Spelling suggestions: "subject:"width"" "subject:"midth""
401 |
Distribution of Chondrocyte Cell Death in Medial and Lateral Femoral Condyles in Porcine Knees after Sub-impact LoadingLambach, Mark D. 27 June 2012 (has links)
No description available.
|
402 |
Fine-Grained Parameterized Algorithms on Width Parameters and BeyondHegerfeld, Falko 25 October 2023 (has links)
Die Kernaufgabe der parameterisierten Komplexität ist zu verstehen, wie Eingabestruktur die Problemkomplexität beeinflusst. Wir untersuchen diese Fragestellung aus einer granularen Perspektive und betrachten Problem-Parameter-Kombinationen mit einfach exponentieller Laufzeit, d.h., Laufzeit a^k n^c, wobei n die Eingabegröße ist, k der Parameterwert, und a und c zwei positive Konstanten sind. Unser Ziel ist es, die optimale Laufzeitbasis a für eine gegebene Kombination zu bestimmen. Für viele Zusammenhangsprobleme, wie Connected Vertex Cover oder Connected Dominating Set, ist die optimale Basis bezüglich dem Parameter Baumweite bekannt. Die Baumweite gehört zu der Klasse der Weiteparameter, welche auf natürliche Weise zu Algorithmen mit dem Prinzip der dynamischen Programmierung führen.
Im ersten Teil dieser Dissertation untersuchen wir, wie sich die optimale Laufzeitbasis für diverse Zusammenhangsprobleme verändert, wenn wir zu ausdrucksstärkeren Weiteparametern wechseln. Wir entwerfen neue parameterisierte Algorithmen und (bedingte) untere Schranken, um diese optimalen Basen zu bestimmen. Insbesondere zeigen wir für die Parametersequenz Baumweite, modulare Baumweite, und Cliquenweite, dass die optimale Basis von Connected Vertex Cover bei 3 startet, sich erst auf 5 erhöht und dann auf 6, wobei hingegen die optimale Basis von Connected Dominating Set bei 4 startet, erst bei 4 bleibt und sich dann auf 5 erhöht.
Im zweiten Teil gehen wir über Weiteparameter hinaus und analysieren restriktivere Arten von Parametern. Für die Baumtiefe entwerfen wir platzsparende Verzweigungsalgorithmen. Die Beweistechniken für untere Schranken bezüglich Weiteparametern übertragen sich nicht zu den restriktiveren Parametern, weshalb nur wenige optimale Laufzeitbasen bekannt sind. Um dies zu beheben untersuchen wir Knotenlöschungsprobleme. Insbesondere zeigen wir, dass die optimale Basis von Odd Cycle Transversal parameterisiert mit einem Modulator zu Baumweite 2 den Wert 3 hat. / The question at the heart of parameterized complexity is how input structure governs the complexity of a problem. We investigate this question from a fine-grained perspective and study problem-parameter-combinations with single-exponential running time, i.e., time a^k n^c, where n is the input size, k the parameter value, and a and c are positive constants. Our goal is to determine the optimal base a for a given combination. For many connectivity problems such as Connected Vertex Cover or Connecting Dominating Set, the optimal base is known relative to treewidth. Treewidth belongs to the class of width parameters, which naturally admit dynamic programming algorithms.
In the first part of this thesis, we study how the optimal base changes for these connectivity problems when going to more expressive width parameters. We provide new parameterized dynamic programming algorithms and (conditional) lower bounds to determine the optimal base, in particular, we obtain for the parameter sequence treewidth, modular-treewidth, clique-width that the optimal base for Connected Vertex Cover starts at 3, increases to 5, and then to 6, whereas the optimal base for Connected Dominating Set starts at 4, stays at 4, and then increases to 5.
In the second part, we go beyond width parameters and study more restrictive parameterizations like depth parameters and modulators. For treedepth, we design space-efficient branching algorithms. The lower bound techniques for width parameterizations do not carry over to these more restrictive parameterizations and as a result, only a few optimal bases are known. To remedy this, we study standard vertex-deletion problems. In particular, we show that the optimal base of Odd Cycle Transversal parameterized by a modulator to treewidth 2 is 3. Additionally, we show that similar lower bounds can be obtained in the realm of dense graphs by considering modulators consisting of so-called twinclasses.
|
403 |
Text Localization for Unmanned Ground VehiclesKirchhoff, Allan Richard 16 October 2014 (has links)
Unmanned ground vehicles (UGVs) are increasingly being used for civilian and military applications. Passive sensing, such as visible cameras, are being used for navigation and object detection. An additional object of interest in many environments is text. Text information can supplement the autonomy of unmanned ground vehicles. Text most often appears in the environment in the form of road signs and storefront signs. Road hazard information, unmapped route detours and traffic information are available to human drivers through road signs. Premade road maps lack these traffic details, but with text localization the vehicle could fill the information gaps. Leading text localization algorithms achieve ~60% accuracy; however, practical applications are cited to require at least 80% accuracy [49].
The goal of this thesis is to test existing text localization algorithms against challenging scenes, identify the best candidate and optimize it for scenes a UGV would encounter. Promising text localization methods were tested against a custom dataset created to best represent scenes a UGV would encounter. The dataset includes road signs and storefront signs against complex background. The methods tested were adaptive thresholding, the stroke filter and the stroke width transform. A temporal tracking proof of concept was also tested. It tracked text through a series of frames in order to reduce false positives.
Best results were obtained using the stroke width transform with temporal tracking which achieved an accuracy of 79%. That level of performance approaches requirements for use in practical applications. Without temporal tracking the stroke width transform yielded an accuracy of 46%. The runtime was 8.9 seconds per image, which is 44.5 times slower than necessary for real-time object tracking. Converting the MATLAB code to C++ and running the text localization on a GPU could provide the necessary speedup. / Master of Science
|
404 |
Investigation On Dodecagonal Multilevel Voltage Space Vector Structures By Cascading Flying Capacitor And Floating H-Bridge Cells For Medium Voltage IM DrivesMathew, Jaison 07 1900 (has links) (PDF)
In high-power electric drives, multilevel inverters are generally deployed to address issues such as electromagnetic interference, switch voltage stress and harmonic distortion. The switching frequency of the inverter is always kept low, of the order of 1KHz or even less to reduce switching losses and synchronous pulse width modulation (PWM) is used to avoid the problem of sub-harmonics and beat frequencies. This is particularly important if the switching frequency is very low. The synchronous PWM is getting popularity as its realization is very easy with digital controllers compared to analog controllers. Neutral-point-clamped (NPC) inverters, cascaded H-bridge, and flying-capacitor multilevel inverters are some of the popular schemes used for high-power applications. Hybrids of these multilevel inverters have also been proposed recently to take advantage of the basic configurations. Multilevel inverters can also be realized by feeding the induction motor from both ends (open-end winding) using conventional inverter structures. For controlling the output voltage of these inverters, various PWM techniques are used. Chapter-1 of this thesis provides an over view of the various multilevel inverter schemes preceded by a discussion on basic two-level VSI topology.
The inverters used in motor drive applications have to be operated in over-modulation range in order to extract the maximum fundamental output voltage that is possible from the dc-link. Operation in this high modulation range is required to meet temporary overloads or to have maximum power operation in the high speed range (flux weakened region). This, however, introduces a substantial amount of low order harmonics in the Motor phase voltages. Due to these low-order harmonic frequencies, the dynamic performance of the drive is lost and the current control schemes are severely affected especially due to 5th and 7th harmonic components. Further, due to these low-order harmonics and non-linear PWM operation in over-modulation region, frequent over-current fault conditions occur and reliability of the drive is jeopardized. The twelve sided-polygonal space vector diagram (dodecagonal space vectors) can be used to overcome the problem of low order 5th and 7th harmonics and to give more range for linear modulation while keeping the switching frequency at a minimum compared to conventional hexagonal space vector based inverters. Thus, the dodecagonal space-vector switching can be viewed as an engineering compromise between low switching frequency and quality load current waveform.
Most of the previous works of dodecagonal space-vector generation schemes are based on NPC inverters. However, sophisticated charge control schemes are required in NPC inverters to deal with the neutral-point voltage fluctuation and the neutral-point voltage shifting issues. The losses in the clamping diodes are another major concern. In the second chapter, a multilevel dodecagonal space-vector generation scheme based on flying capacitor topology, utilizing an open end winding induction motor is presented. The neutral point charge-balancing problem reported in the previous works is not present in this scheme, the clamping diodes are eliminated and the number of power supplies required has been reduced. The capacitors have inherent charge balancing capability, and the charge control is done once in every switching cycle, which gives tight voltage control for the capacitors.
For the speed control of induction motors, the space-vector PWM scheme is more advantageous than the sine-triangle PWM as it gives a more linear range of operation and improved harmonic performance. One major disadvantage with the conventional space-vector PWM is that the trigonometric operations demand formidable computational efforts and look-up tables. Carrier based, common-mode injected PWM schemes have been proposed to simplify the PWM process. However, the freedom of selecting the PWM switching sequences is limited here. Another way of obtaining SVPWM is using the reference voltage samples and the nearest vector information to switch appropriate devices for proper time intervals, realizing the reference vector in an average sense. In-formation regarding the sector and nearest vectors can be easily obtained by comparing the instantaneous amplitudes of the reference voltages. This PWM approach is pro-posed for the speed control of the motor in this thesis. The trigonometric operations and the requirement of large look-up tables in the conventional SVPWM are avoided in this method. It has the additional advantage that the switching sequences can be decided at will, which is helpful in reducing further, the harmonic distortion in certain frequency ranges. In this way, this method tries to combine the advantages of vector based methods (conventional SVPWM) and scalar methods (carrier-based methods).
The open-end winding schemes allowed the required phase voltage levels to be generated quite easily by feeding from both ends of the windings. Thus, most of the multilevel inverters based on dodecagonal space-vector structures relied on induction motors with open-end windings. The main disadvantage of open-end winding induction motor is that six wires are to be run from the inverter to the motor, which may be unacceptable in certain applications. Apart from the inconvenience of laying six wires, the voltage reflections in the wires can lead to over voltages at the motor terminals, causing insulation failures. Where as the topology presented in chapter-2 of this thesis uses open-end winding motor with flying-capacitor inverters for the generation of dodecagonal space-vectors, the topology presented in chapter-3 utilizes a cascade connection of flying-capacitors and floating H-bridge cells to generate the same set of voltage space-vectors, thus allowing any standard induction motor as the load.
Of the methods used for the speed control of induction motors, namely sine-triangle PWM and space vector PWM, the latter that provides extra modulation range is naturally preferred. It is a well-understood fact that the way in which the PWM switching sequences are applied has a significant influence on the harmonic performance of the drive. However, this topic has not been addressed properly for dodecagonal voltage space-vector based multilevel inverter drives. In chapter-4 of the thesis, this aspect is taken into ac-count and the notion of “harmonic flux trajectories” and “stator flux ripple” are used to analyze the harmonic performance of the various PWM switching schemes. Although the PWM method used in this study is similar to that in chapter-2, the modification in the PWM switching sequence in the PWM algorithm yields significant improvements in harmonic performance.
The proposed topologies and PWM schemes are extensively simulated and experimentally verified. The control scheme was implemented using a DSP processor running at a clock frequency 150MHz and a four-pole, 3.7kW, 50Hz, 415V three-phase induction motor was used as the load. Since the PWM ports are limited in a DSP, a field-programmable gate array (FPGA) was used to decode the PWM signals from the DSP to generate timing information required for PWM sequencing for all the power devices. The same FPGA was used to generate the dead-time signals for the power devices also.
|
405 |
Estudo de fissuração em concreto armado com fibras e armadura convencional / not availableEwang, Bruce Ekane 30 April 1999 (has links)
Devido à fragilidade do concreto, o controle e combate da fissuração são de importância fundamental em estruturas de concreto armado. Uma maneira de melhorar as propriedades do concreto à tração é pelo emprego de fibras. A presente pesquisa é uma tentativa de fornecer diretrizes para o dimensionamento de estruturas de concreto armado com fibras, e armadura convencional sob condições de serviço. Apresenta-se inicialmente, um estudo do comportamento do material à tração. Um modelo probabilístico/micro-mecânico fundamentado na mecânica de fratura, e capaz de prever o comportamento pós-fissuração do compósito é apresentado. O modelo prevê a relação tensão-abertura de fissura do compósito levando em conta os seguintes micro-mecanismos: travejamento de agregado e fibras, a ruptura das fibras, os efeitos de: atrito local (snubbing effect), esmagamento da matriz, Cook-Gordon, e da pré-tração das fibras. Em nível estrutural, dois modelos macro-mecânicos são apresentados. O primeiro modelo tem premissa na teoria clássica de fissura, e o segundo na mecânica de dado. O primeiro modelo é ajustado para aplicação na previsão de espaçamento e aberturas de fissura em estruturas de concreto armado com fibras discretas e aleatoriamente dispostas. É demostrado que o modelo micro-mecânico pode alimentar perfeitamente o modelo macro-mecânico. Ensaios de tração com elementos de placas de argamassa com fibras armada com tela ou fios foram realizados. Os resultados teóricos previstos pelo modelo foram comparados com os obtidos do programa experimental, e mostram uma boa concordância, comprovando a validade do modelo apresentado. / Due to the brittleness of concrete, the control and prevention of cracking in reinforced concrete structures are of prime importance. One way of improving the tensile properties of concrete is by the addition of fibres. The present research is a trial to provide guidelines for the design of fibre reinforced concrete structures under service loads. First of all, a study of the tensile behaviour of the composite material is presented. A probabilistic/fracture mechanics based micromechanical model, capable of predicting the poscracking behaviour of the material is presented. The model predicts the tensile stress-crack width relationship, accounting for the following micromechanisms: fibre and aggregate bridging, fibre rupture, local snubbing, matrix spalling, the Cook-Gordon interface effect, and fibre prestressing. At the structural level, two macromechanical models are presented. One is founded on the classical theory of cracking, while the other, a shear lag model, is founded on the continuum damage mechanics. The first model is adjusted for application to the prevision of crack width and crack spacing in fibre reinforced concrete structures with short discrete and randomly dispersed fibres. It is shown that the micromechanical model fits very well in the macrostructural model. Tensile tests with mortar specimens reinforced with continuous steel wires or meshes and PVA or polypropylene fibres were carried out. The theoretical results predicted by the model were compared with results obtained from the experimental program, and show very good agreement, confirming the validity of the theoretical model.
|
406 |
Estudo de fissuração em concreto armado com fibras e armadura convencional / not availableBruce Ekane Ewang 30 April 1999 (has links)
Devido à fragilidade do concreto, o controle e combate da fissuração são de importância fundamental em estruturas de concreto armado. Uma maneira de melhorar as propriedades do concreto à tração é pelo emprego de fibras. A presente pesquisa é uma tentativa de fornecer diretrizes para o dimensionamento de estruturas de concreto armado com fibras, e armadura convencional sob condições de serviço. Apresenta-se inicialmente, um estudo do comportamento do material à tração. Um modelo probabilístico/micro-mecânico fundamentado na mecânica de fratura, e capaz de prever o comportamento pós-fissuração do compósito é apresentado. O modelo prevê a relação tensão-abertura de fissura do compósito levando em conta os seguintes micro-mecanismos: travejamento de agregado e fibras, a ruptura das fibras, os efeitos de: atrito local (snubbing effect), esmagamento da matriz, Cook-Gordon, e da pré-tração das fibras. Em nível estrutural, dois modelos macro-mecânicos são apresentados. O primeiro modelo tem premissa na teoria clássica de fissura, e o segundo na mecânica de dado. O primeiro modelo é ajustado para aplicação na previsão de espaçamento e aberturas de fissura em estruturas de concreto armado com fibras discretas e aleatoriamente dispostas. É demostrado que o modelo micro-mecânico pode alimentar perfeitamente o modelo macro-mecânico. Ensaios de tração com elementos de placas de argamassa com fibras armada com tela ou fios foram realizados. Os resultados teóricos previstos pelo modelo foram comparados com os obtidos do programa experimental, e mostram uma boa concordância, comprovando a validade do modelo apresentado. / Due to the brittleness of concrete, the control and prevention of cracking in reinforced concrete structures are of prime importance. One way of improving the tensile properties of concrete is by the addition of fibres. The present research is a trial to provide guidelines for the design of fibre reinforced concrete structures under service loads. First of all, a study of the tensile behaviour of the composite material is presented. A probabilistic/fracture mechanics based micromechanical model, capable of predicting the poscracking behaviour of the material is presented. The model predicts the tensile stress-crack width relationship, accounting for the following micromechanisms: fibre and aggregate bridging, fibre rupture, local snubbing, matrix spalling, the Cook-Gordon interface effect, and fibre prestressing. At the structural level, two macromechanical models are presented. One is founded on the classical theory of cracking, while the other, a shear lag model, is founded on the continuum damage mechanics. The first model is adjusted for application to the prevision of crack width and crack spacing in fibre reinforced concrete structures with short discrete and randomly dispersed fibres. It is shown that the micromechanical model fits very well in the macrostructural model. Tensile tests with mortar specimens reinforced with continuous steel wires or meshes and PVA or polypropylene fibres were carried out. The theoretical results predicted by the model were compared with results obtained from the experimental program, and show very good agreement, confirming the validity of the theoretical model.
|
407 |
Studies on Single DC Link Fed Multilevel Inverter Topologies by Cascading Flying Capacitor and Floating Capacitor Fed H-BridgesPappu, Roshan Kumar January 2014 (has links) (PDF)
Use of multilevel inverters are inevitable in medium and high voltage drives. This is due to the fact that the multilevel inverters can produce voltages in smaller steps which will reduce the harmonic content and result in more sinusoidal voltages and currents as compared to voltages and currents from two-level inverters. Due to the device limitations, use of two-level inverters is not possible in medium and high voltage drive applications. Though multiple devices can be connected both in series and parallel to achieve two-level operation, the output voltages still suffer from high harmonic content. Multilevel inverters have multiple DC voltage levels with switches that enable one of the voltage steps to be applied to the load. Due to decrease in step size during each switching instant, output voltages and currents of the multilevel inverters have considerably less harmonic content. As the number of levels increase, the switching step reduces thereby the harmonic content also reduces drastically.
Due to their advantages, multilevel inverters have gained lot of acceptance in the industry even at lower voltages. The three main configurations that have gained popularity are the neutral point clamped converter, the flying capacitor converter and the cascaded H-bridge converter. Each converter has its own set of advantages and disadvantages. Based on the requirements of various applications, it is possible to fabricate hybrid multilevel topologies that are combinations of the three basic topologies. Researchers around the world have proposed several such converters for diverse applications so as to suit particular requirements like modularity, ease of control, improved reliability, fault tolerant capability etc. The present thesis explores multilevel converters with single DC link to be used for motor drive and grid connected applications.
A novel five-level inverter topology formed by cascading a floating capacitor H-bridge module to a regular three-level flying capacitor inverter has been explored in chapter 2. The three-level flying capacitor inverter can generate pole voltages of 0, VDC /2 and VDC . By cascading it with another floating capacitor H-bridge of voltage magnitude VDC /4, pole voltages of 0, VDC /4, VDC/2, 3VDC /4 and VDC . Each of these pole voltage levels can have one or more switching combinations. However each switching combination has a unique effect on the state of the two capacitor voltages. By switching through redundant switching combinations for the same pole voltage, the two capacitors present in each phase can be balanced. The proposed topology also has an advantage that if one of the devices in the H-bridge fails, the topology can still be operated as a regular three-level flying capacitor inverter that can supply full load at rated power by bypassing the faulty H-bridge. This fault tolerant operation of the converter will enable it to be used in applications like traction and marine drives where high reliability is needed. The proposed converter needs a single DC link. All the required voltage levels can be generated from the single DC link. This enables back to back grid connected operation possible where multiple converters can interact with a single DC link.
Various pole voltage switching combination and its effect on individual capacitor has been studied. A control algorithm to balance the capacitor voltages by switching through multiple redundancies for the same pole voltage has been developed. The proposed configuration has been implemented in hardware using IGBT H-bridge modules and the control circuitry is realized using DSP and FPGA. The performance of the drive is verified for various frequencies and modulation indices during steady state by running a three phase induction motor at no load. The stability of the drive during transients has been studied by accelerating the machine suddenly at no load and analyzing the performance of the drive. The capacitor voltages are made to deviate from their intended values and the capacitor balancing algorithm has been verified for its ability to bring the capacitor voltages back to their intended values. The experimental results have been presented and discussed in detail in the chapter 2.
In the third chapter a common-mode voltage eliminated three-level inverter using a single DC link has been proposed. The power schematic is similar to the one presented in chapter 2. In this chapter the space vector polygon formed by the three phases of the proposed topology has been presented. The common-mode voltage generated by different pole voltage combinations for same space vector location and the redundant switching state combinations has been studied. The pole voltage combinations with zero common mode voltage have been studied. The switching state redundancies for the the pole voltage have been studied. The space vector polygon formed with the pole voltage combinations has been analyzed. A drive is made with the proposed common-mode voltage eliminated inverter. The performance of the drive is tested for various modulation indices and frequencies by running a three phase squirrel cage induction motor at no load. The transient performance is verified by accelerating the motor suddenly and checking the common-mode voltage along with the capacitor voltages. The results have been presented and discussed in detail in chapter 3. This converter has advantages like use of single DC supply, ability to operate as a regular three level converter in case of failure of one of the H-bridges.
The work presented in fourth chapter proposes a novel three phase 17-level inverter configuration which utilizes a single DC supply. The rest of voltages are generated using three floating capacitor H-bridges. The redundant switching combinations for generating various pole voltages and their effect on the capacitors have been studied and suitable capacitor balancing algorithm has been developed. The proposed topology has been realized in hardware and the performance of the drive during steady state has been studied by running an induction motor at various modulation indices and frequencies. The transient response of the drive has been observed by accelerating the motor suddenly under no load. The results have been presented in detail in chapter four. This configuration also needs a single DC link. The advantages of this configuration is in case of failure of any devices in the H-bridge, the drive can be operated at reduced number of levels while supplying full load current. This feature helps the drive to be used in fault tolerant applications like marine and traction drives where reliability of the drive is of prime importance.
All the topologies that have been presented in the previous chapters have mentioned about the usage of the proposed genre of topologies use single DC link and hence will enable back to back grid tied inverter connection. In the fifth chapter this has has been verified experimentally. The three phase squirrel cage induction motor is driven by using the seventeen-level inverter drive proposed in chapter four. A five-level active front-end is realized by the converter topology proposed in chapter two. The converter is run and the performance of the drive is studied at various modulation indices and speeds of the motor. Various aspects like re-generation operation, acceleration and other aspects of the drive have been studied experimentally and the results are presented in detail.
For experimental setup, Semikron SKM75GB12T4 IGBT modules have been used to realize the power topology. These IGBTs are driven by M56972L drivers. The control circuit is realized using TMS320F2812 DSP along with Xilinx Spartan 3 FPGA (XC3S200) has been used. The voltages and currents are sensed using LEM LV-20P and LA 55-P hall effect based sensors.
|
408 |
Návrh a realizace bezdrátového interface ODBII-XBee / Design and realization of wireless interface ODBII-XBeeZatloukal, Martin January 2010 (has links)
This master’s thesis describes possibilities of usage of ZigBee communication protocol and integrated circuit ELM 327 in problem of realization universal diagnostic device, running by OBDII communication standards, which can be used to monitor function of all car´s electronic systems. Thesis also deals with design and realization of necessary electro technical devices and modules followed by compilation of control software and experimental measurements of these devices in real traffic flow. In the first part of project, there are reminded some basic features and parameters of OBDII, followed by description of ways how to use OBDII and adumbrating how to realize universal diagnostic system. The analysis of ZigBee system focused on XBee circuits follows. Construction, ways of data transfer and possibilities of controlling are described. Integrated circuits produced by ELM Electronics Company are introduced and possibilities of usage ELM 327 are described as requested by main task. Second part talks about designing of electronic circuits of this system, assembling schematic diagram and designing sources for production of PCB. Physical realization of these circuits and its first start is also included. Thesis finishes by dealing with practical experiences and measurements using real vehicles. This part talks also about means to improve system by several software solutions to reach more effective functioning of created device.
|
409 |
Sexual selection and trust gamesStirrat, Michael January 2010 (has links)
In economic games the facial attributes of counterparts bias decisions to trust and decisions to enter play. We report research supporting hypotheses that trust and reciprocation decisions in trust games are biased by mechanisms of sexual selection. Hypotheses that trust game behaviour is modulated by inter-sexual competition were supported. 1) Attractive individuals elicit more cooperation. 2) Male participants display trust and reciprocation toward attractive female counterparts in excess of perceived trustworthiness (and this display is modulated by male self-reported physical dominance). 3) Female participants appear to respond to male trust as a signal of sexual interest and are therefore more likely to exploit the trust of attractive males. 4) In explicitly dating contexts females are more likely to prefer attractive males to pay for the meal. These results indicate that participants are biased by mate choice and mating display considerations while playing economic games in the lab. Hypotheses that trust game behaviour is modulated by intra-sexual competition for resources were also somewhat supported. 1) Male participants reporting an ability to win fights with same-sex peers are more exploitative of other males. 2) Cues to current circulating testosterone level in counterpart’s faces are less trusted but elicit more reciprocation. 3) The male sexually dimorphic trait facial width-to-height ratio (a trait which is related to both aggression and dominance) is related to an increased proportion of decisions to exploit others in the trust game while also being used by others as a cue to untrustworthiness. We conclude that trusting and trustworthy behaviour in both sexes is biased by mating market considerations predicted by intra- and inter-sexual selection.
|
410 |
多變量模擬輸出之統計分析許淑卿, XU, SHU-GING Unknown Date (has links)
本論文共一冊,分八章八節。
內容:本論文所擬探討之對象為多變量統計分配函數模擬(Simulation)之最佳停止
法則問題(Optimal Stopping Rule Problem ),此類問題之目的在於如何利用盡量
小的樣本數之觀察值來求得未知母數(Unknoron Parameter)的信區間(域)(Co-
nfidence interval )(Confidence Region),而此信賴區間(域)之寬度(Width
)及包含機率(Coverage Probability)均已事先指定。
以往研究對象多傴限於單變量統計分配函數,而多變量統計分配函數模擬之最佳停止
法則問題,仍尚在研究階段,因此本論文之重點乃在於探討如何求得滿足最佳停止法
則之最小樣本數。在此以多變量常態分配函數為重心,並進而嗜試推廣至其他多數量
統計分配函數。
|
Page generated in 0.0366 seconds