• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 15
  • 14
  • 8
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 121
  • 41
  • 40
  • 39
  • 36
  • 30
  • 30
  • 27
  • 27
  • 24
  • 18
  • 17
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Kmitočtové syntezátory / Frequency Synthesizers

Lapčík, Josef January 2011 (has links)
This diploma thesis concerns with analysis and dividing of frequency synthesizers and design of DDS, PLL synthesizers. Base types of frequency synthesizers are described including differences between methods of their operation. Base circuits of both – DDS and PLL synthesizers and other important circuits are described in details at design part of this thesis. Design of DDS and PLL synthesizer is described in particular sections. Both synthesizers are directly realized and stand-alone control applications are created. PLL synthesizer is also ready to control thru Agilent VEE program environment. Particular example application is designed in Agilent VEE. This application is used as basis of attached lab project.
112

Vysokofrekvenční oscilátor v technologii CMOS / High-frequency oscillator in CMOS technology

Lang, Radek January 2015 (has links)
This project focus to desing an on-chip oscillator in function as a clock generator. Frequency stability of the oscillator is affected by supply voltage, temperature and process variations. The aim is to propose a clock generator with sufficient frequency stability, low power consumption and a small chip area. This work deals with the types of oscillators and their basic building blocks suitable for our application. It also deals with the study and design options of temperature and process compensation circuit generating the current control, which provides the frequency stabilization of the output signal.
113

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Joshi, Shital 05 1900 (has links)
Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low noise amplifier (LNA). The behavioral model of the transistor is modeled in different tools: well accepted EDA (electronic design automation) and a non-EDA based tool i.e. \simscape. This section of the dissertation addresses the application of non-EDA based concepts for the analysis of new device concepts, taking LC-VCO and LNA as a case study circuits. The non-EDA based approach is very handy for a new device material when the concept is not matured and the model files are not readily available from the fab. The results matches very well with that of the EDA tools. The second part of the section considers application of multiswarm optimization (MSO) in an EDA tool to explore the design space for the design of LC-VCO. The VCO provides an oscillation frequency at 2.85 GHz, with phase noise of less than -80 dBc/Hz and power dissipation less than 16 mW. The second part of this dissertation considers graphene nanotube field effect transistors (GNRFET) for the application of digital domain. As a case study, static random access memory (SRAM) hs been design and the results shows a very promising future for GNRFET based SRAM as compared to silicon based transistor SRAM. The power comparison between the two shows that GNRFET based SRAM are 93% more power efficient than the silicon transistor based SRAM at 45 nm. In summary, the dissertation is to expected to aid the state of the art in following ways: 1) A non-EDA based tool has been used to characterize the device and measure the circuit performance. The results well matches to that obtained from the EDA tools. This tool becomes very handy for new device concepts when the simulation needs to be fast and accuracy can be tradeoff with. 2)Since an analog domain lacks well-design design paradigm, as compared to digital domain, this dissertation considers case study circuits to design the circuits and apply optimization. 3) Performance comparison of GNRFET based SRAM to the conventional silicon based SRAM shows that with maturation of the fabrication technology, graphene can be very useful for digital circuits as well.
114

Application des technologies CMOS sur SOI aux fonctions d'interface des liens de communication haut débit (> 10 Gbit/s)

Axelrad, David 06 October 2005 (has links) (PDF)
L'objectif de ce travail est d'étudier les avantages de la technologie CMOS/SOI 0.13µm partiellement désertée, pour la conception des circuits d'interface des liens haut débit (10 et 40Gbit/s). Nous avons identifié une fonction critique: la récupération de l'horloge et des données (CDR). L'étude de cette fonction nous a conduit à une analyse approfondie de l'oscillateur commandé en tension (VCO). Neuf circuits VCO et oscillateurs 10GHz ont ainsi été conçus pour valider les choix technologiques offerts par le CMOS/SOI. Les performances mesurées démontrent l'intérêt du CMOS/SOI pour les applications à hautes fréquences. Pour les applications à 40Gbit/s, nous avons ensuite conçu, réalisé et testé un VCO multi-phases 4x10GHz. Les résultats expérimentaux montrent une amélioration significative de la figure de mérite lorsque l'on compare ce circuit en CMOS/SOI avec les résultats précédemment publiés.
115

Nonlinear devices characterization and micromachining techniques for RF integrated circuits

Parvais, Bertrand J. H. 10 December 2004 (has links)
The present work is dedicated to the development of high performance integrated circuits for wireless communications, by acting of three different levels: technologies, devices, and circuits. Silicon-on-Insulator (SOI) CMOS technology is used in the frame of this work. Micromachining technologies are also investigated for the fabrication of three-dimensional tunable capacitors. The reliability of micromachined thin-film devices is improved by the coating of silanes in both liquid- and vapor-phases. Since in telecommunication applications, distortion is responsible for the generation of spurious frequency bands, the linearity behavior of different SOI transistors is analyzed. The validity range of the existing low-frequency nonlinear characterization methods is discussed. New simple techniques valid at both low- and high-frequencies, are provided, based on the integral function method and on the Volterra series. Finally, the design of a crucial nonlinear circuit, the voltage-controlled oscillator, is introduced. The describing function formalism is used to evaluate the oscillation amplitude and is embedded in a design methodology. The frequency tuning by SOI varactors is analyzed in both small- and large-signal regimes.
116

Design and phase-noise modeling of temperature-compensated high frequency MEMS-CMOS reference oscillators

Miri Lavasani, Seyed Hossein 18 May 2010 (has links)
Frequency reference oscillator is a critical component of modern radio transceivers. Currently, most reference oscillators are based on low-frequency quartz crystals that are inherently bulky and incompatible with standard micro-fabrication processes. Moreover, their frequency limitation (<200MHz) requires large up-conversion ratio in multigigahertz frequency synthesizers, which in turn, degrades the phase-noise. Recent advances in MEMS technology have made realization of high-frequency on-chip low phase-noise MEMS oscillators possible. Although significant research has been directed toward replacing quartz crystal oscillators with integrated micromechanical oscillators, their phase-noise performance is not well modeled. In addition, little attention has been paid to developing electronic frequency tuning techniques to compensate for temperature/process variation and improve the absolute frequency accuracy. The objective of this dissertation was to realize high-frequency temperature-compensated high-frequency (>100MHz) micromechanical oscillators and study their phase-noise performance. To this end, low-power low-noise CMOS transimpedance amplifiers (TIA) that employ novel gain and bandwidth enhancement techniques are interfaced with high frequency (>100MHz) micromechanical resonators. The oscillation frequency is varied by a tuning network that uses frequency tuning enhancement techniques to increase the tuning range with minimal effect on the phase-noise performance. Taking advantage of extended frequency tuning range, and on-chip temperature-compensation circuitry is embedded with the sustaining circuitry to electronically temperature-compensate the oscillator. Finally, detailed study of the phase-noise in micromechanical oscillators is performed and analytical phase-noise models are derived.
117

Low-cost SiGe circuits for frequency synthesis in millimeter-wave devices

Lauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)
118

Frequency Synthesis for Cognitive Radio Receivers and Other Wideband Applications

Zahir, Zaira January 2017 (has links) (PDF)
The radio frequency (RF) spectrum as a natural resource is severely under-utilized over time and space due to an inefficient licensing framework. As a result, in-creasing cellular and wireless network usage is placing significant demands on the licensed spectrum. This has led to the development of cognitive radios, software defined radios and mm-wave radios. Cognitive radios (CRs) enable more efficient spectrum usage over a wide range of frequencies and hence have emerged as an effective solution to handle huge network demands. They promise versatility, flex-ability and cognition which can revolutionize communications systems. However, they present greater challenges to the design of radio frequency (RF) front-ends. Instead of a narrow-band front-end optimized and tuned to the carrier frequency of interest, cognitive radios demand front-ends which are versatile, configurable, tun-able and capable of transmitting and receiving signals with different bandwidths and modulation schemes. The primary purpose of this thesis is to design a re-configurable, wide-band and low phase-noise fast settling frequency synthesizer for cognitive radio applications. Along with frequency generation, an area efficient multi-band low noise amplifier (LNA) with integrated built-in-self-test (BIST) and a strong immunity to interferers has also been proposed and implemented for these radios. This designed LNA relaxes the specification of harmonic content in the synthesizer output. Finally some preliminary work has also been done for mm-wave (V-band) frequency synthesis. The Key Contributions of this thesis are: A frequency synthesizer, based on a type-2, third-order Phase Locked Loop (PLL), covering a frequency range of 0.1-5.4 GHz, is implemented using a 0.13 µm CMOS technology. The PLL uses three voltage controlled oscillators (VCOs) to cover the whole range. It is capable of switching between any two frequencies in less than 3 µs and has phase noise values, compatible with most communication standards. The settling of the PLL in the desired state is achieved in dynamic multiple steps rather than traditional single step settling. This along with other circuit techniques like a DAC-based discriminator aided charge pump, fast acquisition pulse-clocked based PFD and timing synchro-negation is used to obtain a significantly reduced settling time A single voltage controlled LC-oscillator (LC-VCO) has been designed to cover a wide range of frequencies (2.0-4.1 GHz) using an area efficient and switch-able multi-tap inductor and a capacitor bank. The switching of the multi-tap inductor is done in the most optimal manner so as to get good phase-noise at the output. The multi-tap inductor provides a significant area advantage, and in spite of a degraded Q, provides an acceptable phase noise of -123 dBc/Hz and -113 dBc/Hz at an offset of 1 MHz at carrier frequencies of 2 and 4 GHz, respectively. Implemented in a 0.13 µm CMOS technology, the oscillator with ≈ 69 % tuning range, occupies an active area of only 0.095 mm2. An active inductor based noise-filter has been proposed to improve the phase-noise performance of the oscillator without much increase in the area. A variable gain multi-band low noise amplifier (LNA) is designed to operate over a wide range of frequencies (0.8 GHz to 2.4 GHz) using an area efficient switchable-π network. The LNA can be tuned to different gain and linearity combinations for different band settings. Depending upon the location of the interferers, a specific band can be selected to provide optimum gain and the best signal-to-intermodulation ratio. This is accomplished by the use of an on-chip Built-in-Self-Test (BIST) circuit. The maximum power gain of the amplifier is 19 dB with a return loss better than 10 dB for 7 mW of power consumption. The noise figure is 3.2 dB at 1 GHz and its third-order intercept point (I I P3) ranges from -15 dBm to 0 dBm. Implemented in a 0.13 µm CMOS technology, the LNA occupies an active area of about 0.29 mm2. Three different types of VCOs (stand-alone LC VCO, push-push VCO and a ring oscillator based VCO) for generating mm-wave frequencies have been implemented using 65-nm CMOS technology and their measured results have been analyzed
119

A 5 GHz BiCMOS I/Q VCO with 360° variable phase outputs using the vector sum method

Opperman, Tjaart Adriaan Kruger 08 April 2009 (has links)
This research looks into the design of an integrated in-phase/quadrature (I/Q) VCO operating at 5 GHz. The goal is to design a phase shifter that is implemented at the LO used for RF up conversion. The target application for the phase shifter is towards phased array antennas operating at 5 GHz. Instead of designing multiple VCOs that each deliver a variety of phases, two identical LC-VCOs are coupled together to oscillate at the same frequency and deliver four outputs that are 90 ° out of phase. By varying the amplitudes of the in-phase and quadrature signals independently using VGAs before adding them together, a resultant out-of-phase signal is obtained. A number of independently variable out-of-phase signals can be obtained from these 90 ° out-of-phase signals and this technique is better known as the vector sum method of phase shifting. Control signals to the inputs of the VGAs required to obtain 22.5 ° phase shifts were designed from simulations and are generated using 16-bit DACs. The design is implemented and manufactured using a 0.35 µm SiGe BiCMOS process and the complete prototype IC occupies an area of 2.65 × 2.65 mm2. The I/Q VCO with 360 ° variable phase outputs occupies 1.10 × 0.85 mm2 of chip area and the 16-bit DAC along with its decoding circuitry occupies 0.41 × 0.13 mm2 of chip area. The manufactured quadrature VCO was found to oscillate between 4.12 ~ 4.74 GHz and consumes 23.1 mW from a 3.3 V supply without its buffer circuitry. A maximum phase noise of -78.5 dBc / Hz at a 100 kHz offset and -108.17 dBc / Hz at a 1 MHz offset was measured and the minimum VCO figure of merit is 157.8 dBc / Hz. The output voltages of the 16 bit DAC are within 3.5 % of the design specifications. When the phase shifter is controlled by the 16 DAC signals, the maximum measured phase error of the phase shifter is lower than 10 %. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
120

A multi-dimensional spread spectrum transceiver

Sinha, Saurabh 21 October 2008 (has links)
The research conducted for this thesis seeks to understand issues associated with integrating a direct spread spectrum system (DSSS) transceiver on to a single chip. Various types of sequences, such as Kasami sequences and Gold sequences, are available for use in typical spread spectrum systems. For this thesis, complex spreading sequences (CSS) are used for improved cross-correlation and autocorrelation properties that can be achieved by using such a sequence. While CSS and DSSS are well represented in the existing body of knowledge, and discrete bulky hardware solutions exist – an effort to jointly integrate CSS and DSSS on-chip was identified to be lacking. For this thesis, spread spectrum architecture was implemented focussing on sub-systems that are specific to CSS. This will be the main contribution for this thesis, but the contribution is further appended by various RF design challenges: highspeed requirements make RF circuits sensitive to the effects of parasitics, including parasitic inductance, passive component modelling, as well as signal integrity issues. The integration is first considered more ideally, using mathematical sub-systems, and then later implemented practically using complementary metal-oxide semiconductor (CMOS) technology. The integration involves mixed-signal and radio frequency (RF) design techniques – and final integration involves several specialized analogue sub-systems, such as a class F power amplifier (PA), a low-noise amplifier (LNA), and LC voltage-controlled oscillators (VCOs). The research also considers various issues related to on-chip inductors, and also considers an active inductor implementation as an option for the VCO. With such an inductor a better quality factor is achievable. While some conventional sub-system design techniques are deployed, several modifications are made to adapt a given sub-system to the design requirements for this thesis. The contribution of the research lies in the circuit level modifications done at sub-system level aimed towards eventual integration. For multiple-access communication systems, where a number of independent users are required to share a common channel, the transceiver proposed in this thesis, can contribute towards improved data rate or bit error rate. The design is completed for fabrication in a standard 0.35-μm CMOS process with minimal external components. With an active chip area of about 5 mm2, the simulated transmitter consumes about 250 mW&the receiver consumes about 200 mW. AFRIKAANS : Die navorsing wat vir hierdie tesis onderneem is, beoog om kundigheid op te bou aangaande die kwessies wat met die integrasie van ‘n direkte spreispektrumstelsel (DSSS) sender-ontvanger op ‘n enkele skyfie verband hou. Verskeie tipes sekwensies, soos byvoorbeeld Kasami- en Gold-sekwensies, is vir gebruik in tipiese spreispektrumstelsels beskikbaar. Vir hierdie tesis is komplekse spreisekwensies (KSS) gebruik vir verbeterde kruis- en outokorrelasie-eienskappe wat bereik kan word deur so ‘n sekwensie te gebruik. Alhoewel DSSS en KSS reeds welbekend is, en diskrete hardeware oplossings reeds bestaan, is die vraag na gesamentlike geïntegreerde DSSS en KSS op een vlokkie geïdentifiseer. Vir hierdie tesis is spreispektrumargitektuur aangewend met die klem op KSS substelsels. Dit is dan ook die belangrikste bydrae van hierdie tesis, maar die bydrae gaan verder gepaard met verskeie RF-ontwerpuitdagings: hoëspoed-vereistes maak RF-stroombane sensitief vir die uitwerking van parasitiese komponente, met inbegrip van parasitiese induktansie, passiewe komponentmodellering en ook seinintegriteitskwessies. Die integrasie word eerstens meer idealisties oorweeg deur wiskundige substelsels te gebruik en dan later prakties te implementeer deur komplementêre metaaloksied-halfgeleiertegnologie (CMOS) te gebruik. Die integrasie behels gemengdesein- en radiofrekwensie(RF)-ontwerptegnieke – en finale integrasie behels verskeie gespesialiseerde analoë substelsels soos ‘n klas F-kragversterker (KV), ‘n laeruis-versterker (LRV), en LC-spanningbeheerde ossileerders (SBO’s). Die navorsing oorweeg ook verskeie kwessies in verband met op-skyfie induktors en oorweeg ook ‘n aktiewe induktorimplementering as ‘n opsie vir die SBO. Met sodanige induktor is ‘n beter kwaliteitsfaktor haalbaar. Hoewel enkele konvensionele substelsel-ontwerptegnieke aangewend word, word daar verskeie wysigings aangebring om ‘n gegewe substelsel by die ontwerpvereistes vir hierdie tesis aan te pas. Die bydrae van die navorsing is hoofsaaklik die stroombaanmodifikasies wat gedoen is op substelselvlak om integrasie te vergemaklik. Vir veelvoudige-toegang kommunikasiestelsels waar ‘n aantal onafhanklike gebruikers dieselfde seinkanaal moet deel, kan die sender-ontvanger voorgestel in hierdie tesis meewerk om die datatempo en fouttempo te verbeter. Die ontwerp is voltooi vir vervaardiging in ‘n standaard 0.35-μm CMOS-proses met minimale eksterne komponente. Met ‘n aktiewe skyfie-oppervlakte van ongeveer 5 mm2, verbruik die gesimuleerde sender ongeveer 250 mW en die ontvanger verbruik ongeveer 200 mW. / Thesis (PHD)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.025 seconds