on a smaller scale. In this context, the design of porous microstructures has been standing out in the scientific community due to the ability to optimize the cell topology to meet the design requirements. However, there are several challenges that inhibit the fabrication of optimized parts obtained by the multi-scale topology optimization method, such as the connectivity of microstructures. The multiscale topological optimization consists of the optimization of both the macro-scale, global structure, and the micro-scale, microstructure of the material. The main objective of this work is to develop an effective scheme to guarantee compatibility in the transition between the different material microstructures obtained in multiscale optimization. The multiscale methodologies for simultaneous topological optimization of both scales and the homogenization procedures are described. The main numerical and computational aspects of these methods are presented, as well as representative examples to illustrate the capabilities of the proposed scheme.
294

[en] TOWARD GPU-BASED GROUND STRUCTURES FOR LARGE SCALE TOPOLOGY OPTIMIZATION / [pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS DE GRANDE PORTE UTILIZANDO O MÉTODO DE GROUND STRUCTURES EM GPU

ARTURO ELI CUBAS RODRIGUEZ 14 May 2019 (has links)
[pt] A otimização topológica tem como objetivo encontrar a distribuição mais eficiente de material em um domínio especificado sem violar as restrições de projeto definidas pelo usuário. Quando aplicada a estruturas contínuas, a otimização topológica é geralmente realizada por meio de métodos de densidade, conhecidos na literatura técnica. Neste trabalho, daremos ênfase à aplicação de sua formulação discreta, na qual um determinado domínio é discretizado na forma de uma estrutura base, ou seja, uma distribuição espacial finita de nós conectados entre si por meio de barras de treliça. O método de estrutura base fornece uma aproximação para as estruturas de Michell, que são compostas por um número infinito de barras, por meio de um número reduzido de elementos de treliça. O problema de determinar a estrutura final com peso mínimo, para um único caso de carregamento, considerando um comportamento linear elástico do material e restrições de tensão, pode ser formulado como um problema de programação linear. O objetivo deste trabalho é fornecer uma implementação escalável para o problema de otimização de treliças com peso mínimo, considerando domínios com geometrias arbitrárias. O método remove os elementos que são desnecessários, partindo de uma treliça cujo grau de conectividade é definido pelo usuário, mantendo-se fixos os pontos nodais. Propomos uma implementação escalável do método de estrutura base, utilizando um algoritmo de pontos interiores eficiente e robusto, em um ambiente de computação paralela (envolvendo unidades de processamento gráfico ou GPUs). Os resultados apresentados, em estruturas bi e tridimensionais com milhões de barras, ilustram a viabilidade e a eficiência computacional da implementação proposta. / [en] Topology optimization aims to find the most efficient material distribution in a specified domain without violating user-defined design constraints. When applied to continuum structures, topology optimization is usually performed by means of the well-known density methods. In this work we focus on the application of its discrete formulation where a given domain is discretized into a ground structure, i.e., a finite spatial distribution of nodes connected using truss members. The ground structure method provides an approximation to optimal Michell-type structures, composed of an infinite number of members, by using a reduced number of truss members. The optimal least weight truss for a single load case, under linear elastic conditions, subjected to stress constraints can be posed as a linear programming problem. The aim of this work is to provide a scalable implementation for the optimization of least weight trusses embedded in any domain geometry. The method removes unnecessary members from a truss that has a user-defined degree of connectivity while keeping the nodal locations fixed. We discuss in detail the scalable implementation of the ground structure method using an efficient and robust interior point algorithm within a parallel computing environment (involving Graphics Processing Units or GPUs). The capabilities of the proposed implementation is illustrated by means of large scale applications on practical problems with millions of members in both 2D and 3D structures.
295

Projeto de estruturas considerando o efeito da não-linearidade geométrica utilizando o método de otimização topológica. / Design of structures considering the nonlinear geometric effect using topology optimization method.

Lahuerta, Ricardo Doll 11 January 2012 (has links)
Este trabalho propõe estudar o projeto de estruturas submetidas a grandes deslocamentos utilizando o Método de Otimização Topológica (MOT). O MOT é um método numérico capaz de fornecer de forma sistemática a distribuição ótima de material no domínio de uma estrutura de forma a atender a um dado requisito de projeto, por exemplo, o valor de flexibilidade máxima permitida em uma estrutura. Desde sua introdução, há quase três décadas, o MOT ganhou popularidade na área acadêmica e na indústria. Até o presente momento (2011), a maioria dos trabalhos relacionados com o método tem se preocupado com a otimização de estruturas com o comportamento linear, ou seja, pequenos deslocamentos. Um pequeno número de artigos e trabalhos tem sido relacionado com a modelagem e otimização topológica de estruturas submetidas a efeitos não-lineares. Este trabalho propõe compilar as formulações descritas na literatura e agregar novas técnicas na implementação da OT de forma a melhorar a robustez na obtenção de resultados sob não-linearidade geométrica. O MOT para o comportamento não-linear geométrico neste trabalho foi implementado utilizando o modelo de material SIMP. O comportamento não-linear geométrico é representado utilizando a formulação Lagrangiana para as leis de material de Kirchhoff-Saint Venant e neo-Hookiana. Ambas as leis de material foram implementadas utilizando o método de elementos finitos (MEF) e o equilíbrio estático da estrutura é obtido através de uma rotina incremental e iterativa de Newton incluindo todos os elementos (inclusive os de baixa densidade) dentro do domínio de projeto. A sensibilidade da função objetivo é deduzida utilizando o método adjunto e o problema de otimização é resolvido utilizando o Método das Assíntotas Móveis (MAM) em conjunto com uma função de Relaxação proposta para estabilizar a solução de OT não-linear. A função de projeção não-linear em conjunto com o Método da Continuação é utilizada para eliminar o problema de tabuleiro e independência de malha, melhorando a convergência dos resultados. A função objetivo para minimização da flexibilidade no ponto de aplicação do carregamento é testada, considerando um carregamento fixo. Neste trabalho, os exemplos mostram que as diferenças na rigidez das estruturas otimizadas utilizando modelagem linear e não-linear são geralmente pequenas para pequenos carregamentos, mas elas podem ser grandes em certos casos envolvendo grandes cargas, acarretando em instabilidades na estrutura, o que pode degenerar a solução obtida. / This work proposes studying the design of structures undergoing large displacement using Topology Optimization Method (TOM). The TOM is a numerical method capable of synthesizing the basic layout of a mechanical structure accomplishing to a given design requirement, for example the maximum strain energy allowed in the structure. Since its introduction nearly three decades, TOM has gained widespread popularity in academia and industry. So far, most papers dealing with the method have been concerned with the optimization of structures with linear geometric and material behavior. Even now a small number of works and articles have been concerned with the modeling and topology optimization of structures undergoing nonlinear effects. This work proposes to compile the formulations described in the literature and adding new techniques to improve the robustness for obtaining results of OT under geometric nonlinearity. The TOM for geometric nonlinear behavior in this work is implemented with Solid Isotropic Microstructure with Penalization (SIMP) material model. The geometrically nonlinear behavior of the structures is modeled using a Lagrangean description for hyperelastic constitutive models for Saint Venant-Kirchhoff and neo-Hookean. Both constitutive models are implemented using the Finite Element Method (FEM) and the static equilibrium of the structure is obtained using an incremental and iterative Full-Newton Method considering all elements and internal force of the design domain (elements called \"voids\"). The sensitivity of the objective function is derived using the adjoint method and the optimization problem is solved using the Optimality Criteria (OC) method and Method of Moving Asymptotes (MMA) together with a Relaxation Function proposed to stabilize the TO nonlinear solution. The nonlinear projection function in conjunction with the Continuation Method is used to obtain checkerboard-free and mesh-independent designs and to improve the convergence results. The objective function of end-compliance is tested, by minimizing it for a fixed load. In this work, some examples show that differences in stiffness of optimized structures using linear and nonlinear modeling are generally small, however they can be large in certain cases involving buckling or bifurcation point, that degenerate the solution obtained.
296

Synthèse de formes contrôlable pour la fabrication digitale / Controllable shape synthesis for digital fabrication

Dumas, Jérémie 03 February 2017 (has links)
L’objet principal de cette thèse est de proposer des méthodes pour la synthèse de formes qui soient contrôlables et permettent d’imprimer les résultats obtenus. Les imprimantes 3D étant désormais plus faciles d’accès que jamais, les logiciels de modélisation doivent maintenant prendre en compte les contraintes de fabrication imposées par les technologies de fabrication additives. En conséquence, des algorithmes efficaces doivent être développés afin de modéliser les formes complexes qui peuvent être créées par impression 3D. Nous développons des algorithmes pour la synthèse de formes par l’exemple qui prennent en compte le comportement mécanique des structures devant être fabriquées. Toutes les contributions de cette thèse s’intéressent au problème de génération de formes complexes sous contraintes géométriques et objectifs structurels. Dans un premier temps, nous nous intéressons à la gestion des contraintes de fabrication, et proposons une méthode pour synthétiser des structures de support efficaces qui sont bien adaptées aux imprimantes à filament. Dans un deuxième temps, nous prenons en compte le contrôle de l’apparence, et développons de nouvelles méthodes pour la synthèse par l’exemple qui mélangent astucieusement des critères sur visuels, et des contraintes sur le comportement mécanique des objets. Pour finir, nous présentons une méthode passant bien à l’échelle, afin de contrôler les propriétés élastiques des structures imprimées. Nous nous inspirons des méthodes de synthèse de texture procédurales, et proposons un algorithme efficace pour synthétiser des microstructures imprimables et contrôler leurs propriétés élastiques / The main goal of this thesis is to propose methods to synthesize shapes in a controllable manner, with the purpose of being fabricated. As 3D printers grow more accessible than ever, modeling software must now take into account fabrication constraints posed by additive manufacturing technologies. Consequently, efficient algorithms need to be devised to model the complex shapes that can be created through 3D printing. We develop algorithms for by-example shape synthesis that consider the physical behavior of the structure to fabricate. All the contributions of this thesis focus on the problem of generating complex shapes that follow geometric constraints and structural objectives. In a first time, we focus on dealing with fabrication constraints, and propose a method for synthesizing efficient support structures that are well-suited for filament printers. In a second time, we take into account appearance control, and develop new by-example synthesis methods that mixes in a meaningful manner criteria on the appearance of the synthesized shapes, and constraints on their mechanical behavior. Finally, we present a highly scalable method to control the elastic properties of printed structures. We draw inspiration from procedural texture synthesis methods, and propose an efficient algorithm to synthesize printable microstructures with controlled elastic properties
297

Projeto, otimização e análise de incertezas de um dispositivo coletor de energia proveniente de vibrações mecânicas utilizando transdutores piezelétricos e circuito ressonante / Design, optimization and uncertainty analysis of a mechanical vibration energy harvesting device using piezoelectric transducers and resonant circuit

Godoy, Tatiane Corrêa de 05 November 2012 (has links)
O uso de materiais piezelétricos no desenvolvimento de dispositivos para o aproveitamento de energia provinda de vibrações mecânicas, Energy Harvesting, tem sido largamente estudado na última década. Materiais piezelétricos podem ser encontrados na forma de finas camadas ou pastilhas, sendo facilmente integradas a estruturas sem aumento significativo de massa. A conversão de energia mecânica em energia elétrica se dá graças ao acoplamento eletromecânico dos materiais piezelétricos. A maioria das publicações encontradas na literatura exploram o uso de dispositivos eletromecânicos ressonantes, sintonizados na frequência de operação da estrutura, maximizando assim, a energia elétrica de saída dada uma certa condição de operação. O desempenho desses dispositivos ressonantes para coletar e armazenar energia é altamente dependente da adequada sintonização da sua frequência de ressonância com a frequência de operação do sistema/estrutura. Este trabalho apresenta o projeto, otimização e análise de incertezas de um dispositivo coletor/armazenador de energia que consiste em uma placa sob duas condições de contorno, engastada-livre (EL) e deslizante-livre (DL), com massa sísmica e materiais piezelétricos conectados a um circuito shunt. Um modelo em elementos finitos de placa laminada piezelétrica conectada a circuitos R e RL é utilizado combinando as teorias de camada equivalente e deformação de cisalhamento de primeira ordem. A disposição/quantidade de material piezelétrico bem como a massa sísmica acoplados à estrutura foram otimizadas utilizando-se um Algoritmo Genético, levando em conta análises mecânica (modelo mecânico, geometria, peso) e elétrica (modelo elétrico, circuito armazenador). Além disso, o efeito de incertezas dos parâmetros dielétrico e piezelétrico do transdutor, e da indutância elétrica ligada em série ao circuito coletor/armazenador de energia foi estudado. Os resultados indicam que a inclusão de uma indutância sintética ao circuito pode melhorar a coleta de energia em uma banda de frequência e, ainda, que a otimização geométrica pode reduzir a quantidade de material piezelétrico sem no entanto diminuir significativamente a energia gerada. / The use of piezoelectric materials in the development of devices to harvest energy from mechanical vibrations (Energy Harvesting) has been widely studied in the last decade. Piezoelectric materials can be found in the form of thin layers or patches easily integrated into structures without significant mass increase. The conversion of mechanical energy into electric power is provided by the electromechanical coupling of piezoelectric materials. Most publications in the literature explore the use of resonant electromechanical devices, tuned to the operating frequency of the host structure, thus maximizing the power output given a certain operating condition. The performance of these resonant devices to harvest and store energy is highly dependent on the proper tuning of its resonance frequency with the operation frequency of the system/structure. This work presents a design, optimization and uncertainty analysis of energy harvester device consisting of a plate with tip mass and piezoelectric materials connected to shunt circuits. Two boundary conditions are used for the plate, cantilever (EL) and sliding-free (DL). A coupled finite element model with R and RL circuits, combining equivalent single layer and first order shear deformation theories, was used. The distribution and volume of piezoelectric material and the tip mass coupled to the structure were optimized using a Genetic Algorithm, accounting for both mechanical (mechanical model, geometry, weight) and electric (electric model, storer circuit) analyses. Furthermore, the effect of uncertainties of transducer dielectric and piezoelectric constants and electric inductance connected in series with harvesting circuit was studied. The results indicate that the inclusion of a synthetic inductance can improve energy harvesting performance over a frequency range and also that the geometric optimization may reduce the piezoelectric material volume without diminishing significantly the harvested energy.
298

Projeto de multi-atuadores piezelétricos homogêneos e gradados utilizando o método de otimização topológica. / Design of graded and homogeneous piezoelectric multi-actuators using the topology optimization method.

Carbonari, Ronny Calixto 22 January 2008 (has links)
Microdispositivos piezelétricos tem uma vasta aplicação em mecânica de precisão, como, por exemplo, manipulação de células, microcirurgias, equipamentos de nanotecnologia e principalmente em microeletromecanismos (MEMS). Os microdispositivos piezelétricos considerados nesta tese essencialmente consistem de uma estrutura multi-flexível atuada por duas ou mais piezocerâmicas, que geram deslocamentos e forças em direções e regiões pré-determinadas do domínio, ou seja, a estrutura multi-flexível atua como um transformador mecânico amplificando e alterando os deslocamentos gerados pelas piezocerâmicas nos movimentos de atuação. O desenvolvimento destes microdispositivos piezelétricos em sua grande maioria não utiliza ferramentas sistemáticas e genéricas. A complexidade dos movimentos de atuação torna o desenvolvimento dos microdispositivos piezelétricos complexo, principalmente devido ao surgimento de movimentos indesejados ou acoplados durante a sua atuação. Portanto, é necessário um método sistemático e eficiente como o método de otimização topológica (MOT), que incorpore na sua formulação as principais exigências de projeto dos microdispositivos, como apresentado nesse trabalho. O MOT implementado é baseado na abordagem CAMD (Distribuição Contínua da Distribuição de Material), onde as pseudo-densidades são interpoladas nos nós de cada elemento finito, resultando numa distribuição contínua de material no domínio. Um método adjunto foi implementado para o cálculo das sensibilidades. São consideradas três formulações. A primeira denominada de MAPs (Multi-Atuadores Piezelétricos) considera as regiões piezocerâmicas fixas, otimizando apenas a estrutura multi-flexível no domínio de projeto. Nesta formulação materiais não-piezelétricos (como, por exemplo, Alumínio) e vazio são distribuídos no domínio de projeto, mantendo as regiões piezocerâmicas fixas e homogêneas. Para validar os resultados obtidos com essa formulação foram fabricados protótipos de nanoposicionadores $XY$, que foram caracterizados experimentalmente utilizando técnicas de interferometria laser, considerando excitação quasi-estática. No entanto, essa primeira formulação impõe restrições no problema, limitando a optimalidade da solução obtida pela otimização topológica. Assim, surgiu a necessidade de desenvolver uma segunda formulação, que permite distribuir simultaneamente material não-piezelétrico, piezelétrico e vazio no domínio de projeto, denominada de LOMPs (Localização Ótima do Material Piezelétrico). A formulação dos LOMPs obtém simultaneamente a localização do material piezelétrico na estrutura flexível otimizada pela OT, e inclui também uma variável de projeto para determinar o ângulo ótimo entre as direções de polarização e do campo elétrico. Nesta formulação como as posições dos eletrodos não são conhecidas, ``a priori\'\', é utilizado como abordagem aplicar um campo elétrico constante para determinar a localização do material piezelétrico e conseqüentemente dos eletrodos. Finalmente, foi explorado o conceito de materiais com gradação funcional (MGFs) no projeto dos MAPs. Os MGFs apresentam uma distribuição contínua de materiais na sua microestrutura, não possuindo interface entre os materiais distribuídos, o que possibilita aumentar a vida útil do dispositivo piezelétrico. Assim, foi implementado uma terceira formulação denominada de MAPs MGFs, que permite obter a gradação ótima de materiais piezelétricos e não-piezelétricos no domínio piezocerâmico dos MAPs, conjuntamente com a topologia da estrutura multi-flexível. Essa formulação foi estendida para projetar atuadores bilaminares MGFs. Todas as formulações desenvolvidas utilizam uma função multi-objetivo, que permite controlar a rigidez e a flexibilidade minimizando o movimento acoplado, de cada movimento de atuação. Os exemplos numéricos são limitados a modelos bi-dimensionais, utilizando o estado plano de tensões e deformações mecânicas e elétricas, uma vez que a grande maioria das aplicações dos microdispositivos piezelétricos são bi-dimensionais. / Microtools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, nanotechnology processes, and many other fields. The microtools considered in this doctoral thesis essentially consist of a multi-flexible structure actuated by two or more piezoceramic devices that when each piezoceramic is actuated, it generates an output displacement and force at a specified point of the domain and direction. The multi-flexible structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramic output displacements. Thus, the development of microtools requires the design of actuated flexible structures that can perform complex movements. The development of these microtools is still in the beginning and it can be strongly enhanced by using design tools. In addition, when multiple piezoceramic devices are involved, coupling effects in their movements become critical, especially the appearance of undesired movements, which makes the design task very complex. One way to avoid such undesirable effects is the use of a systematic design method, such as topology optimization, with appropriate formulation of the optimization problem. The topology optimization method implemented is based on the CAMD (Continuous Approximation of Material Distribution) approach where fictitious densities are interpolated at each finite element, providing a continuum material distribution in the domain. The corresponding sensitivity analysis is presented using the adjoint method. Three formulations are considered. The first formulation, called Piezoelectric Multi-Actuators (PMAs), keeps fixed piezoceramic positions in the design domain and only the flexible structure is designed by distributing some non-piezoelectric material (Aluminum, for example). $XY$ Piezoelectric Nanopositioner are manufactured and experimentally analyzed to validate the results of the topology optimization obtained using this formulation. Experimental analyses are conducted using laser interferometry to measure displacement, while considering a quasi-static excitation. However, this first formulation imposes a constraint to the position of piezoelectric material in the optimization problem limiting the optimality of the solution. Thus, the second formulation presented, called LOMPs, allows the simultaneous distribution of non-piezoelectric and piezoelectric material in the design domain, to achieve certain specified actuation movements. The optimization problem is posed as the simultaneous search for an optimal topology of a flexible structure as well as the optimal position of piezoceramics in the design domain and optimal rotation angle of piezoceramic material axes that maximize output displacements or output forces at a specified point of the domain and direction. When the distribution of a non-piezoelectric conductor material and a piezoceramic material is considered in the design domain, the electrode positions are not known ``a priori\'\'. To circumvent this problem, an electric field is applied as electrical excitation. Finally, the concept of functionally graded materials (FGM) is applied to PMAs design. FGMs are special materials that possess continuously graded properties without interfaces which can increase lifetime of piezoelectric devices. Thus, a third formulation is implemented to find the optimum gradation and polarization sign variation of piezoceramic FGMs, while simultaneously optimizing the multi-flexible structural configuration. This formulation is extended to design bimorph type FGM actuators. For all developed formulations, a multi-objective function is defined that controls the stiffness and flexibility, minimizing the coupling movement of each actuated movement. The present examples are limited to two-dimensional models because most part of the applications for such micro-tools are planar devices.
299

Projeto de dispositivos de microcanais utilizando o método de otimização topológica. / Design of microchannel devices applying the topology optimization method.

Koga, Adriano Akio 25 October 2010 (has links)
Este trabalho propõe o estudo do projeto de dispositivos baseados em microcanais de fluido, tais como difusores, misturadores, válvulas, e trocadores de calor, através da aplicação do Método de Otimização Topológica (MOT). O MOT é um método computacional que permite obter um projeto otimizado de um sistema, através da distribuição de uma quantidade limitada de material num dado domínio de projeto. Neste caso, o MOT é aplicado a um domínio fluido, e permite obter a topologia otimizada (formato ótimo) dos microcanais, segundo uma determinada característica, seja esta, a minimização da perda de carga, ou a maximização da velocidade num dado ponto, ou ainda a maximização da troca de calor, no caso de trocadores de calor. Os canais utilizados nestas aplicações operam com baixo número de Reynolds, sendo um caso típico da aplicação das equações de escoamento de Stokes. A implementação do MOT é realizada sob a forma de rotinas computacionais, permitindo um projeto sistematizado dos canais. No processo de otimização, utiliza-se o Método dos Elementos Finitos (MEF) como método de análise dos fenômenos físicos envolvidos, e a Programação Linear Seqüencial (PLS) como algoritmo de otimização. Ao final, propõe-se um estudo multi-físico, aliando-se características otimizadas tanto do ponto de vista da eficiência do escoamento, quanto do ponto de vista da dissipação térmica no canal, combinando-os através de uma função multi-objetivo. Exemplos de projeto bidimensionais de dispositivos de fluido são apresentados para ilustrar o método. / This work proposes studying the design of micro channel devices, such as fluid diffusers, mixers, valves, and heat exchangers, through the application of the Topology Optimization Method (TOM). The TOM is a computational method that allows the distribution of a limited amount of material, inside a given design domain, in order to obtain an optimized system design. Herein, the TOM is applied to a fluidic domain, allowing the design of an optimized microchannel topology (optimal configuration), according to a given objective function, such as head loss minimization, maximum velocity in a given direction, or the heat transfer maximization, in a heat exchanger example. Especially this kind of channel devices, operates at low Reynolds number, thus, it can be modeled through Stokes flow equations. The optimization procedure applies the Finite Element Method (FEM) to perform the physical analysis, and Sequential Linear Programming (SLP) as the optimization algorithm. At the end, a multi-physics analysis is proposed, through a multi-objective cost function, that combines both flow and heat dissipation efficiency optimization. Two-dimensional designs of fluidic devices are presented as examples to illustrate the method.
300

Otimização topológica considerando incertezas com critério de falha em tensão / Topology optimization under uncertainty with stress failure criterion

Silva, Gustavo Assis da 19 February 2019 (has links)
Hoje em dia, é amplamente reconhecido que o projeto de estruturas otimizadas deve ser robusto em relação a incertezas nas forças, geometria e propriedades do material. Entretanto, existem diversas alternativas para considerar tais incertezas em problemas de otimização estrutural. Esta tese apresenta quatro formulações para lidar com incertezas no problema de otimização topológica com restrição de tensão. As três primeiras são desenvolvidas para lidar com incertezas na intensidade e direção das forças aplicadas: 1) formulação robusta probabilística, onde substituem-se as restrições de tensão originais por uma soma ponderada entre os seus valores esperados e desvios padrão, obtidos por meio do método de perturbação de primeira ordem; 2) formulação baseada em confiabilidade, onde consideram-se restrições de tensão probabilísticas; o problema é formulado por meio de uma abordagem acoplada de primeira ordem; 3) formulação robusta não probabilística, onde considera-se o pior cenário possível para as restrições de tensão; o problema é formulado com uma abordagem acoplada de otimização com anti-otimização. A quarta formulação não segue o padrão das três primeiras; diferente das demais, esta é desenvolvida para lidar com incerteza uniforme de manufatura: 4) formulação robusta de três campos, onde três topologias são consideradas de forma simultânea durante o processo de otimização, de forma a simular possíveis imperfeições que possam ocorrer devido a erros de manufatura. As quatro abordagens são bastante diferentes na forma de lidar com as incertezas; no entanto, o procedimento de solução é o mesmo: a abordagem baseada em densidade é empregada na parametrização material, enquanto que o método do Lagrangiano aumentado é empregado para solucionar o problema resultante, de forma a lidar com o elevado número de restrições de tensão. Diversos exemplos são solucionados para mostrar a aplicabilidade das formulações propostas. Os exemplos são posteriormente verificados através da Simulação de Monte Carlo e comparados com os resultados determinísticos. Os resultados mostram que as estruturas obtidas com a abordagem tradicional determinística são extremamente sensíveis a incertezas. As formulações desenvolvidas nesta tese, por outro lado, mostraram-se alternativas válidas a formulação determinística, fornecendo resultados robustos e confiáveis na presença de incertezas. / It is nowadays widely acknowledged that optimal structural design should be robust with respect to the uncertainties in loads, geometry and material parameters. However, there are several alternatives to consider such uncertainties in structural optimization problems. This thesis addresses four formulations to handle uncertainties in topology optimization with stress constraint. The first three are developed to handle uncertainties in magnitude and direction of applied loads: 1) probabilistic robust formulation, where the original stress constraints are replaced by a weighted sum between their expectations and standard deviations; these are obtained by first-order perturbation approach; 2) reliability-based formulation, where probabilistic stress constraints are considered; the problem is formulated by a coupled first order approach; 3) non-probabilistic robust formulation, where the worstcase scenario for the stress constraints is considered; the problem is formulated by a coupled approach called optimization with anti-optimization. The fourth formulation is quite different from the first three; it is developed to handle uniform boundary variation: 4) three-field robust approach, where three topologies are simultaneously considered during the optimization process, in order to simulate imperfections which may occur due to manufacturing errors. These four formulations are quite different in handling with uncertainties; however, the solution rocedure is the same: the density approach is employed to material parameterization, while the augmented Lagrangian method is employed to solve the resulting problem, in order to handle the large number of stress constraints. Several examples are solved to demonstrate applicability of proposed formulations. Numerical examples are further verified via Monte Carlo Simulation and compared to deterministic results. The results show that the structures obtained with raditional deterministic formulation are extremely sensitive to uncertainties. On the other hand, the formulations developed in this thesis are shown to be valid alternatives to the deterministic formulation, providing robust and reliable results in the presence of uncertainties.

Page generated in 0.1548 seconds