• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 10
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 73
  • 71
  • 21
  • 16
  • 14
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Major Challenges in DDDM Implementation: A Single-Case Study : What are the Main Challenges for Business-to-Business MNCs to Implement a Data-Driven Decision-Making Strategy?

Varvne, Matilda, Cederholm, Simon, Medbo, Anton January 2020 (has links)
Over the past years, the value of data and DDDM have increased significantly as technological advancements have made it possible to store and analyze large amounts of data at a reasonable cost. This has resulted in completely new business models that has disrupt whole industries. DDDM allows businesses to rely their decisions on data, as opposed to on gut feeling. Up until this point, literature is eligible to provide a general view of what are the major challenges corporations encounter when implementing a DDDM strategy. However, as the field is still rather new, the challenges identified are yet very general and many corporations, especially B2B MNCs selling consumer goods, seem to struggle with this implementation. Hence, a single-case study on such a corporation, named Alpha, was carried out with the purpose to explore what are their major challenges in this process. Semi-structured interviews revealed evidence of four major findings, whereas, execution and organizational culture were supported in existing literature, however, two additional findings associated with organizational structure and consumer behavior data were discovered in the case of Alpha. Based on this, the conclusions drawn were that B2B MNCs selling consumer goods encounter the challenges of identifying local markets as frontrunners for strategies such as the one to become more data-driven, as well as the need to find a way to retrieve consumer behavior data. With these two main challenges identified, it can provide a starting point for managers when implementing DDDM strategies in B2B MNCs selling consumer goods in the future.
52

The Cost of Algorithmic decisions : A Systematic Literature Review

Erhard, Annalena January 2021 (has links)
Decisions have been automated since the early days. Ever since the rise of AI, ML and DataAnalytics, algorithmic decision-making has experienced a boom time. Nowadays, using AI withina company is said to be critical to the success of a company. Considering the point that it can bequite costly to develop AI/ ML and integrating it into decision-making, it is striking how littleresearch was put into the identification and analysis of its cost drivers by now. This thesis is acontribution to raise and the awareness of possible cost drivers to algorithmic decisions. Thetopic was divided in two subgroups. That is solely algorithms and hybrid decision-making. Asystematic literature review was conducted to create a theoretical base for further research. Thecost drivers for algorithms to make decisions without human interaction, the identified costdrivers identified can be found at Data Storage (including initial, floor rent, energy, service,disposal, and environmental costs), Data Processing, Transferring and Migrating. Additionally,social costs and the ones related to fairness as well as the ones related to algorithms themselves(Implementation and Design, Execution and Maintenance) could be found. Business Intelligenceused for decision making raises costs in Data quality, Update delays of cloud systems, Personneland Personnel training, Hardware, Software, Maintenance and Data Storage. Moreover, it isimportant to say that the recurrence of some costs was detected. Further research should go inthe direction of applicability of the theoretical costs in practice.
53

Nurse Educators' Perspectives of Supplemental Computer-Assisted Formative Assessment in an Associate Degree Nursing Program

Sugg, Jennifer Buehler 01 January 2015 (has links)
Despite the implementation of various strategies to improve outcomes, the pass rates for the National Council Licensure Exam for Registered Nurses (NCLEX-RN) for an associate degree nursing (ADN) program continue to decrease. This study examined the use of a supplemental computer-assisted formative assessment (SCAFA) as a strategy for NCLEX-RN success. A qualitative case study with a theoretical framework based on constructivism was designed to investigate nurse educators' perspectives of this particular strategy for successful outcomes. To explore these perspectives, data were collected from face-to-face interviews with nurse educators and from program documents from 1 ADN program in the southeastern United States. Guiding research questions explored nurse educators' perceptions of SCAFA and determined if and how data from these assessments were utilized. The data were analyzed using lean coding to determine emerging themes. The findings showed that a lack of consistency in the use of this tool diminishes the effectiveness of this supplemental strategy. Additional themes that emerged: educator and student attitudes, orientation and SCAFA process, resource allocation, training and preparation, and data-driven decision making. These findings were used to design a professional development project focused on the effective use of SCAFA throughout the nursing program. The study and project are expected to promote positive social change by contributing to the body of evidence on computer-assisted formative assessment, bolstering student and nurse educator learning, increasing the number of nursing students who are prepared to successfully pass the NCLEX-RN, improving program outcomes, and contributing to the professional nursing workforce.
54

A Case Study of RTI Data Teams

Washington, William Lee 01 January 2015 (has links)
This qualitative case study addressed the persistent achievement gaps in annual measurable objectives (AMO) data at a public rural elementary school in the Mideast United States. Response to intervention (RTI) data teams from 2010 did not produce expected student gains after 5 years of implementation in the school under study. Based on Mandinach and Jackson's data-driven decision making conceptual framework, the purpose of this study was to examine the work of the RTI data teams as they attempted to improve student learning and close achievement gaps. A purposeful sample of 13 staff members involved in the RTI implementation process was interviewed. In addition, the RTI data team and student documentation were content analyzed for process and outcomes. Open coping and thematic data analysis of the interview transcripts revealed themes of fidelity, consistency, professional development, and data use in isolation. Findings suggested that the RTI teams lack sufficient time, professional development, and the capacity to address student learning gaps adequately. As an outcome, a guiding model for designing, implementing, and evaluating ongoing blended professional development was proposed. The intent of the project is to eliminate implementation barriers and establish effective data-driven decision making practices that improve instructional practice and student learning. This study has could assist educators in their efforts to implement RTI and build organizational capacity for data-driven decision making to address persistent achievement gaps effectively.
55

Data-driven Decision-making for Efficient & Sustainable Production / Datadrivet beslutsfattande för effektiv och hållbar produktion

Broms, Arvid, Liljenberg Olsson, Simon January 2021 (has links)
As a result of digitalization, previously analog systems in the manufacturing industry have become digitalized, including the decision-making processes. Companies are, therefore,becoming more dependent on data for strategic decisions. However, because of the rapid development of digitalization, companies are left blindfolded in the path towards smarter manufacturing which often leads to unsuccessful technological implementations. Therefore, the thesis will explore this problem by asking: What are the required initiatives for successfully implementing digital data-driven decision-making to improve efficiency and sustainability by Swedish manufacturing companies? To answer the research questions, an exploratory multiple case study approach was conducted, where interviews with informants from the industry as well as researchers within the context of smarter manufacturing were made. The findings were then used to derive propositions which worked as the foundation of a conceptual model which functionality would be to illuminate the results in the form of a strategy map. Findings suggest that it is not always necessary for companies to implement technologies linked to large investments to enable digital data-driven decision-making. However, for those that do, there needs to be a clear organizational plan and agenda before executing theprojects since they otherwise often lead to insufficient results. That means, the technological aspects are often not the culprit in failed digital data-driven decision-makingprojects. Additional findings suggest that there are synergies connected to digital data-driven decision-making such as data-sharing possibilities that have the potential of becoming a major aspect within the context of sustainability and efficiency. / Som ett resultat av ökad digitalisering har analoga system i tillverkningsindustrin blivit digitaliserade, vilket inkluderar beslutsfattandet. Företag har därför börjat förlita sig alltmer på data för sina strategiska beslut. Men på grund av den snabba utveckling av digitalisering har tillverkningsföretagen lämnats utan klara riktlinjer för hur de bör gå tillväga för att implementera digitalt datadrivet beslutsfattande på ett effektivt men hållbart sätt. Avhandlingen kommer därför att undersöka detta problem genom att fråga: Vilka är de initiativ som krävs för att framgångsrikt implementera digital datadrivet beslutsfattande med målet att förbättra effektiviteten och hållbarheten hos svenska tillverkningsföretag? För att svara på forskningsfrågorna användes en undersökande metod med flerafallstudier, där intervjuer gjordes med informanter från industrin såväl som forskare inom ramen för smartare tillverkning. Resultaten användes sedan för att härleda förslag som därefter användes till konstruktionen av en konceptuell model vars huvuduppgift var att illustrera resultaten i form av en strategikarta. Slutsatserna pekar på att det inte alltid är nödvändigt för företag att implementera teknik kopplad till stora investeringar för att möjliggöra digitalt datadrivet beslutsfattande. Men för de som valt att implementera sådana system behövs en tydlig organisationsplan innan projekten genomförs eftersom de annars ofta leder till ofördelaktiga resultat. Detta tyder på att de tekniska aspekterna oftast inte är vad som orsakar misslyckade datadrivna beslutsprojekt. Dessutom tyder resultaten på att det finns synergier kopplade till digitalt datadrivet beslutsfattande, till exempel möjligheter att dela data som har potential att bli en viktig aspekt inom hållbarhet och effektivitet.
56

Impacts of Participatory Design on Data Driven Decision Making in Organisations

Rovolis, Georgios January 2023 (has links)
This thesis explores the impacts of applying participatory design (PD) to data-driven decision-making (DDDM) in organisations. Despite the extensive examination of PD and DDDM individually, there is a noticeable research gap in understanding their integration and their impact on decision-making processes in organisations. This research aims to fill this gap by investigating the potential impacts, challenges, benefits, and critical success factors associated with the incorporation of PD activities into DDDM. The study employs a systematic literature review methodology to provide a comprehensive understanding of the topic. The findings contribute to the development of best practices and guidelines for organizations seeking to optimise their decision-making processes by incorporating participatory design principles into their data-driven decision-making strategies. The research also considers the ethical implications of data-driven decision-making. Ultimately, this thesis advances our understanding of how PD and DDDM can be effectively combined to achieve better decision-making outcomes.
57

Datadrivna beslut inom Livslångt lärande : En process för att organisationer ska lyckas med strategisk kompetensförsörjning / Data-driven Decision-making in Lifelong Learning : A Process for Organizations to Succeed with Strategic Competence Provision

Bäckelin, Jonas January 2023 (has links)
Syftet med denna studie var att ta fram en process för hur modern teknik kan användas för att organisationer ska lyckas med strategisk kompetensförsörjning. Begreppet datadrivna beslut används när så kallade klassificeringsalgoritmer kan hjälpa oss att upptäcka en ’önskad kompetens som saknas’ eller ’föreslå ett område som vi behöver utveckla’. Metoden utgår från tjänstedesign och denna studie använde sig av en empati karta, som skapades från en enkät studie på det sociala yrkesnätverket LinkedIn med virtuell snöbollsmetod (jmf. respondentdriven sampling). Den utgår från kvalitativa data som beskriver insikter utifrån användarnas upplevelser och drivkrafter. Sedan var det viktig att definiera vilka aktörer som berörs av utmaningen för att kunna beskriva stegen i en användarresa och ta fram en designskiss. Design processen inkluderade även intervjuer med huvudaktörerna för att kunna undersöka rotorsaker och sålla idéer med hjälp av klusteranalys. Slutligen testades en digital prototyp och för att utvärdera vad som fungerade och titta på förbättringar skapades feedback matris. Underlaget för att undersöka problemet kommer från behovet inom användargruppen och perspektiv från aktörer, som sedan validerats genom att använda flera olika verktyg hämtade från tjänstedesign. Slutsatsen var att datadrivet beslutsfattande går ut på att använda mätbara indikatorer och data för att fatta beslut som är i linje med strategiska mål inom kompetensförsörjning. Detta redovisas som en användarresa som består av stegen ”Initiera & kartlägga”, ”Genomföra & uppföljning” och ”Utvärdera & reflektera”. / The purpose of this study was to develop a process for how modern technology can be used for organizations to succeed in strategic competence provision. The concept of data-driven decisions is used when so-called classification algorithms can help us discover a 'desired competence that is missing' or 'suggest an area that we need to develop'.  The method is based on service design and this study used an empathy map, which was created from a survey on the professional social network LinkedIn using the virtual snowball method (cf. respondent-driven sampling). It is based on qualitative data that describes insights based on the users' experiences and driving forces. Then it was important to define which stakeholders that are affected by the challenge in order to be able to describe the steps in a journey map and produce a design sketch. The design process also included interviews with the main stakeholders in order to investigate root causes and sorting ideas using cluster analysis. Finally, a digital prototype was tested and to evaluate what worked and look for improvements, a feedback matrix was created. The basis for investigating the problem comes from the need within the user group and perspectives from stakeholders, which are then validated by using several different tools taken from service design. The conclusion was that data-driven decision-making involves define measurable indicators and data to make decisions that are in line with strategic goals in competence provision. This is reported as a user journey consisting of the steps "Initiate & map out", "Implement & follow up" and "Evaluate & reflect".
58

A Study of School Climate and Its Relationship to the Accountability-Focused Work ofPrincipals

Hostiuck, Katherine E. 17 September 2015 (has links)
No description available.
59

Data-Driven Decision-Making for Sustainable Manufacturing Operations : An empirical study of supply chain operations within the Swedish manufacturing industry / Datadriven beslutsfattning för hållbara tillverkningsprocesser : En empirisk studie om försörjningskedjor inom den svenska tillverkningsindustrin

Nilsson, Viktor, Westbroek, Arvid January 2021 (has links)
A paradigm shift is taking place in the manufacturing industry, where companies strive for adopting digital tools to be able to compete against their competitors. The endeavor of becoming digitized is taking place simultaneously as the global awareness of sustainability increases. For the reasons that current literature is experiencing a knowledge gap that links data-driven processes, sustainability, and supply chain operations, there is a need for further exploration within this area. Therefore, the aim of this report is to investigate the business opportunities and challenges of data-driven decision-making, and how it relates to more sustainable supply chain operations within the manufacturing industry. To investigate the area within data-driven decision-making and its impact on manufacturing supply chain operations, a literature review was initially conducted and was followed by interview sessions with case companies and experts. In total, 14 interviews were conducted within the area of sustainability, supply chain operations, and data-driven decision-making. The interviews were conducted to follow the designed framework and thus provide knowledge for the challenges, advantages, applications, and value capture in relation to data-driven decision-making and supply chain operations. Comparing the empirical data with previous literature it was noted that data-driven decision-making entails both multiple challenges and advantages when it comes to improving manufacturers' sustainable performance. The main challenges include establishing efficient information sharing, standardized systems, and obtaining data that shows both reliability and validity. Consequently, by solving these challenges the sustainable benefits can be fulfilled, including a mitigated bullwhip-effect, improved planning, and reduced CO2 emissions. These benefits are driven by the transparency, automatization, and optimization that is incorporated with data-driven decision-making. In conclusion, realizing data-driven decision-making within the manufacturing industry entails several challenges, but if companies overcome the challenges the potential benefits will be unlimited. / Ett paradigmskifte pågår för närvarande i tillverkningsindustrin, där företag strävar efter att använda digitala verktyg för att kunna konkurrera mot sina konkurrenter. Strävan efter att bli digitaliserad sker samtidigt som den globala medvetenheten om hållbarhet ökar. Av anledningarna till att den aktuella litteraturen upplever ett tomrum av kunskap som länkar datadrivna processer, hållbarhet och leveranskedjedrift, så finns det ett behov av ytterligare forskning inom detta område. Målet med denna rapport är därför att undersöka affärsmöjligheterna och utmaningarna med datadrivet beslutsfattande, och hur det relaterar till mer hållbara försörjningskedjor inom tillverkningsindustrin. För att undersöka området inom datadrivet beslutsfattande och dess inverkan på leveranskedjedriften och tillverkningsindustrin så genomfördes först en litteraturundersökning som följdes av intervjussessioner med utvalda företag och experter inom området. Sammanlagt intervjuades nio företag och sex experter som valdes ut efter deras kompetenser inom hållbarhet, leveranskedjedrift och datadrivet beslutsfattande. Intervjuerna genomfördes med hjälp av en intervjuguide och därmed ge kunskap om kopplingarna mellan data, aktuella affärsverksamheter och förbättrad ekonomisk, social och miljöprestanda. Detta inkluderar att utforska utmaningar, fördelar, applikationer och värdefångst i kontext till datadrivet beslutsfattande och leveranskedjedrift. Vid analysen av EMPIRISK data och jämförelse med aktuell litteratur noterades det att datadrivet beslutsfattande medför flera olika utmaningar och fördelar när det gäller att förbättra tillverkningsföretagens hållbara prestanda. De viktigaste utmaningarna är att etablera effektiv informationsdelning, standardiserade system och att erhålla data som visar både tillförlitlighet och giltighet. Genom att hantera dessa utmaningar kan de hållbara fördelarna uppnås, vilket inkluderar en minskad bullwhip-effekt, koldioxidutsläpp och förbättrad planering. Dessa fördelar drivs vidare av transparens, automatisering och optimering som ett datadrivet beslutsfattande medför. Sammanfattningsvis innebär förverkligandet av att använda datadrivet beslutsfattande inom tillverkningsindustrin flera utmaningar, men om företag övervinner utmaningarna kommer de potentiella fördelarna att vara obegränsade.
60

A Multi-Site Case Study: Acculturating Middle Schools to Use Data-Driven Instruction for Improved Student Achievement

James, Rebecca C. 05 January 2011 (has links)
In the modern era of high-stakes accountability, test data have become much more than a simple comparison (Schmoker, 2006; Payne & Miller, 2009). The information provided in modern data reports has become an invaluable tool to drive instruction in classrooms. However, there is a lack of good training for educators to evaluate data and translate findings into solid practices that can improve student learning (Blair, 2006; Dynarski, 2008; Light, Wexler, & Heinze, 2005; Payne & Miller, 2009). Some schools are good at collecting data, but often fall short at what to do next. It is the role of the principal to serve as an instructional leader and guide teachers to the answer the reoccurring question of "now what?" The purpose of this study was to investigate ways in which principals build successful data-driven instructional systems within their schools using a qualitative multi-site case study method. This research utilized a triangulation approach with structured interviews, on-site visits, and document reviews from various middle school supervisors, principals, and teachers. The findings are presented in four common themes and patterns identified as essential components administrators used to implement data-driven instructional systems to improve student achievement. The themes are 1) administrators must clearly define the vision and set the expectation of using data to improve student achievement, 2) administrators must take an active role in the data-driven process, 3) data must be easily accessible to stakeholders, and 4) stakeholders must devote time on a regular basis to the data-driven process. The four themes led to the conclusion of ten common steps administrators can use to acculturate their school or school division with the data-driven instruction process. / Ed. D.

Page generated in 0.4096 seconds