Spelling suggestions: "subject:"cohomology""
51 |
Cycles algébriques et cohomologie de certaines variétés projectives complexesCharles, François 06 April 2010 (has links) (PDF)
Dans ma thèse, je propose plusieurs contributions à l'étude de la cohomologie des variétés projectives complexes ainsi qu'à la construction de cycles algébriques. Le mémoire se compose de plusieurs parties qui, si elles sont indépendantes, essaient toutes trois de tirer parti de la nature multiple de ces variétés, à la fois variétés kähleriennes, donc objets analytiques, variétés algébriques, et enfin objets arithmétiques, étant toujours définies sur un corps de type fini sur $\Q$. La première partie de ce texte, parue au journal de Crelle, s'intéresse au problème de la topologie des variétés conjuguées. On y répond à une question de Grothendieck en y exhibant deux variétés conjuguées dont les algèbres de cohomologie réelles ne sont pas isomorphes. Dans une deuxième partie, on aborde le problème de la construction des cycles algébriques dont l'existence est prévue par les conjectures standards, pour ensuite examiner de manière plus détaillée le cas des variétés hyperkahleriennes. Nous utilisons principalement des méthodes infinitésimales en théorie de Hodge. Enfin, dans la troisième partie, parue aux International Mathematical Research Notices, on s'intéresse au problème du lieu de définition des fonctions normales associées aux familles de cycles dans les variétés projectives complexes. On y prolonge des résultats récents de Brosnan et Pearlstein qui démontrent l'algébricité de ce lieu en prouvant des théorèmes de comparaison avec la cohomologie étale $l$-adique et en démontrant, sous certaines hypothèses de monodromie, que ces lieux sont définis sur un corps de nombres.
|
52 |
Théorie de Galois inverse et arithmétique des espaces de HurwitzCadoret, Anna. Debès, Pierre. January 2007 (has links)
Reproduction de : Thèse de doctorat : Mathématiques pures : Lille 1 : 2004. / N° d'ordre (Lille 1) : 3543. Textes en anglais et en français. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 136-138.
|
53 |
Caractère de Chern en cohomologie basique équivariante / Chern character in equivariant basic cohomologyLiu, Wenran 29 November 2017 (has links)
Depuis 1980, il est un problème ouvert de donner des formules cohomologiques pour l'indice basique d'un opérateur différentiel basique transversalement elliptique sur un fibré vectoriel au dessus d'une variété feuilletée. Dans les années 1990, El Kacimi-Alaoui a proposé d'utiliser la théorie de Molino pour étudier cette indice. Molino a montré qu'à tout feuilletage Riemannien transversalement orienté, nous pouvons associer une variété, appelée variété basique, qui est munie d'une action du groupe orthogonal, El Kacimi-Alaoui a montré comment associer à l'opérateur basique transversalement elliptique un opérateur sur un fibré vectoriel, appelé fibré utile, au dessus de la variété basique.L'idée est d'obtenir la formule cohomologique espérée à partir des résultats sur l'opérateur sur le fibré utile. Cette thèse est une première étape dans cette direction. Lorsque le feuilletage Riemannien est de Killing, Goertsches et Töben ont remarqué qu'il existe un isomorphisme cohomologique naturel entre la cohomologie basique équivariante du feuilletage de Killing et la cohomologie équivariante de la variété basique.Le résultat principal de cette thèse est de donner une réalisation géométrique de l'isomorphisme cohomologique ci-dessus à travers les caractères de Chern sous certaine Hypothèse. / From 1980s, it is an open problem of proposing cohomologic formula for the basic index of a transversally elliptic basic differential operator on a vector bundle over a foliated manifold. In 1990s, El Kacimi-Alaoui has proprosed to use the Molino theory for study this index. Molino has proved that to every transversally oriented Riemannien foliation, we can associate a manifold, called basique manifold, which is équiped with an action of orthogonal group, El Kacimi-Alaoui has shown how to associate a transversally elliptic basic differential operator an operator on a vector bundle, called useful bundle, over the basique manifold.The idea is to obtain the desired cohomologic formula from résultats about the operator on the useful bundle. This thesis is a first step in this direction. While the Riemannien foliation is Killing, Goertsches et Töben have remarked that there exists a naturel cohomologic isomorphism between the equivariant basique cohomology of the Killing foliation and the equivariant cohomology of the basique manifold.The principal result of this thesis is the geometric realisation of the cohomologic isomorphism by Chern characters under some hypothèses.
|
54 |
Invariants cohomologiques des groupes de Coxeter finis / Cohomological invariants of finite Coxeter groups.Ducoat, Jerôme 22 October 2012 (has links)
Cette thèse traite des invariants cohomologiques en cohomologie galoisienne des groupes de Coxeter finis en caractéristique nulle. On établit d'abord un principe général d'annulation vérifié par tout invariant cohomologique d'un groupe de Coxeter fini sur un corps de caractéristique nulle suffisamment grand. On utilise ensuite ce principe pour déterminer tous les invariants cohomologiques des groupes de Weyl de type classique à coefficients modulo 2 sur un corps de caractéristique nulle. / This PhD thesis deals with cohomological invariants in Galois cohomology of finite Coxeter groups in characteristic zero. We first state a general vanishing principle for the cohomological invariants of a finite Coxeter group over a sufficiently large field of characteristic zero. We then use this principle to determine all the cohomological invariants of the Weyl groups of classical type with coefficients modulo 2 over a field of characteristic zero.
|
55 |
Déformation des feuilletages par variétés complexes / Deformations of foliations by complex manifoldsBurel, Thomas 10 December 2010 (has links)
L'objet de ce travail est de généraliser au cas des variétés feuilletées par variétés complexes la théorie des déformations de variétés complexes compactes développée notamment par les travaux de Kodaira et Spencer vers la fi n des années cinquante. Après avoir défni la notion de famille de déformations de variétés feuilletées par variétés complexes compactes, nous avons pu obtenir un analogue des théorèmes de rigidité, de complétude et d'existence dans notre cadre. Les méthodes de démonstration usant de la théorie du potentiel ne sont pas généralisables car les opérateurs différentiels considérés ici ne sont plus elliptiques. On se tourne alors vers des techniques de séries majorantes pour obtenir ces résultats, en particulier pour le théorème d'existence qui généralise la démonstration faite par Forster et Knorr en 1974. / The aim of this work is to generalise the study of deformations of complex manifolds by kodaira and Spencer to the case of manifolds foliated by complex manifolds. After defning the notion of family of deformations of compact manifold foliated by complex manifolds, we prove a theorem of rigidity, one of completeness and one of existence in our framework. We can not apply one potential theory here, so we have to use power series technics.
|
56 |
Variétés rationnelles et torseurs sous les groupes linéaires : obstruction de Brauer-Manin pour les points entiers et invariants cohomologiques supérieurs / Rational varieties and torsors under linear algebraic groups : Brauer-Manin obstruction over the integers and higher cohomological invariants over an arbitrary fieldCao, Yang 06 June 2017 (has links)
Dans cette thèse, on s’intéresse à des propriétés arithmétiques des variétés algébriques. Elle contient deux parties : partie géométrique (sur un corps quelconque) et partie arithmétique (sur un corps de nombres). Dans la partie géométrique, j’étudie le quotient par sa partie constante du troisième groupe de cohomologie non ramifiée des surfaces (géométriquement) rationnelles et de leurs torseurs universels. Pour les surfaces de del Pezzo de degré au moins 5, je montre que ce quotient est trivial, sauf pour des surfaces de del Pezzo de degré 8 d’un type particulier. Pour les torseurs universels ci-dessus, je montre que ce quotient est fini et je donne une condition suffisante pour qu’il soit nul, en termes de la structure galoisienne du groupe de Picard géométrique de la surface. Dans la partie arithmétique, on étudie l’obstruction de Brauer–Manin à l’approximation forte. En collaboration avec C. Demarche et F. Xu, nous établissons l’équivalence de l’obstruction de Brauer-Manin étale et de l’obstruction de descente pour les variétés quasi-projectives. Ensuite, j’établis un théorème très général sur l’approximation forte pour les variétés ouvertes munies d’une action d’un groupe linéaire connexe G et dont un ouvert est un espace homogène de G. / In this Ph.D. thesis, we investigate some arithmetic properties of algebraic varieties. The thesis consists of two parts: a geometric part (over an arbitrary field) and an arithmetic part (over a number field). The geometric part is devoted to the study of the quotient by its constant part of the third unramified cohomology group of (geometrically) rational surfaces and of their universal torsors. For del Pezzo surfaces of degree at least 5, we show that this quotient is zero, except in the case of del Pezzo surfaces of degree 8 of a special type. For universal torsors as above, we show this quotient is finite and we give a sufficient condition for it to vanish. This condition involves the Galois structure of the geometrical Picard group. The arithmetic part is devoted to the study of the Brauer-Manin obstruction to strong approximation. In collaboration with C. Demarche and F. Xu, we establish the equivalence of étale Brauer-Manin obstruction and the descent obstruction. Then I establish a general theorem about strong approximation of open varieties equipped with an action of a connected linear algebraic group G and containing a G-homogeneous space as open subset.
|
57 |
Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra / Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associativeArmenta Armenta, Marco 10 September 2019 (has links)
Dans cette thèse nous démontrons que le calcul de Tamarkin-Tsygan d’une algèbre `associative de dimension finie sur un corps est un invariant dérivé. En d’autres mots, le résultat principal de ce travail est le suivant : une équivalence dérivée entre deux algèbres de dimension finie sur un corps induit un isomorphisme entre l’homologie de Hochschild et la cohomologie de Hochschild qui respecte simultanément le cup produit, le cap produit, le crochet de Gerstenhaber et la ´différentielle de Connes. / In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensionalassociative algebra over a field is a derived invariant. In other words, the mainresult of this work goes as follows: a derived equivalence between two finite dimensional associative algebras over a field induces an isomorphism betweenHochschild homology and Hochschild cohomology that respects simultaneouslythe cup product, the cap product, the Gerstenhaber bracket and the Connes differential.
|
58 |
Facteurs locaux l-adiques / Local factors in l-adic cohomologyGuignard, Quentin 22 May 2019 (has links)
Cette thèse est composée de deux parties indépendantes. Dans la première, nous donnons une démonstration alternative du théorème d'aplatissement par éclatements de Raynaud-Gruson. Celle-ci repose sur la construction et l'étude de certains espaces valuatifs, et nous permet de dégager la notion de $Phi$-anneau, qui fournit un substitut algébrique aux anneaux topologiques adiques : la notion correspondante de $Phi$-schéma est aux schémas ce que les espaces rigides sont aux schémas formels.Dans une seconde partie, nous nous inspirons de travaux de Laumon et de Deligne pour démontrer l'existence de facteurs $varepsilon$ locaux dans un cadre géometrique. Nous démontrons ensuite, en usant de la méthode la phase stationnaire $ell$-adique, une formule du produit pour le déterminant de la cohomologie d'un faisceau $ell$-adique sur une courbe en caractéristique $p neq ell$ positive : cela étend des résultats précédemment connus pour un corps de base fini. Parmi les outils utilisées figure la théorie du corps de classes géométrique, dont nous donnons une démonstration géométrique s'inspirant de l'approche de Deligne pour le cas non ramifié. / This thesis is divided in two parts. We first give an alternative proof of the Raynaud-Gruson's theorem regarding flattening by blow-ups. The argument rests upon the study of certain valuative spaces associated to a refined notion of ring, which we name $Phi$-rings : these are algebraic substitutes to adic topological rings, and the corresponding $Phi$-schemes can be considered as generic fibers of schemes, in the same way that rigid spaces are generic fibers of formal schemes.In the second part, we prove the existence of local $varepsilon$-factors in a geometric setting. These results, which are inspired by works of Laumon and Deligne, lead to a product formula for the determinant of the cohomology of an $ell$-adic sheaf on a curve over a perfect field of positive characteristic $p neq ell$, which was previously known for a finite base field. One of our main tools is geometric class field theory; we provide a detailed proof of its global version by extending Deligne's approach from the tamely ramified case to the general case.
|
59 |
On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups / Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tressesCombe, Noémie 24 May 2018 (has links)
Cette thèse concerne principalement deux objets classiques étroitement liés: d'une part la variété des polynômes complexes unitaires de degré $d>1$ à une variable, et à racines simples (donc de discriminant différent de zéro), et d'autre part, les groupes de tresses d'Artin avec d brins. Le travail présenté dans cette thèse propose une nouvelle approche permettant des calculs cohomologiques explicites à coefficients dans n'importe quel faisceau. En vue de calculs cohomologiques explicites, il est souhaitable d'avoir à sa disposition un bon recouvrement au sens de Čech. L'un des principaux objectifs de cette thèse est de construire un tel recouvrement basé sur des graphes (appelés signatures) qui rappellent les `dessins d'enfant' et qui sont associées aux polynômes complexes classifiés par l'espace de polynômes. Cette décomposition de l'espace de polynômes fournit une stratification semi-algébrique. Le nombre de composantes connexes de chaque strate est calculé dans le dernier chapitre ce cette thèse. Néanmoins, cette partition ne fournit pas immédiatement un recouvrement adapté au calcul de la cohomologie de Čech (avec n'importe quels coefficients) pour deux raisons liées et évidentes: d'une part les sous-ensembles du recouvrement ne sont pas ouverts, et de plus ils sont disjoints puisqu'ils correspondent à différentes signatures. Ainsi, l'objectif principal du chapitre 6 est de ``corriger'' le recouvrement de départ afin de le transformer en un bon recouvrement ouvert, adapté au calcul de la cohomologie Čech. Cette construction permet ensuite un calcul explicite des groupes de cohomologie de Čech à valeurs dans un faisceau localement constant. / This thesis mainly concerns two closely related classical objects: on the one hand, the variety of unitary complex polynomials of degree $ d> 1 $ with a variable, and with simple roots (hence with a non-zero discriminant), and on the other hand, the $d$ strand Artin braid groups. The work presented in this thesis proposes a new approach allowing explicit cohomological calculations with coefficients in any sheaf. In order to obtain explicit cohomological calculations, it is necessary to have a good cover in the sense of Čech. One of the main objectives of this thesis is to construct such a good covering, based on graphs that are reminiscent of the ''dessins d'enfants'' and which are associated to the complex polynomials. This decomposition of the space of polynomials provides a semi-algebraic stratification. The number of connected components in each stratum is counted in the last chapter of this thesis. Nevertheless, this partition does not immediately provide a ''good'' cover adapted to the computation of the cohomology of Čech (with any coefficients) for two related and obvious reasons: on the one hand the subsets of the cover are not open, and moreover they are disjoint since they correspond to different signatures. Therefore, the main purpose of Chapter 6 is to ''correct'' the cover in order to transform it into a good open cover, suitable for the calculation of the Čech cohomology. It is explicitly verified that there is an open cover such that all the multiple intersections are contractible. This allows an explicit calculation of cohomology groups of Čech with values in a locally constant sheaf.
|
60 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and DeformationsButin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
|
Page generated in 0.0512 seconds