• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Xarxes neuronals VLSI d'alta velocitat/capacitat

Carrabina Bordoll, Jordi 31 October 1991 (has links)
No description available.
2

Anàlisi de sèries temporals mitjançant la predicció amb xarxes neuronals artificials

Rifà Ros, Esteve Xavier 03 October 2008 (has links)
La Teoria de Sistemes Dinàmics proporciona eines per a l'anàlisi de Sèries Temporals (ST). Una de les eines proposada es porta a terme mitjançant la predicció no lineal de ST. Amb aquesta tècnica podem extreure algunes de les característiques que aquesta teoria proposa,com la Dimensió d'Immersió (DI) o la Sensibilitat a les Condicions Inicials (SCI). Sugihara y May(1990) han difós un mètode no paramètric que permet fer prediccions mitjançant l'observació de gràfics, procediment que creiem que afegeix una component de subjectivitat. Per superar aquesta dificultat proposem realitzar la presa de decisions mitjançant inferència estadística.El mètode que s'exposa en aquesta tesi es basa en la predicció no lineal amb Xarxes Neuronals Artificials (XNA). Hem realitzat un seguit d'experiments de simulació per estimar la DI i avaluar la SCI entrenant XNA. En el primer cas es pretén trobar un invariant en la predicció en funció del nombre de components de l'atractor reconstruït, a partir d'una ST observada. Aquest coincideix amb el valor de la DI en el que la predicció ja no millora encara que augmenti el nombre de components. En el segon cas, un cop entrenada la XNA, s'analitza si existeix una disminució significativa de la precisió en la predicció en funció del nombre d'iteracions d'aquesta. Si es dóna aquesta disminució es conclou que la ST és sensible a les condicions inicials. Per tal de provar aquesta nova tècnica que he proposat, he emprat ST simulades (component x del mapa de Hénon i de l'atractor de Rössler) sense soroll i amb dos nivells de soroll afegit. Per al primer conjunt de dades els resultats són consistents amb les nostres hipòtesis. D'altra banda, els resultats per a les dades de l'atractor de Rössler no són tan satisfactoris com era d'esperar en les nostres prediccions. / Researchers from Dynamical Systems Theory have developed tools for the analysis of Time Series (TS) data. Some of these, based on nonlinear forecasting, allow us to estimate some of the characteristics proposed under this approach like embedding dimension or sensitive dependence on initial conditions. Sugihara and May (1990) have shown a nonparametric forecasting method to assess these magnitudes based on the observation of graphics. This process is too subjective in the case where the results are not sufficiently clear. For this reason the goal of this investigation was to find a method of estimation based on statistical inference.Some simulation experiments have been developed to achieve more objective estimations of the embedding dimension and the assessment of sensitivity to initial conditions. The forecasting of TS in this dissertation has been performed using artificial neural networks. The set of experiments to estimate dimensionality are designed to find an invariant of the correct performance, as a function of the number of components of the reconstructed attractor. To asses the sensitivity to the initial conditions, the experiments will allow us to study the forecasting performance of the best trained network, as a function of the number of iterations.To test the experiments proposed we have used the Hénon and the Rössler data sets with different noise levels. The results show a good performance of the method used for the Hénon data set. On the other hand, the results for the Rössler data sets are not consistent with our hypotheses.
3

Xarxes neuronals per a la generació de dissenys en blocs

Bofill Soliguer, Pau 04 November 1997 (has links)
No description available.
4

A mixed qualitative quantitative self-learning classification technique applied to situation assessment in industrial process control

Aguado Chao, J. Carlos (Juan Carlos) 22 December 1998 (has links)
Aquesta memòria s'ha escrit amb l'ànim d'exposar els punts de vista i els resultats nous que l'autor ha pogut obtenir. No s'hi troba, per tant, una descripció detallada de tots els temes que conformen la teoria dels operadors de T-indistingibilitat, el Raonament Aproximat ni, per descomptat, la Lògica Difusa. S'ha glossat només els aspectes necessaris per fer la memòria autocontinguda, i s'ha reforçat l'exposició amb un conjunt ampli de referències bibliogràfiques. L'excel·lència de moltes d'elles fa absolutament innecesari i pretenciós l'intent de l'autor de reescriure sobre els mateixos temes amb l'ànim de fer-los entenedors.La memòria està dividida en dues parts: 1) Operadors de T-indistingibilitat (Capítols 1, 2 i 3)2) Aplicacions al Raonament Aproximat (Capítols 4 i 5)En la primera part s'estudia qüestions relatives a l'estructura dels operadors de T-indistingibilitat.El Capítol 1 tracta dels aspectes previs: les t-normes i, sobre tot, les seves quasi-inverses. Són les operacions bàsiques sobre les que es construeixen els operadors de T-indistingibilitat.En el Capítol 2 s'estudia l'estructura del conjunt HE dels generadors d'una T-indistingibilitat E, des del punt de vista reticular i dimensional. Finalment, el Capítol 3 està dedicat als morfismes entre operadors de T-indistingibilitat i a l'estructura dual.A la segona part es proposa un principi general de Raonament Aproximat que es basa en els operadors de T-indistingibilitat. En el Capítol 4, s'analitza les diferents formes de CRI a través d'aquest principi, i es proposa nous mecanismes d'inferència diferents de CRI (Operador Natural d'Inferència), mentre que en el Capítol 5 s'estudia l'estructura dels nous mecanismes introduïts i el seu comportament en interpolació, en presència de múltiples regles.Cada capítol s'encapçala amb una introducció en forma de sumari i amb un llistat de les aportacions de la memòria (resultats nous).
5

Heterogeneous neural networks: theory and applications

Belanche Muñoz, Lluis 18 July 2000 (has links)
Aquest treball presenta una classe de funcions que serveixen de models neuronals generalitzats per ser usats en xarxes neuronals artificials. Es defineixen com una mesura de similitud que actúa com una definició flexible de neurona vista com un reconeixedor de patrons. La similitud proporciona una marc conceptual i serveix de cobertura unificadora de molts models neuronals de la literatura i d'exploració de noves instàncies de models de neurona. La visió basada en similitud porta amb naturalitat a integrar informació heterogènia, com ara quantitats contínues i discretes (nominals i ordinals), i difuses ó imprecises. Els valors perduts es tracten de manera explícita. Una neurona d'aquesta classe s'anomena neurona heterogènia i qualsevol arquitectura neuronal que en faci ús serà una Xarxa Neuronal Heterogènia.En aquest treball ens concentrem en xarxes neuronals endavant, com focus inicial d'estudi. Els algorismes d'aprenentatge són basats en algorisms evolutius, especialment extesos per treballar amb informació heterogènia. En aquesta tesi es descriu com una certa classe de neurones heterogènies porten a xarxes neuronals que mostren un rendiment molt satisfactori, comparable o superior al de xarxes neuronals tradicionals (com el perceptró multicapa ó la xarxa de base radial), molt especialment en presència d'informació heterogènia, usual en les bases de dades actuals. / This work presents a class of functions serving as generalized neuron models to be used in artificial neural networks. They are cast into the common framework of computing a similarity function, a flexible definition of a neuron as a pattern recognizer. The similarity endows the model with a clear conceptual view and serves as a unification cover for many of the existing neural models, including those classically used for the MultiLayer Perceptron (MLP) and most of those used in Radial Basis Function Networks (RBF). These families of models are conceptually unified and their relation is clarified. The possibilities of deriving new instances are explored and several neuron models --representative of their families-- are proposed. The similarity view naturally leads to further extensions of the models to handle heterogeneous information, that is to say, information coming from sources radically different in character, including continuous and discrete (ordinal) numerical quantities, nominal (categorical) quantities, and fuzzy quantities. Missing data are also explicitly considered. A neuron of this class is called an heterogeneous neuron and any neural structure making use of them is an Heterogeneous Neural Network (HNN), regardless of the specific architecture or learning algorithm. Among them, in this work we concentrate on feed-forward networks, as the initial focus of study. The learning procedures may include a great variety of techniques, basically divided in derivative-based methods (such as the conjugate gradient)and evolutionary ones (such as variants of genetic algorithms).In this Thesis we also explore a number of directions towards the construction of better neuron models --within an integrant envelope-- more adapted to the problems they are meant to solve.It is described how a certain generic class of heterogeneous models leads to a satisfactory performance, comparable, and often better, to that of classical neural models, especially in the presence of heterogeneous information, imprecise or incomplete data, in a wide range of domains, most of them corresponding to real-world problems.
6

Siniestralidad en seguros de consumo anual de las entidades de previsión social, La. Perspectiva probabilística y econométrica. Propuesta de un modelo econométrico neuronal para Cataluña.

Torra Porras, Salvador 05 March 2004 (has links)
El objetivo perseguido en la presente Tesis Doctoral es presentar propuestas de modelización para la siniestralidad del sector de Mutualidades de Previsión Social de Cataluña (segmento no vida) desde una doble vertiente, probabilística y econométrica. Con esta finalidad tres organismos públicos han facilitado la información necesaria para la elaboración de la parte empírica: la Generalitat de Catalunya (Departamento de Trabajo), el Gobierno Vasco (Departamento de Trabajo) y la Dirección General de Seguros (D.G.S.). Así su estructura está claramente diferenciada: fundamentos y herramientas metodológicas, para la primera de ellas, y para la segunda, el estudio empírico realizado sobre el sector asegurador y de previsión social Español, en especial, Cataluña.Respecto a la parte metodológica su estructura es la siguiente, el capítulo 1, presenta los diferentes mecanismos de análisis económico-financiero existentes mediante el uso de ratios, sus debilidades, los nuevos avances y la simulación estadística como una herramienta más de análisis. En el capítulo 2 se ha realizado un esfuerzo por sistematizar una de las herramientas de mayor desarrollo en el análisis de datos, los modelos neuronales, desde tres vertientes: desde la óptica de su potencial en términos de modelización; la descripción de los modelos disponibles y en último lugar, por sus aplicaciones. El capítulo 3 es el último de esta parte metodológica, y en él se ha realizado una aproximación de los modelos neuronales al campo estadístico y econométrico. La estructura de la parte empírica es la siguiente. El capítulo 4 contiene las características básicas del sector asegurador Español (1991-1997) y del subsector de previsión social, desglosado por Comunidades Autónomas que poseen competencias propias en materia de Previsión Social (País Vasco (1990-1998) y Cataluña (1991-1997)) y aquellas que dependen directamente de la Dirección General de Seguros (D.G.S.) (1992-1997)). El capítulo 5 contiene el análisis de la siniestralidad no vida del sector de las Mutualidades de Previsión Social de Cataluña, con los datos oficiales que facilitan las entidades a la Administración Pública. Y finalmente, el capítulo 6 contiene varias aplicaciones de la metodología neuronal descrita.Las principales aportaciones son las siguientes:1. Desde la vertiente metodológica del análisis financiero mediante ratios, presentamos una síntesis de los avances en el diseño del modelo de ratio financiero.2. Utilización de herramientas de Simulación Estadística como soporte a la probabilización de ratios económico-financieros.3. Desde la vertiente empírica, las aportaciones son: a) El estudio de un sector económico poco analizado como es el sector de Mutualidades de Previsión Social de Cataluña. b) El análisis de la siniestralidad no vida anual a partir de los componentes aleatorios que la constituyen, número de siniestros y cuantía de cada siniestro.c) Obtención de márgenes mínimos de solvencia (MMS) por dos vías, Método de Monte-Carlo y probabilización del ratio de siniestralidad no vida, permitiendo su comparación.d) Características econométricas de las diferentes especificaciones del modelo de ratio.e) Propuesta de contrastes de forma funcional del modelo de ratio, a partir de la forma Funcional Generalizada de Box-Cox (FFG).f) Diferentes aplicaciones de la metodología neuronal. En primer lugar, utilización de los modelos neuronales para la identificación de la forma funcional del modelo de ratio. En segundo lugar, y una vez detectada la posible naturaleza no lineal del modelo de ratio, proponemos una modelización alternativa, el modelo neuronal de regresión generalizada (GRNN). En tercer lugar, proponemos una definición flexible de sector o norma representado por un modelo Multilayer feed-forward MLP(4:3). En último lugar, mediante los residuos del modelo neuronal definido (MLP(p:q)), obtenemos información del posicionamiento relativo de las entidades respecto al sector o benchmark flexible que nos permite proponer unos valores de "referencia" máximos para la siniestralidad de cada prestación. / The knowledge of how the insurance market behaves is a topic of great importance, according it future viability. The total losses associated with the company portfolio have a random component that should be kept in mind in it analysis. The principal objective of this work is to model the total claims amount of the mutual insurance sector in Catalonia (non life) according a probabilistic and econometric point of view. The structure of the study is clearly divided into two different parts. In the first part we present several methodological tools that can be applied to the analysis that we are carrying out; in the second one we present some results related with the application of the previous theory to a real insurance Catalonian database. In the methodological part, we highlight the definition of some ratios to summarize different financial analysis mechanisms; the effort to systematize one of the most famous methods of data analysis: the neural model, including its approach to the statistical field and econometrics. Concerning the empirical part, we emphasize the following aspects: the analysis of the basic characteristics of the Spanish insurance market (1991-1997) and the characteristics of the insurance mutual societies (by Autonomous Communities); the analysis of the non life total claims amount of the insurance mutual societies in Catalonia, and finally, the presentation of several applications of the neuronal methodology. The main empirical contributions are about the study of an economic sector not sufficiently studied before: the analysis of the total compensation starting from its random components, the frequency and severity of the claims; the definition of the minimum margins of solvency by using two methods: Method of MonteCarlo and the distribution of the ratio of the total non life claims amount; the specification of several statistical functions for this ratio; the formulation of some hypothesis contrasts, starting from the Generalized Functional form of Box-Cox and different applications of the neuronal methodology. We highlight the use of the neural model for the identification of the functional form of the ratio and the application of the Multilayer feed-forward model.
7

Estudio de redes neuronales modulares para el modelado de sistemas dinámicos no lineales

Morcego Seix, Bernardo 17 July 2000 (has links)
de la memòriaEn aquest estudi es consideren aspectes teòrics i pràctics del modelatge de sistemes no lineals mitjançant xarxes neuronals modulars.A la vessant teòrica s'ha proposat un model que aprofita les avantatges de les xarxes neuronals i minimitza els seus inconvenients, permetent interpretar físicament els resultats i afegir coneixement previ per accelerar el procés de modelatge. Es tracta de les xarxes de mòduls neuronals.Un mòdul neuronal és una xarxa neuronal que aprofita l'ús de restriccions estructurals per forçar un tipus de comportament al model. Aquest concepte s'ha creat a propòsit en aquest estudi, recolzat per l'argument de que les restriccions topològiques constitueixen un mètode més versàtil i efectiu que el propi mecanisme d'aprenentatge per facilitar comportaments desitjats en una xarxa neuronal.D'aquesta forma, una vegada aplicat el procés de identificació, el model resultant és una xarxa neuronal composada per mòduls, cadascun dels quals representa un bloc funcional del sistema amb un significat fàcilment interpretable.Donat que els mòduls neuronals són paradigmes nous dins de l'àmbit de les xarxes neuronals, s'ha proposat una sèrie de pautes pel seu disseny i es descriu un conjunt de mòduls neuronals format per nou no linealitats dures i els sistemes lineals sense restricció d'ordre.També s'ha realitzat un estudi formal en el que s'han caracteritzat els sistemes que es poden aproximar mitjançant xarxes de mòduls neuronals, el conjunt ?NM, i s'ha establert una cota de l'error d'aquesta aproximació. Aquest resultat és fonamental perquè assenta una base sòlida per plantejar el modelatge de sistemes no lineals amb xarxes de mòduls neuronals. En ell es demostra que, com més precisa sigui l'aproximació de les diferents parts del sistema, més precisa serà l'aproximació del sistema global.Des del punt de vista pràctic, es consideren els aspectes de creació i optimització del model proposat.Primerament, i donat que es tracta d'una xarxa neuronal, es repassen els mecanismes existents a la literatura per adaptar els paràmetres del model al problema. En aquest sentit, s'ha dissenyat un algoritme d'aprenentatge específic per les xarxes neuronals modulars, el modular backpropagation, el cost computacional del qual comparat amb altres algoritmes clàssics, és menor en estructures modulars.Es descriu també una eina de modelització dissenyada a propòsit com mètode per crear i optimitzar, de forma automàtica, xarxes de mòduls neuronals. Aquesta eina combina la programació evolutiva, algoritmes clàssics d'aprenentatge neuronal i el gestor d'aprenentatge, modular backpropagation, amb la finalitat de resoldre problemes de modelització de sistemes no lineals mitjançant xarxes de mòduls neuronals.Finalment, es proposa un esquema del procés de modelització de sistemes no lineals utilitzant les eines desenvolupades en aquest estudi. S'ha creat una aplicació que permet sistematitzar aquest procés i s'ha obtingut els models de tres sistemes no lineals per comprovar la seva utilitat. Els problemes que s'han sotmès al procés de modelització amb xarxes neuronals són: un motor de corrent continu, un sistema no lineal amb histèresi i un element piezoelèctric. En els tres casos s'ha arribat a una solució satisfactòria que permet confirmar la utilitat de les eines desenvolupades en aquest estudi. / This work is concerned with theoretical and applied aspects of nonlinear system modelling with modular neural networks.From the theoretical viewpoint, a new model is proposed. This model attempts to combine the capabilities of neural networks for nonlinear function approximation with the structural organisation of classical block oriented techniques for system modelling and identification. This model is the Neural Module (NM).A neural module is a neural network that behaves inherently like a function or family of functions. The specified behaviour is forced with the use of topological restrictions in the network. The neural module is a new concept developed upon the argument that topological restrictions is a much more versatile and effective way of facilitating a specific behaviour in a neural network than the learning mechanism itself.Once the learning process finishes, the resulting model is a neural network composed by modules. Each module is supposed to model a functional element of the system, with an easy to understand meaning.As long as the neural module is a new paradigm in the neural network domain, rules and guidelines are given for their design. A set of neural modules with nine hard nonlinearities and the linear systems is also described.The set of dynamic systems that can be approximated using neural modules, called SNM, is formally described. The approximation error between en element of SNM and its neural model is calculated and found bounded. This is a basic result that sets up a firm base from which neural module modelling could be considered as a useful type of model.From the practical viewpoint, creation and optimisation aspects of the proposed model are considered.First of all, some of the classical rules of parameter adaptation in neural networks are reviewed. In order to allow modular networks to learn more efficiently, a specific learning algorithm is introduced. This is the modular backpropagation (MBP) algorithm. The computational cost of MPB is less than the cost of classical algorithms when they are applied to modular structures.A modelling tool, specially designed for the automatic creation and optimisation of modular neural networks, is also described. This tool combines Evolutionary Programming, classical neural learning algorithms and the learning manager, MBP. This tool is aimed at solving nonlinear modelling problems with the use of modular neural networks.Finally, an outline of the modelling process with the tools developed in this work is given. This process is applied to the modelling and identification of three nonlinear systems, which are: a dc motor, a nonlinear system with hysteresis, and a piezoelectric element. The three cases are modelled satisfactorily and the usefulness of the framework presented is confirmed.
8

Aspects of algorithms and dynamics of cellular paradigms

Pazienza, Giovanni Egidio 15 December 2008 (has links)
Els paradigmes cel·lulars, com les xarxes neuronals cel·lulars (CNN, en anglès) i els autòmats cel·lulars (CA, en anglès), són una eina excel·lent de càlcul, al ser equivalents a una màquina universal de Turing. La introducció de la màquina universal CNN (CNN-UM, en anglès) ha permès desenvolupar hardware, el nucli computacional del qual funciona segons la filosofia cel·lular; aquest hardware ha trobat aplicació en diversos camps al llarg de la darrera dècada. Malgrat això, encara hi ha moltes preguntes a obertes sobre com definir els algoritmes d'una CNN-UM i com estudiar la dinàmica dels autòmats cel·lulars. En aquesta tesis es tracten els dos problemes: primer, es demostra que es possible acotar l'espai dels algoritmes per a la CNN-UM i explorar-lo gràcies a les tècniques genètiques; i segon, s'expliquen els fonaments de l'estudi dels CA per mitjà de la dinàmica no lineal (segons la definició de Chua) i s'il·lustra com aquesta tècnica ha permès trobar resultats innovadors. / Los paradigmas celulares, como las redes neuronales celulares (CNN, eninglés) y los autómatas celulares (CA, en inglés), son una excelenteherramienta de cálculo, al ser equivalentes a una maquina universal deTuring. La introducción de la maquina universal CNN (CNN-UM, eninglés) ha permitido desarrollar hardware cuyo núcleo computacionalfunciona según la filosofía celular; dicho hardware ha encontradoaplicación en varios campos a lo largo de la ultima década. Sinembargo, hay aun muchas preguntas abiertas sobre como definir losalgoritmos de una CNN-UM y como estudiar la dinámica de los autómatascelular. En esta tesis se tratan ambos problemas: primero se demuestraque es posible acotar el espacio de los algoritmos para la CNN-UM yexplorarlo gracias a técnicas genéticas; segundo, se explican losfundamentos del estudio de los CA por medio de la dinámica no lineal(según la definición de Chua) y se ilustra como esta técnica hapermitido encontrar resultados novedosos. / Cellular paradigms, like Cellular Neural Networks (CNNs) and Cellular Automata (CA) are an excellent tool to perform computation, since they are equivalent to a Universal Turing machine. The introduction of the Cellular Neural Network - Universal Machine (CNN-UM) allowed us to develop hardware whose computational core works according to the principles of cellular paradigms; such a hardware has found application in a number of fields throughout the last decade. Nevertheless, there are still many open questions about how to define algorithms for a CNN-UM, and how to study the dynamics of Cellular Automata. In this dissertation both problems are tackled: first, we prove that it is possible to bound the space of all algorithms of CNN-UM and explore it through genetic techniques; second, we explain the fundamentals of the nonlinear perspective of CA (according to Chua's definition), and we illustrate how this technique has allowed us to find novel results.
9

A new approach to Decimation in High Order Boltzmann Machines

Farguell Matesanz, Enric 20 January 2011 (has links)
La Màquina de Boltzmann (MB) és una xarxa neuronal estocàstica amb l'habilitat tant d'aprendre com d'extrapolar distribucions de probabilitat. Malgrat això, mai ha arribat a ser tant emprada com d'altres models de xarxa neuronal, com ara el perceptró, degut a la complexitat tan del procés de simulació com d'aprenentatge: les quantitats que es necessiten al llarg del procés d'aprenentatge són normalment estimades mitjançant tècniques Monte Carlo (MC), a través de l'algorisme del Temprat Simulat (SA). Això ha portat a una situació on la MB és més ben aviat considerada o bé com una extensió de la xarxa de Hopfield o bé com una implementació paral·lela del SA. Malgrat aquesta relativa manca d'èxit, la comunitat científica de l'àmbit de les xarxes neuronals ha mantingut un cert interès amb el model. Una de les extensions més rellevants a la MB és la Màquina de Boltzmann d'Alt Ordre (HOBM), on els pesos poden connectar més de dues neurones simultàniament. Encara que les capacitats d'aprenentatge d'aquest model han estat analitzades per d'altres autors, no s'ha pogut establir una equivalència formal entre els pesos d'una MB i els pesos d'alt ordre de la HOBM. En aquest treball s'analitza l'equivalència entre una MB i una HOBM a través de l'extensió del mètode conegut com a decimació. Decimació és una eina emprada a física estadística que es pot també aplicar a cert tipus de MB, obtenint expressions analítiques per a calcular les correlacions necessàries per a dur a terme el procés d'aprenentatge. Per tant, la decimació evita l'ús del costós algorisme del SA. Malgrat això, en la seva forma original, la decimació podia tan sols ser aplicada a cert tipus de topologies molt poc densament connectades. La extensió que es defineix en aquest treball permet calcular aquests valors independentment de la topologia de la xarxa neuronal; aquest model es basa en afegir prou pesos d'alt ordre a una MB estàndard com per a assegurar que les equacions de la decimació es poden solucionar. Després, s'estableix una equivalència directa entre els pesos d'un model d'alt ordre, la distribució de probabilitat que pot aprendre i les matrius de Hadamard: les propietats d'aquestes matrius es poden emprar per a calcular fàcilment els pesos del sistema. Finalment, es defineix una MB estàndard amb una topologia específica que permet entendre millor la equivalència exacta entre unitats ocultes de la MB i els pesos d'alt ordre de la HOBM. / La Máquina de Boltzmann (MB) es una red neuronal estocástica con la habilidad de aprender y extrapolar distribuciones de probabilidad. Sin embargo, nunca ha llegado a ser tan popular como otros modelos de redes neuronals como, por ejemplo, el perceptrón. Esto es debido a la complejidad tanto del proceso de simulación como de aprendizaje: las cantidades que se necesitan a lo largo del proceso de aprendizaje se estiman mediante el uso de técnicas Monte Carlo (MC), a través del algoritmo del Temple Simulado (SA). En definitiva, la MB es generalmente considerada o bien una extensión de la red de Hopfield o bien como una implementación paralela del algoritmo del SA. Pese a esta relativa falta de éxito, la comunidad científica del ámbito de las redes neuronales ha mantenido un cierto interés en el modelo. Una importante extensión es la Màquina de Boltzmann de Alto Orden (HOBM), en la que los pesos pueden conectar más de dos neuronas a la vez. Pese a que este modelo ha sido analizado en profundidad por otros autores, todavía no se ha descrito una equivalencia formal entre los pesos de una MB i las conexiones de alto orden de una HOBM. En este trabajo se ha analizado la equivalencia entre una MB i una HOBM, a través de la extensión del método conocido como decimación. La decimación es una herramienta propia de la física estadística que también puede ser aplicada a ciertos modelos de MB, obteniendo expresiones analíticas para el cálculo de las cantidades necesarias en el algoritmo de aprendizaje. Por lo tanto, la decimación evita el alto coste computacional asociado al al uso del costoso algoritmo del SA. Pese a esto, en su forma original la decimación tan solo podía ser aplicada a ciertas topologías de MB, distinguidas por ser poco densamente conectadas. La extensión definida en este trabajo permite calcular estos valores independientemente de la topología de la red neuronal: este modelo se basa en añadir suficientes pesos de alto orden a una MB estándar como para asegurar que las ecuaciones de decimación pueden solucionarse. Más adelante, se establece una equivalencia directa entre los pesos de un modelo de alto orden, la distribución de probabilidad que puede aprender y las matrices tipo Hadamard. Las propiedades de este tipo de matrices se pueden usar para calcular fácilmente los pesos del sistema. Finalmente, se define una BM estándar con una topología específica que permite entender mejor la equivalencia exacta entre neuronas ocultas en la MB y los pesos de alto orden de la HOBM. / The Boltzmann Machine (BM) is a stochastic neural network with the ability of both learning and extrapolating probability distributions. However, it has never been as widely used as other neural networks such as the perceptron, due to the complexity of both the learning and recalling algorithms, and to the high computational cost required in the learning process: the quantities that are needed at the learning stage are usually estimated by Monte Carlo (MC) through the Simulated Annealing (SA) algorithm. This has led to a situation where the BM is rather considered as an evolution of the Hopfield Neural Network or as a parallel implementation of the Simulated Annealing algorithm. Despite this relative lack of success, the neural network community has continued to progress in the analysis of the dynamics of the model. One remarkable extension is the High Order Boltzmann Machine (HOBM), where weights can connect more than two neurons at a time. Although the learning capabilities of this model have already been discussed by other authors, a formal equivalence between the weights in a standard BM and the high order weights in a HOBM has not yet been established. We analyze this latter equivalence between a second order BM and a HOBM by proposing an extension of the method known as decimation. Decimation is a common tool in statistical physics that may be applied to some kind of BMs, that can be used to obtain analytical expressions for the n-unit correlation elements required in the learning process. In this way, decimation avoids using the time consuming Simulated Annealing algorithm. However, as it was first conceived, it could only deal with sparsely connected neural networks. The extension that we define in this thesis allows computing the same quantities irrespective of the topology of the network. This method is based on adding enough high order weights to a standard BM to guarantee that the system can be solved. Next, we establish a direct equivalence between the weights of a HOBM model, the probability distribution to be learnt and Hadamard matrices. The properties of these matrices can be used to easily calculate the value of the weights of the system. Finally, we define a standard BM with a very specific topology that helps us better understand the exact equivalence between hidden units in a BM and high order weights in a HOBM.
10

Contribución al estudio del proceso de doblado al aire de chapa. Modelo de predicción del ángulo de recuperación y del radio de doblado final

Garcia-Romeu, Maria Luisa 24 October 2005 (has links)
Modelo de predicción de la geometría final de una pieza de chapa, radio y ángulo de doblado final, producida mediante un proceso de doblado al aire. / Prediction model of final geometry of sheet metal part, radius and final bending angle, manufactured by air free -V bending process.

Page generated in 0.0617 seconds