• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 76
  • 76
  • 35
  • 26
  • 20
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Elektronische Eigenschaften von Diamant und diamantartigen Kohlenstoffen / Electronic properties of diamond and diamond-like carbon

Waidmann, Stephan 16 July 2001 (has links) (PDF)
Im Hinblick auf das immense Potential von Diamant als Material für die Mikroelektronik wurden im Rahmen dieser Arbeit undotierte und dotierte Diamantfilme mittels chemischer Gasphasenabscheidung auf Silizium präpariert und anschließend auf ihre elektronischen Eigenschaften hin untersucht. Für Letzteres wurde hauptsächlich die Elektronen-Energieverlustspektroskopie in Transmission verwendet. In situ Gasphasendotierung oder Ionenimplantation wurde zur Dotierung der Filme mit Bor, Lithium oder Phosphor eingesetzt. Bei der Ionenimplantation wurde aufgrund der Erzeugung von Strahlenschäden generell eine Erhöhung des sp2-Anteils beobachtet: Letzterer konnte jedoch im Falle der Bordotierung durch eine, den Implantationsprozeß folgende, Hochtemperaturtemperung wieder deutlich vermindert werden. Für die in situ Dotierung mit Bor wurde eine Verringerung des sp2-Gehaltes mit steigender Dotierkonzentration gefunden. Für den Film mit der höchsten Borkonzentration konnte auch die B1s Absorptionskante untersucht werden. Sie gibt Hinweise auf den überwiegenden Einbau der Boratome in einer tetragonalen Orientierung. Das hiermit verbundene Vorhandensein von Akzeptoren führt zu elektronischen Anregungen im Energiebereich der Bandlücke, welche mittels Infrarotspektroskopie und EELS nachgewiesen werden konnten. Aus den EELS Messungen lassen sich Akzeptorkonzentrationen berechnen, welche wiederum den hohen Anteil an tetraedrisch eingebauten Boratomen bestätigen. Desweiteren untersucht wurden, als interessante Materialklasse mit weitreichendem technologischem Potential, undotierte und stickstoffdotierte, diamantartige amorphe Kohlenstoffilme und hierbei insbesondere die Abhängigkeit der elektronischen und optischen Eigenschaften von der Ionenenergie und dem Stickstoffpartialdruck während der Filmpräparation. Die Plasmonenergien, Massendichten, sp3-Anteile und die optischen Bandlücken der Filme wurden quantitativ bestimmt, wobei das jeweilige Maximum bei einer Ionenenergie von 100 eV gefunden wurde. Alle eben genannten Größen verringern sich kontinuierlich mit zunehmendem Stickstoffanteil. Eine Kramers-Kronig Analyse der Verlustspektren gibt Zugriff auf den Real- und Imaginärteil der dielektrischen Funktion und damit auf das Spektrum der Einteilchenanregungen. Die Hybridisierung der Kohlenstoff- und der Stickstoffatome wurde detailliert aus den jeweiligen 1s Absorptionskanten bestimmt. Weiterhin wurde Diamant als Modellsystem eines Festkörpers mit rein kovalenten Bindungen untersucht, insbesondere die Verlustfunktion von Diamant entlang mehrerer Hochsymmetriekristallrichtungen über einen großen Energie- und Impulsbereich. Aus den EELS Messungen erschließt sich unmittelbar die stark anisotrope Plasmonendispersion von Diamant. Aus dem Vergleich der experimentellen Spektren mit ab initio LDA Rechnungen, die sowohl Kristallokalfeldeffekte als auch Austausch- und Korrelationseffekte beinhalten, lassen sich direkt Rückschlüsse auf den Einfluß der verschiedenen Effekte ziehen. Schon im optischen Limit, aber umso mehr mit steigendem Impulsübertrag q, wird eine Überlagerung der kollektiven Plasmonanregung mit Einteilchenanregungen im Energiebereich des Plasmons beobachtet, woraus eine Kopplung zwischen beiden Arten von Anregungen resultiert. Abgesehen vom deutlichen Einfluß der Bandstruktur auf die Plasmonendispersion läßt die überaus inhomogene Elektronenverteilung von Diamant auf nicht zuvernachlässigende Kristallokalfeldeffekte schließen. Der Vergleich zwischen experimentellen und berechneten Spektren zeigt deutlich, wie die Kristallokalfeldeffekte in der Tat mit steigendem Impulsübertrag an Gewicht zunehmen und die Struktur der Verlustfunktion mitbestimmen. / In the context of the immense potential of diamond as a material for use in the microelectronics industry, in this thesis pristine and doped diamond films have been deposited on silicon using chemical vapour deposition. Subsequently their electronic properties have been investigated using mainly electron energy-loss spectroscopy. Doping of the films with boron, lithium or phosphorous was carried out either via in-situ gas phase doping during film growth or using ion implantation. Upon ion implantation an increase of the carbon content with sp2 hybridisation has generally been found due to ion beam induced damage. In the case of boron doping it was possible to significantly reduce this sp2-contribution using a high temperature anneal. For the in-situ doping with boron, upon increasing doping concentration a decrease of the sp2-contribution was found. For the sample with the highest boron content the boron 1s absorption edge could also be investigated, providing evidence for the preferential incorporation of the boron atoms into tetrahedrally co-ordinated sites. This boron incorporation leads to the existence of electronic excitations in the energy range of the band gap, which could be observed using both infrared and electron energy-loss spectroscopy. From the electron energy-loss measurements it was possible to calculate acceptor concentrations which were consistent with the large amount of tetrahedrally co-ordinated boron atoms. A second theme in this thesis involved the study of pristine and nitrogen doped diamond-like amorphous carbon films, which are an interesting material class with far-reaching technological potential. Here the focus of the research concerned the dependency of the electronic and optical properties of the films upon the ion energy and the nitrogen partial pressure applied during the film preparation. The plasmon energies, mass densities, sp3 contribution and the optical band gaps of the samples were determined quantitatively, whereby the maximum in all these quantities was found to occur for ion energies of 100 eV. Furthermore, all of these characteristics were found to decrease continually with increasing nitrogen content. A Kramers-Kronig analysis of the loss spectra enabled the derivation of the real and imaginary parts of the dielectric function and with this of the complete spectrum of single particle excitations. The hybridization between the carbon and nitrogen atoms was also studied in detail from the analysis of the respective 1s absorption edges. Furthermore this thesis deals with the investigation of diamond as a model system for solids with pure covalent bonds. In particular, the loss function of diamond was measured along different high symmetry directions over a wide range of energy and momentum. Firstly, the EELS measurements showed directly the strongly anisotropic nature of the plasmon dispersion in diamond. Secondly, by the comparison of the experimental spectra with ab initio LDA-based calculations that include crystal local field effects as well as exchange and correlation contributions, conclusions can be drawn as to the influence of these quantities. In the optical limit, but even more so with increasing momentum transfer q, a superposition of the collective plasmon excitation and the single particle excitations in the energy range of the plasmon is observed. This energetic proximity results in a coupling between both types of excitations. Apart from the distinct influence of the bandstructure on the plasmon dispersion, the considerably inhomogeneous electron distribution of diamond would lead one to expect significant crystal local field effects in this system. The comparison between the experimental and the calculated spectra shows explicitly that the crystal local field effects increase with increasing momentum transfer and play an important role in defining the structure of the loss function.
62

Präparation und Charakterisierung nanostrukturierter Magnetwerkstoffe unter besonderer Berücksichtigung des Exchange Bias Effekts

Schletter, Herbert 27 February 2014 (has links) (PDF)
Der Einsatz nanostrukturierter Magnetmaterialien als Speicherschichten in Festplatten stellt ein vielversprechendes Konzept zur weiteren Erhöhung der erreichbaren Speicherdichten im Vergleich zu den heute eingesetzten granularen Medien dar. Für die Realisierung dieses Konzeptes ist eine detaillierte Kenntnis der Struktureigenschaften und deren Einfluss auf das magnetische Verhalten der einzusetzenden Schichten erforderlich. Für die vorliegende Arbeit wurden drei verschiedene magnetische Materialien ausgewählt und insbesondere mit elektronenmikroskopischen Methoden in struktureller Hinsicht untersucht. Dazu zählen ferromagnetische (FePt)(100-x)Cu(x) -Schichten, ferromagnetische [Co/Pt]n -Multilagen sowie ferrimagnetische Fe(100-x)Tb(x) -Schichten. Der Schwerpunkt der Untersuchungen lag dabei auf der Korrelation zwischen strukturellen und magnetischen Eigenschaften sowie im Einfluss der Nanostrukturierung auf das magnetische Verhalten der Schichten. In dieser Hinsicht wurden Aspekte der durch die Struktur bedingten magnetischen Anisotropie in Form von magnetokristalliner und Grenzflächenanisotropie betrachtet. Zudem wurde das Kopplungsverhalten zwischen einzelnen Strukturelementen in nanostrukturierten Schichten untersucht. Aufbauend auf die Untersuchung der drei genannten Materialien wurden [Co/Pt]n und Fe(100-x)Tb(x) ausgewählt zum Aufbau eines Systems mit zwei magnetischen Komponenten: Fe(80)Tb(20) / [Co/Pt]10. Die Untersuchungen konzentrierten sich dabei auf die Morphologie der Grenzfläche zwischen den beiden Bestandteilen und deren Einfluss auf den Exchange Bias, der in diesem System vorliegt.
63

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 12 June 2018 (has links) (PDF)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.
64

Homogeneidade química, interfaces e defeitos estruturais em nanofios de semicondutores III-V / Chemical homogeneity, interfaces and structural defects in III-V semiconductor nanowires

Tizei, Luiz Henrique Galvão 17 August 2018 (has links)
Orientador: Daniel Mário Ugarte / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-17T20:15:26Z (GMT). No. of bitstreams: 1 Tizei_LuizHenriqueGalvao_D.pdf: 12237887 bytes, checksum: e97ac7041ecfd4c30088cf9b43d9849a (MD5) Previous issue date: 2011 / Resumo: O desenvolvimento de novos materias tem grande interesse devido à ocorrência de novos fenômenos e propriedades, as quais podem ser usadas em futuras aplicações tecnológicas. Em particular, nas últimas décadas, esforços imensos foram realizados buscando compreender nanomateriais e os efeitos da redução de tamanho e de dimensão. Entre os diferentes avanços alcançados, podemos citar o desenvolvimento significativo de nanofios semicondutores (estruturas quasi-unidimensionais) com dezenas ou centenas de nanometros de espessura e milhares de nanometros de comprimento. O método mais utilizado para o crescimento de nanofios é o método catalítico chamado VLS (Vapor-Líquido-Sólido), no qual uma nanopartícula metálica serve como sorvedouro preferencial de átomos de um vapor e, também, como posição para a formação de um sólido (nanofio). O VLS foi proposto por Wagner e Ellis nos anos 60. Em nossos trabalhos, nos concentramos no estudo de nanofios de semicondutores III-V crescidos em um reator de Epitaxia de Feixe Químico (CBE) catalisados por nanopartículas de Au. Mais especificamente, estudamos nanofios de InP, InAs, InGaP, InAsP e heteroestruturas InP/InAs/InP. Como a qualidade de interfaces e homogeneidade química do material crescido, influenciam diretamente as propriedades ópticas e elétricas de nanofios, nossa pesquisa nos levou a avaliar os limites da aplicação de diversas técnicas de microscopia eletrônica de transmissão aplicadas: TEM (Microscopia Eletrônica de Transmissão), STEM (Microscopia Eletrônica de Transmissão em Varredura), HRTEM (Microscopia Eletrônica de Transmissão de Alta Resolução), EDS (Espectroscopia de Raios-X Dispersados em Energia) e EELS (Espectroscopia de Perda de Energia de Elétrons). Como consequência, determinamos os limites de detecção de variações químicas e de medidas de larguras de interfaces das diferentes técnicas. Em particular, devido às limitações impostas pelo dano por radiação no material, propusemos o uso de deslocamentos químicos de plasmons (EELS) para a caracterização química de nanoestruturas de semicondutores III-V. Desenvolvemos uma metodologia para a análise de seções transversais de nanofios de InAsP. Os experimentos realizados indicam a diferença entre os semicondutores produzidos por crescimento axial (catalítico) e por radial (bidimensional). Além disso, a análise química detalhada de heteroestruturas InP/InAs/InP levou a detecção de concentrações inesperados de As no segmento final de InP. Interpretamos esta observação como uma indicação de que As difunde através da nanopartícula catalisadora durante o crescimento, demonstrando uma rota de incorporação de elementos do grupo V em nanofios crescidos pelo método VLS. Finalmente, estudamos os efeitos de defeitos estruturais extendidos, como discordâncias na morfologia e distorções estruturais de nanofios. Neste sentido, observamos a torção de Eshelby em nanofios de InP contendo discordâncias em parafuso únicas. Nossos resultados mostram que as taxas de torção medida são muito maiores (até 100%) do que o previsto pela teoria elástica macroscópica. Isto mostra as mudanças significativas nas propriedades mecânicas e estruturais em nanoestruturas e ilustra o papel importante de estudos detalhados de microscopia eletrônica para a análise de deformações em nanoestruturas / Abstract: The development of new materials has great interest due to the possibility of finding new phenomena and properties, which can be used in technological applications. In particular, in the last decades, huge efforts have been made in order to understand nanomaterials and, the effects of size and dimensionality reduction. Among different advances, it is worth noting the significant development of semiconductor nanowires (quasi-one dimensional structures) with tens or hundreds of nanometers in diameter and thousands of nanometers in length. The catalytic method VLS (Vapor-Liquid-Solid) is the most used approach for nanowire preparation, in which a metal nanoparticle serves as a preferential sink for atoms from a vapor and, also, as the position for the solid nucleation; this method was proposed by Wagner and Ellis in the 60s. In our work, we have focused on the study of III-V semiconductor nanowires grown by Chemical Beam Epitaxy (CBE) catalyzed by Au nanoparticles. Specifically, we have studied different III-V nanowires (InP, InAs, InGaP and InAsP), as ell as, some heterostructured wires (InP/InAs/InP). As the quality of interfaces and the chemical homogeneity of materials directly influence the optical and electrical properties of nanowires, our research have led us to assess the limit of applicability of several characterization techniques based on transmission electron microscopy: TEM (Transmission Electron Microscopy), STEM (Scanning Transmission Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy), EDS (Energy Dispersed X-Ray Spectroscopy) and EELS (Electron Energy Loss Spectroscopy). As a consequence, we have determined the detection limit for the measurement of chemical composition variations and interface widths. In particular, due to the limitations imposed by radiation damage on III-V nanowires, we have proposed the use of Plasmon chemical shifts (EELS) to the chemical characterization of III-V nanostructures. We have analyzed the cross sections of InAsP nanowires and we have been able to reveal a difference between the semiconductors materials produced by the axial (catalytic) and radial (bidimensional) growth. Through the detailed chemical analysis of InP/InAs/InP heterostructures we have detected an unexpected concentration of As in the last InP segment of the heterostructure. We have interpreted this result as an indication that As diffuses through the catalytic nanoparticle during growth. This demonstrates an incorporation route for group V atoms in nanowires grown by VLS. Finally, we have studied the effects of extended structural defects, like dislocations, in the morphology and structural distortions of nanowires. In this sense, we have observed the Eshelby twist in InP nanowires containing a single screw dislocation. Our results show that measured twist rates are much larger (up to 100%) than the predictions from the elasticity theory. This shows the significant change of mechanical and structural properties in nanoscale and, illustrates the important role of a careful electron microscopy studies to analyze deformations in nanostructures / Doutorado / Física da Matéria Condensada / Doutor em Ciências
65

The quantum dynamics of the diffusion of dissociatively adsorbed diatomic molecules / Dynamique quantique de diffusion de molécules diatomiques dissociées et adsorbées

Reis Firmino, Thiago Diamond 27 May 2014 (has links)
Les travaux réalisés au cours de cette thèse portent sur la dynamique quantique de diffusion d'atomes d'hydrogène sur une surface de palladium (111). L'étude du système 3D a permis de détailler le spectre infrarouge de H/Pd(111) en mettant en évidence l'existence sur différents sites d'adsorption d'états localisés fortement couplés (résonance de Fermi). Ce phénomène gouverne la diffusion des atomes d'hydrogène sur une échelle de temps ultra-rapide (fs).L'étude du système 6D (H2/Pd(111)) a montré que les transitions observées sont, en fait, des bandes de transition entre plusieurs états d'adsorption quasi-dégénérés. L'accord entre les valeurs calculées et mesurées est, par contre, significativement moins bon qu'entre celles calculées pour le système 3D et les données mesurées. Est-ce que l'hydrogène adsorbé sur le palladium existe sous la forme d'une molécule diatomique faiblement lié? Cette thèse a fourni certains éléments de réponse à cette question, qui reste cependant encore ouverte. / The work carried out during this thesis focuses on the quantum dynamics of the diffusion of hydrogen atoms on a surface of palladium (111). The study of the 3D system allowed us to detail the infrared spectrum of H/Pd (111), showing the existence of different adsorption sites on which localized states exist that are strongly coupled (Fermi resonance). This phenomenon governs the diffusion of hydrogen atoms in an ultra-fast time scale (fs).The study of the (6D) H2/Pd(111) system has shown that the transitions observed are in fact transition bands between several quasi-degenerate adsorption states. The agreement between the calculated and measured values is significantly less good than that between the data calculated for the 3D system and the measured data. Does adsorbed hydrogen on palladium exist in the form of a weakly bound H2 molecule? This thesis has provided some answers to this question, which remains open, hovewer, to some extent.
66

Electron energy loss spectroscopy of graphene and boron nitride with impurities or defects in the transmission electron microscope

Pan, Cheng-Ta January 2014 (has links)
The two-dimensional material graphene possesses many impressive properties such asextraordinary carrier mobility, mechanical stiffness and optical transmittance. However,the properties of pristine graphene do not always complement the requirements of applications. Of particular interest, a band gap is needed for electronic logic devices. Recent research shows that using few-layer hexagonal boron nitride as a substrate for graphene-based electronic devices can open a band gap in graphene. Also, introducing impurities such as hydrogen atoms, transition metals or silicon atoms on or within graphene can control the electronic properties according to recent studies. Furthermore, ion irradiation is an alternative option to tailor the properties of graphene by introducing defects. In this thesis, pristine, impure or defective graphene and few-layer boron nitride were characterised by scanning transmission electron microscopy (STEM) and electron energy loss (EEL) spectroscopy. Through STEM and EEL spectroscopy, lattice structures and electronic properties of these two-dimensional materials could be investigated at the atomic scale. This thesis focuses on the frontier studies of theoretical and experimental EEL spectroscopy of graphene and few-layer boron nitride with impurities. In the EEL spectra of pristine graphene and boron nitride two prominent peaks were observed, which are attributed to the plasmon excitations of π- and π+σ-electrons. By introducing impurities such as hydrogen adatoms on graphene and substitutional oxygen and carbon atoms within single-layer boron nitride, our experimental and simulated EEL spectra show that their π-plasmon peaks are modified. The concentrations of these impurities were then evaluated via EEL spectra and atomic-resolution images. If other impurities, such as various transition metals and silicon atoms, are introduced on or within single-layer graphene, our simulated EEL spectra demonstrate that the geometry of these impurity clusters affects the π-plasmon peak in graphene and some impurities even enhance it. Finally, experiments on in-situ transmission electron microscopy and ex-situ STEM and Raman spectroscopy were conducted to investigate ion irradiated graphene. Many topological defects were, for the first time, observed in atomic-resolution STEM images of ion irradiated graphene. Simulated EEL spectra of defective graphene are also reported, which suggests that corrugations and dangling bonds in defects can modify out-of-plane EEL spectra and introduce intraband transitions, respectively.
67

Elektronische Eigenschaften von Diamant und diamantartigen Kohlenstoffen

Waidmann, Stephan 12 July 2001 (has links)
Im Hinblick auf das immense Potential von Diamant als Material für die Mikroelektronik wurden im Rahmen dieser Arbeit undotierte und dotierte Diamantfilme mittels chemischer Gasphasenabscheidung auf Silizium präpariert und anschließend auf ihre elektronischen Eigenschaften hin untersucht. Für Letzteres wurde hauptsächlich die Elektronen-Energieverlustspektroskopie in Transmission verwendet. In situ Gasphasendotierung oder Ionenimplantation wurde zur Dotierung der Filme mit Bor, Lithium oder Phosphor eingesetzt. Bei der Ionenimplantation wurde aufgrund der Erzeugung von Strahlenschäden generell eine Erhöhung des sp2-Anteils beobachtet: Letzterer konnte jedoch im Falle der Bordotierung durch eine, den Implantationsprozeß folgende, Hochtemperaturtemperung wieder deutlich vermindert werden. Für die in situ Dotierung mit Bor wurde eine Verringerung des sp2-Gehaltes mit steigender Dotierkonzentration gefunden. Für den Film mit der höchsten Borkonzentration konnte auch die B1s Absorptionskante untersucht werden. Sie gibt Hinweise auf den überwiegenden Einbau der Boratome in einer tetragonalen Orientierung. Das hiermit verbundene Vorhandensein von Akzeptoren führt zu elektronischen Anregungen im Energiebereich der Bandlücke, welche mittels Infrarotspektroskopie und EELS nachgewiesen werden konnten. Aus den EELS Messungen lassen sich Akzeptorkonzentrationen berechnen, welche wiederum den hohen Anteil an tetraedrisch eingebauten Boratomen bestätigen. Desweiteren untersucht wurden, als interessante Materialklasse mit weitreichendem technologischem Potential, undotierte und stickstoffdotierte, diamantartige amorphe Kohlenstoffilme und hierbei insbesondere die Abhängigkeit der elektronischen und optischen Eigenschaften von der Ionenenergie und dem Stickstoffpartialdruck während der Filmpräparation. Die Plasmonenergien, Massendichten, sp3-Anteile und die optischen Bandlücken der Filme wurden quantitativ bestimmt, wobei das jeweilige Maximum bei einer Ionenenergie von 100 eV gefunden wurde. Alle eben genannten Größen verringern sich kontinuierlich mit zunehmendem Stickstoffanteil. Eine Kramers-Kronig Analyse der Verlustspektren gibt Zugriff auf den Real- und Imaginärteil der dielektrischen Funktion und damit auf das Spektrum der Einteilchenanregungen. Die Hybridisierung der Kohlenstoff- und der Stickstoffatome wurde detailliert aus den jeweiligen 1s Absorptionskanten bestimmt. Weiterhin wurde Diamant als Modellsystem eines Festkörpers mit rein kovalenten Bindungen untersucht, insbesondere die Verlustfunktion von Diamant entlang mehrerer Hochsymmetriekristallrichtungen über einen großen Energie- und Impulsbereich. Aus den EELS Messungen erschließt sich unmittelbar die stark anisotrope Plasmonendispersion von Diamant. Aus dem Vergleich der experimentellen Spektren mit ab initio LDA Rechnungen, die sowohl Kristallokalfeldeffekte als auch Austausch- und Korrelationseffekte beinhalten, lassen sich direkt Rückschlüsse auf den Einfluß der verschiedenen Effekte ziehen. Schon im optischen Limit, aber umso mehr mit steigendem Impulsübertrag q, wird eine Überlagerung der kollektiven Plasmonanregung mit Einteilchenanregungen im Energiebereich des Plasmons beobachtet, woraus eine Kopplung zwischen beiden Arten von Anregungen resultiert. Abgesehen vom deutlichen Einfluß der Bandstruktur auf die Plasmonendispersion läßt die überaus inhomogene Elektronenverteilung von Diamant auf nicht zuvernachlässigende Kristallokalfeldeffekte schließen. Der Vergleich zwischen experimentellen und berechneten Spektren zeigt deutlich, wie die Kristallokalfeldeffekte in der Tat mit steigendem Impulsübertrag an Gewicht zunehmen und die Struktur der Verlustfunktion mitbestimmen. / In the context of the immense potential of diamond as a material for use in the microelectronics industry, in this thesis pristine and doped diamond films have been deposited on silicon using chemical vapour deposition. Subsequently their electronic properties have been investigated using mainly electron energy-loss spectroscopy. Doping of the films with boron, lithium or phosphorous was carried out either via in-situ gas phase doping during film growth or using ion implantation. Upon ion implantation an increase of the carbon content with sp2 hybridisation has generally been found due to ion beam induced damage. In the case of boron doping it was possible to significantly reduce this sp2-contribution using a high temperature anneal. For the in-situ doping with boron, upon increasing doping concentration a decrease of the sp2-contribution was found. For the sample with the highest boron content the boron 1s absorption edge could also be investigated, providing evidence for the preferential incorporation of the boron atoms into tetrahedrally co-ordinated sites. This boron incorporation leads to the existence of electronic excitations in the energy range of the band gap, which could be observed using both infrared and electron energy-loss spectroscopy. From the electron energy-loss measurements it was possible to calculate acceptor concentrations which were consistent with the large amount of tetrahedrally co-ordinated boron atoms. A second theme in this thesis involved the study of pristine and nitrogen doped diamond-like amorphous carbon films, which are an interesting material class with far-reaching technological potential. Here the focus of the research concerned the dependency of the electronic and optical properties of the films upon the ion energy and the nitrogen partial pressure applied during the film preparation. The plasmon energies, mass densities, sp3 contribution and the optical band gaps of the samples were determined quantitatively, whereby the maximum in all these quantities was found to occur for ion energies of 100 eV. Furthermore, all of these characteristics were found to decrease continually with increasing nitrogen content. A Kramers-Kronig analysis of the loss spectra enabled the derivation of the real and imaginary parts of the dielectric function and with this of the complete spectrum of single particle excitations. The hybridization between the carbon and nitrogen atoms was also studied in detail from the analysis of the respective 1s absorption edges. Furthermore this thesis deals with the investigation of diamond as a model system for solids with pure covalent bonds. In particular, the loss function of diamond was measured along different high symmetry directions over a wide range of energy and momentum. Firstly, the EELS measurements showed directly the strongly anisotropic nature of the plasmon dispersion in diamond. Secondly, by the comparison of the experimental spectra with ab initio LDA-based calculations that include crystal local field effects as well as exchange and correlation contributions, conclusions can be drawn as to the influence of these quantities. In the optical limit, but even more so with increasing momentum transfer q, a superposition of the collective plasmon excitation and the single particle excitations in the energy range of the plasmon is observed. This energetic proximity results in a coupling between both types of excitations. Apart from the distinct influence of the bandstructure on the plasmon dispersion, the considerably inhomogeneous electron distribution of diamond would lead one to expect significant crystal local field effects in this system. The comparison between the experimental and the calculated spectra shows explicitly that the crystal local field effects increase with increasing momentum transfer and play an important role in defining the structure of the loss function.
68

Low-energy Electron Induced Chemistry in Supported Molecular Films / Chimie induite par électrons lents (0-20 eV) au sein de films moléculaires supportés

Sala, Leo Albert 27 November 2018 (has links)
Lorsque la matière condensée est soumise à des rayonnements de haute énergie, des électrons secondaires de basse énergie (0-20 eV) sont produits en grande quantité. Ces électrons participent à part entière aux dommages induits dans la matière, incluant les processus d’érosion et de modifications chimiques. Les fragments produits au sein du milieu réagissent et de nouvelles espèces sont formées. Plusieurs domaines d’application sont concernés par ces processus, et plus particulièrement le design de dispositifs par lithographie ou par dépôts assistés par faisceaux focalisés et l’astrochimie. Les enjeux concernent l’identification des mécanismes induits par les électrons lents, le contrôle des fragments réactifs et espèces stables formés, ainsi que la détermination de grandeurs quantitatives permettant d’apprécier l’efficacité des processus impliqués. L’approche développée dans ce travail de thèse consiste à irradier des surfaces et interfaces directement avec des faisceaux d’électrons de basse énergie afin d’étudier les processus induits. Les réponses de films moléculaires supportés modèles (d’épaisseur variable) sont étudiées en fonction de l’énergie incidente des électrons et des doses délivrées. Dans les cas favorables, des méthodologies ont pu être proposées pour accéder à l’estimation de sections efficaces effectives. Pour ce faire, trois techniques expérimentales sont combinées. Les films déposés et les résidus formés sont analysés par spectroscopie de perte d'énergie d’électrons à haute résolution (HREELS) et désorption programmée en température (TPD). Les fragments neutres (et non pas ioniques comme le plus souvent) désorbant sous irradiation sont analysés en masse afin de mener une étude de désorption stimulée par impact d’électrons (ESD).Dans le contexte de la fonctionnalisation de surface, le greffage de centres carbonés hybridés sp2 sur un substrat de diamant poly-cristallin hydrogéné a été réalisé par irradiation électronique d’une couche mince de benzylamine. A 11 eV, le mécanisme dominant implique la dissociation en neutres du précurseur. La section efficace effective de greffage a pu être déterminée par HREELS suite à une unique irradiation, en tirant avantage du profil du faisceau d’irradiation. Dans le contexte de l’astrochimie, la réponse à l’irradiation par électrons lents de glaces d’ammoniac amorphes et cristallisées a été étudiée. La désorption de molécules d’ammoniac a été observée. Elle peut résulter de l’érosion directe du film et de mécanismes de désorption induite par excitation électronique (DIET). Différents processus de fragmentation/recombinaison ont été mis en évidence via la désorption des espèces neutres NHx (x = 1,2), H2 et N2. Une chimie particulièrement riche est induite par irradiation électronique à 13 eV. L’analyse temporelle des rendements ESD a permis la détermination de la section efficace de la désorption de NH3, et l’observation de la formation retardée de N2 et H2. L’analyse TPD des résidus a démontré la synthèse de diazène (N2H2) et d’hydrazine (N2H4) dans le film. Ces résultats peuvent aider à l’élucidation des écarts observés dans les abondances de NH3 et N2 dans les régions denses de l'espace. Enfin, les premiers travaux réalisés pour fonctionnaliser un substrat de façon résolue à l’échelle micrométrique sous irradiation d’électrons lents sont également présentés. La faisabilité de la procédure utilisant un microscope électronique à basse énergie (LEEM) a été démontré sur une monocouche de terphenylthiol (TPT). Des motifs de 5 μm de travaux de sortie différents ont été imprimés en travaillant à des énergies de 10-50 eV. Ensuite la réponse de films modèles de résines lithographiques (PMMA, polyméthacrylate de méthyle) à des irradiations électroniques a été étudiée, afin d’identifier les énergies favorables en vue d’une modification de surface résolue spatialement. / High-energy irradiation of condensed matter leads to the production of copious amounts of low-energy (0-20 eV) secondary electrons. These electrons are known to trigger various dissociative processes leading to observed damages including erosion and chemical modifications. The resulting reactive species within the condensed media can also lead to the synthesis of new molecules. This has implications in several applications most especially in the design of lithographic methods, focused beam-assisted deposition, as well as in astrochemistry. In all these applications, it is important to identify the processes induced by low-energy electrons, study the reactive fragments and stable molecules produced to determine possibilities of controlling them, and generate quantitative data to gauge the efficiencies of these processes. The approach developed for this PhD work consists of directly irradiating surfaces and interfaces using low-energy electrons and studying the processes that arise. The responses of different model molecular films (of varying thickness) were studied as a function of incident electron energy and dose. In favorable cases, methodologies proposed herein can be used to estimate effective cross sections of observed processes. Three complementary surface-sensitive techniques were utilized for this purpose. To characterize the deposited films and formed residues, the High Resolution Electron-Energy Loss Spectroscopy (HREELS) and Temperature Programmed Desorption (TPD) were used. Neutral fragments (as opposed to their often-detected ionic counterparts) desorbing under electron irradiation were monitored using a mass spectrometer in a technique called Electron Stimulated Desorption (ESD).Within the context of surface functionalization, the grafting of sp2-hybridized carbon centers on a polycrystalline hydrogenated diamond substrate was realized through electron irradiation of a thin layer of benzylamine precursor deposited on its surface. At 11 eV, the dominant mechanism is proposed to be neutral dissociation of the precursor molecules. The effective cross section of the grafting process was estimated in only a single measurement from the HREELS map of the sample surface, taking advantage of the electron beam profile. Within the context of astrochemistry, on the other hand, the responses of crystalline and amorphous NH3 ices were studied under electron impact. The desorption of intact NH3 was observed which resulted in the direct erosion of the film proceeding through a mechanism consistent with desorption induced by electronic transitions (DIET). Different fragmentation and recombination processes were also observed as evidenced by detected neutral species like NHx (x=1,2), N2, and H2. Aside from desorption, a wealth of chemical processes was also observed at 13 eV. Temporal ESD at this energy allowed for the estimation of the effective cross section of NH3 desorption and observing the delayed desorption of N2 and H2. TPD analysis of the residues also provided evidence of N2H2 and N2H4 synthesis in the film. These results can help explain the observed discrepancies in abundances of NH3 and N2 in dense regions in space. Lastly, this PhD work will present prospects for these electron-induced processes to be constrained spatially in microscopic dimensions for lithographic applications. The feasibility of the procedure utilizing Low-Energy Electron Microscope (LEEM) was demonstrated on a terphenylthiol self-assembled monolayer (TPT SAM) specimen. Spots of 5 μm in diameter with different work functions were imprinted on the surface using energies from 10-50 eV. Electron-induced reactions in thin-film resists (PMMA, poly(methyl methacrylate)) were also studied at low-energy identifying opportunities for energy- and spatially-resolved surface modification.
69

Numerics of photonic and plasmonic nanostructures with advanced material models

Kiel, Thomas 18 May 2022 (has links)
In dieser Arbeit untersuchen wir mehrere Anwendungen von photonischen und plasmonischen Nanostrukturen unter Verwendung zweier verschiedener numerischer Methoden: die Fourier-Moden-Methode (FMM) und ein unstetiges Galerkin-Zeitraumverfahren (discontinuous Galerkin time-domain method, DGTD method). Die Methoden werden für vier verschiedene Anwendungen eingesetzt, die alle eine Materialmodellerweiterung in der Implementierung der Methoden erfordern. Diese Anwendungen beinhalten die Untersuchung von dünnen, freistehenden, periodisch perforierten Goldfilmen. Wir charakterisieren die auftretenden Oberflächenplasmonenpolaritonen durch die Berechnung von Transmissions- und Elektronenenergieverlustspektren, die mit experimentellen Messungen verglichen werden. Dazu stellen wir eine Erweiterung der DGTD-Methode zur Verfügung, die sowohl absorbierende, impedanzangepasste Randschichten als auch Anregung mit geglätteter Ladungsverteilung für materialdurchdringende Elektronenstrahlen beinhaltet. Darüber hinaus wird eine Erweiterung auf nicht-dispersive anisotrope Materialien für eine Formoptimierung einer volldielektrischen magneto-optischen Metaoberfläche verwendet. Diese Optimierung ermöglicht eine verstärkte Faraday-Rotation zusammen mit einer hohen Transmission. Zusätzlich untersuchen wir abstimmbare hyperbolische Metamaterialresonatoren im nahen Infrarot mit Hilfe der FMM. Wir berechnen deren Resonanzen und vergleichen sie mit dem Experiment. Zum Schluss wird die Implementierung eines nichtlinearen Vier-Niveau-System-Materialmodells in der DGTD-Methode verwendet, um die Laserschwellen eines Mikroresonators mit Bragg-Spiegeln zu berechnen. Bei Einführung eines Silbergitters mit variablen Spaltgrößen wird eine defektinduzierte Kontrolle der Laserschwellen ermöglicht. Die Berechnung der vollständigen, zeitaufgelösten Felddynamik innerhalb des Resonator gibt dabei Aufschluss über die beteiligten Lasermoden. / In this thesis, we study several applications of photonic and plasmonic nanostructures by employing two different numerical methods: the Fourier modal method (FMM) and discontinuous Galerkin time-domain (DGTD) method. The methods are used for four different applications, all of which require a material model extension for the implementation of the methods. These applications include the investigation of thin, free-standing periodically perforated gold films. We characterize the emerging surface plasmon polaritons by computing both transmittance and electron energy loss spectra, which are compared to experimental measurements. To this end, we provide an extension of the DGTD method, including absorbing stretched coordinate perfectly matched layers as well as excitations with smoothed charge distribution for material-penetrating electron beams. Furthermore, an extension to non-dispersive anisotropic materials is used for shape optimization of an all-dielectric magneto-optic metasurface. This optimization enables an enhanced Faraday rotation along with high transmittance. Additionally, we study tuneable near-infrared hyperbolic metamaterial cavities with the help of the FMM. We compute the cavity resonances and compare them to the experiment. Finally, the implementation of a non-linear four-level system material model in the DGTD method is used to compute lasing thresholds of a distributed Bragg reflector microcavity. Introducing a silver grating with variable gap sizes allows for a defect-induced lasing threshold control. The computation of the full time-resolved field dynamics of the cavity provides information on the involved lasing modes.
70

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 26 March 2018 (has links)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.

Page generated in 0.1318 seconds