• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 12
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 130
  • 74
  • 57
  • 44
  • 35
  • 28
  • 25
  • 19
  • 19
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Criptografia e curvas elípticas /

Flose, Vania Batista Schunck. January 2011 (has links)
Orientador: Henrique Lazari / Banca: Jaime Edmundo Apaza Rodriguez / Banca: Carina Alves / Resumo: Com o crescimento da comunicação nos dias atuais, a segurança na troca de informa- ções tem se tornado cada vez mais importante o que tem dado destaque a Criptografia. A criptografia consiste de técnicas baseadas em conceitos matemáticos que tem por objetivo transmitir informações sigilosas forma segura através de canais monitorados por terceiros. Um ramo da Criptografia que vem crescendo está ligado ao estudo de curvas elípticas, que é uma das áreas mais ricas da matemática. O nome curvas elípticas é de certa forma enganoso, pois diferente do sentido literal da palavra, que leva a pensar em elipses, se trata de equações relacionadas a um determinado tipo de curva algébrica. Neste trabalho, as curvas elípticas serão estudadas do ponto de vista da álgebra e da teoria dos números com o objetivo de conhecer a Criptografia de Curvas Elípticas que é uma variação do Problema do Logaritmo Discreto / Abstract: With the growth of communication these days, security in exchange for information has become increasingly important what has given prominence to Cryptography. Encryption techniques is based on concepts mathematical aims to transmit sensitive information securely through channels monitored by third parties. A branch of cryptography that has growing up is connected to the study of elliptic curves, which is one of the most rich mathematics. The name elliptic curves is somewhat misleading, as di erent from the literal sense of the word, which makes one think of ellipses if equations is related to a certain type of algebraic curve. in this work, elliptic curves are studied from the viewpoint of algebra and of number theory in order to know the Curve Cryptography Elliptic is a variation of the discrete logarithm problem / Mestre
82

Sobre existência e não-existência de soluções para problemas elípticos que envolvem um operador não-linear do tipo Timoshenko. / On existence and non-existence of solutions for elliptic problems involving a non-linear operator of the Tymoshenko type.

AIRES, José Fernando Leite. 05 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-05T18:49:14Z No. of bitstreams: 1 JOSÉ FERNANDO LEITE AIRES - DISSERTAÇÃO PPGMAT 2004..pdf: 619280 bytes, checksum: fd21b35d13e1bed399affca7c1d08370 (MD5) / Made available in DSpace on 2018-07-05T18:49:14Z (GMT). No. of bitstreams: 1 JOSÉ FERNANDO LEITE AIRES - DISSERTAÇÃO PPGMAT 2004..pdf: 619280 bytes, checksum: fd21b35d13e1bed399affca7c1d08370 (MD5) Previous issue date: 2004-03 / Capes / Para visualização completa do resumo recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas de equações que não foram possíveis copia-las aqui. / For a complete preview of the summary we recommend downloading the file, since it has formulas of equations that could not be copied here.
83

Existência e multiplicidade de soluções para uma classe de equações de Schrödinger com expoente supercrítico

Moreira Neto, Sandra Imaculada 30 June 2014 (has links)
Made available in DSpace on 2016-06-02T20:27:41Z (GMT). No. of bitstreams: 1 5967.pdf: 689681 bytes, checksum: a9967726690acb5b17c1cb1b10fddbfe (MD5) Previous issue date: 2014-06-30 / Neste trabalho, estabelecemos a existência e multiplicidade de soluções para uma classe de equações de Schrodinger quase lineares com não linearidades subcrítica ou supercrítica. A fim de utilizarmos métodos variacionais, aplicamos uma mudança de variável para reduzirmos as equações quase lineares a equações semilineares, cujos funcionais associados estão bem definidos em um espaço de Banach reflexivo, e em alguns casos, eles estão bem definidos em espaços de Sobolev clássicos. Nosso principal foco e tratar não linearidades supercríticas, e nossa principal dificuldade e a perda das imersães de Sobolev tanto contínuas quanto compactas. Para contornar isso, no primeiro problema, inspirados por [4], impomos condições de integrabilidade que relacionam as não linearidades, as quais podem mudar de sinal e necessitamos também, nesse caso, de provar a existência do primeiro autovalor para o operador Lu = Au A(u2)u, usando para isso os métodos de bifurcação e sub e supersolução. No outro problema, nos baseamos num argumento de truncamento, introduzido por del Pino e Felmer em [27], assim o problema fica reduzido a um problema subcrítico. E seguimos com a prova dos resultados usando métodos variacionais combinados com a iteração de Moser. Estabelecemos também a existência de solução para um problema ressonante, cuja prova faremos usando uma variação do Teorema de Operadores Monítonos, encontrado em [29].
84

Sobre soluções de equações diferenciais parciais elípticas não-lineares em um toro bidimensional. / On solutions of non-linear elliptic partial differential equations in a two-dimensional torus.

ARAÚJO, Rawlilson de Oliveira. 22 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-22T13:53:26Z No. of bitstreams: 1 RAWLILSON DE OLIVEIRA ARAÚJO - DISSERTAÇÃO PPGMAT 2009..pdf: 634807 bytes, checksum: ac58493ea191b2c179670c3c138a40f4 (MD5) / Made available in DSpace on 2018-07-22T13:53:26Z (GMT). No. of bitstreams: 1 RAWLILSON DE OLIVEIRA ARAÚJO - DISSERTAÇÃO PPGMAT 2009..pdf: 634807 bytes, checksum: ac58493ea191b2c179670c3c138a40f4 (MD5) Previous issue date: 2009-02 / CNPq / O resumo foi escrito utilizando formulas e equações matemáticas e por este motivo não fora possível transcreve-lo aqui. Para a visualizar o resumo recomendamos o downloado do arquivo. / The abstract was written using mathematical formulas and equations and for this reason it was not possible to transcribe it here. To view the summary we recommend downloading the file.
85

Existência e multiplicidade de solução para uma classe de equações elípticas via teoria de Morse. / Existence and multiplicity of solution for a class of elliptic equations via Morse theory.

PEREIRA, Denilson da Silva. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T17:05:28Z No. of bitstreams: 1 DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5) / Made available in DSpace on 2018-07-25T17:05:28Z (GMT). No. of bitstreams: 1 DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5) Previous issue date: 2010-12 / Neste trabalho estudamos a existência e multiplicidade de soluções para uma certa classe de problemas elípticos. Utilizaremos métodos variacionais juntamente com a teoria de Morse em dimensão infinita. / In this work, we study the existence and multiplicity of solution for a large class of Elliptic problems. The main tools used are variational methods together with the infinite dimensional Morse Theory.
86

Problemas elípticos semilineares com potenciais ilimitados e/ou com decaimento radial / Elliptics semilineares problems with unbounded potential and/or with radial potential

Oliveira, Luciano Cordeiro de 26 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1 texto completo.pdf: 346839 bytes, checksum: cab5395001fcc113256f79ba4e365ce8 (MD5) Previous issue date: 2010-02-26 / In this work we study two class of elliptic problems modeled on unbounded domains. The study of these class of problems is relevant not only in applied mathematics, but also in nonlinear analysis. In the these problems, since the domain is unbounded, there is a lack of compactness of the Sobolev embedding, bringing some difficults to show the convergence of the Palais-Smale sequence. To solve this difficulty we work in a subspace of the usual Sobolev space where we can recover some compactness result. The solutions are obtained by Lagrange multiplier. We give another proof of results in [6] due to Wei-Yue Ding and Wei-Ming Ni, who used to solve The Mountain Pass Theorem and a priori estimates. The results of our study are due to Habao Su, Zhi-Qiang Wang and Michel Willem. / Neste trabalho, estudamos duas classes de problemas elípticos modeladas em domínios ilimitados. O estudo dessas classes de problemas e relevante não só no campo da matemática aplicada, mas também na área de análise não linear. Nesses problemas, como o domínio é ilimitado, há a perda de compacidade da “imersão" de Sobolev, dificultando a convergência da sequência de “soluções" (sequência de Palais Smale). Essa dificuldade é contornada trabalhando num subespaço do espaço de Sobolev usual onde se recupera a compacidade utilizando resultados de imersão. As soluções são obtidas via multiplicadores de Lagrange. Apresentamos uma outra maneira de resolver um problema em [6], devido a Wei-Yue Ding e Wei-Ming Ni, que utilizaram na solução o Teorema do Passo da Montanha e estimativas a priori. Os resultados de nosso estudo são devidos a Habao Su, Zhi-Qiang Wang e Michel Willem.
87

Conjectura de De Giorgi em dimensões 2 e 3

Sousa, Ivaldo Tributino de 08 March 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:13Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 572294 bytes, checksum: 1c46e916c7cc2e4689880e2687dbee0b (MD5) Previous issue date: 2012-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This word is concerned with the study of bounded solutions of semilinear elliptic equations u − F0(u) = 0 in the whole space Rn, under the assumption that u is monotone in one direction, say, @u/@xn > 0 em Rn. The goal is to establish the one-dimensional character or symmetry of u, namely, that u only depends on one variable or, equivalently, that the level sets of u are hyperplanos. This type of symmetry question was raised by de Giorgi in 1978 (see [6]), who made the folowing conjecture: Conjecture Suppose that u 2 C2(Rn) is solution of the equation u + u − u3 = 0 satisfying |u(x)| 1 and @u @xn > 0 in the whole Rn. Then the level sets of u must be hyperplanes. We show a stronger version of De Giorgi s conjecture is indeed true in dimension 2 and 3 using some techniques in the linear theory developed by Berestychi, Caffarelli and Nirenberg [5] in one of their papers on qualitative properties of solutions of semilinear elliptic equations. / Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas semilineares u − F0(u) = 0 em todo espaço Rn, sob o pressuposto que u é monótona em uma direção, digamos @u/@xn > 0 em Rn. O objetivo é estabelecer o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a seguinte conjectura: Conjectura Suponha que u 2 C2(Rn) é solução da equação u + u − u3 = 0 satisfazendo |u(x)| 1 e @u @xn > 0 em todo Rn. Então os conjuntos de nível de u são hiperplanos. Mostraremos que uma versão forte da conjectura de De Giorgi é de fato verdade em dimensão 2 e 3 usando somente técnicas da teoria linear desenvolvida por Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades qualitativas de equações elípticas semilineares.
88

Clasificación de foliaciones elípticas inducidas por campos cuadráticos reales con centro / Clasificación de foliaciones elípticas inducidas por campos cuadráticos reales con centro

Puchuri, Liliana 25 September 2017 (has links)
Embedded in the study of Hilbert's innitesimal problem is the question of existence and number of limit cycles of linear perturbations of Hamiltonian fields. Since there is available a classication of real quadratic fields with center in R2, we can match them with complex fields in C2 that induce a foliation in P2. Our objective is to classify the foliations in P2 induced by the elds obtained by said classication of quadratic fields with center which are elliptic brations, that is, the ones with level curves of genus one. / En el estudio del problema infinitesimal de Hilbert se encuentra inmersa la tarea de analizar la existencia y de acotar el número de ciclos límite de una perturbación lineal de campos hamiltonianos. Como existe una clasificación de campos cuadráticos reales con centro en R2, podemos asociar campos complejos en C2 que inducen una foliación en P2. El objetivo de este trabajo es clasificar aquellas foliaciones en P2 inducidas por estos campos cuadráticos que sean fibraciones elípticas, es decir, aquellas cuyas curvas de nivel sean de género uno.
89

Esquema compacto de diferenças finitas de alta ordem em malhas hierárquicas / Higher-order finite-difference schemes for hierarchical meshes

Ellen Thais Alves Cerciliar 21 December 2017 (has links)
Este trabalho propõe um esquema de diferenças finitas compacta de alta ordem para resolver problemas elípticos com coeficientes variáveis em malhas composta. São apresentados a formulação matemática e a dedução do método compacto de quarta ordem aplicado à problemas elípticos bidimensionais, em malha regular e composta. Foi adotado o uso da biblioteca PETSc com os seus pré-condicionadores e métodos numéricos para resolver os sistemas lineares resultantes da discretização do problema. Por fim, testes visando verificar o código foram feitos, utilizando o método de soluções manufaturadas, para mostrar alta eficiência e acurácia do método desenvolvido. / This paper proposes a scheme of compact finite difference higher order for solve elliptic problems with variable coeficients in composite meshes. we present the mathematical formulation and the deduction of the compact method of fourth order applied to two-dimensional elliptic problems in regular and composite mesh . It was adopted using the PETSc library with its pre- conditioners and numerical methods for solving linear systems resulting from discretization of the problem. Finally , tests to verify the code were made using the method of manufactured solutions to show high eficiency and accuracy of the method developed .
90

Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growth

Yony Raúl Santaria Leuyacc 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.

Page generated in 0.0598 seconds