Spelling suggestions: "subject:"elliptic"" "subject:"elliptical""
61 |
Identification of material parameters in mechanical modelsMeyer, Marcus 04 June 2010 (has links)
Die Dissertation beschäftigt sich mit
Parameteridentifikationsproblemen, wie sie häufig in
Fragestellungen der Festkörpermechanik zu finden sind. Hierbei
betrachten wir die Identifikation von Materialparametern -- die
typischerweise die Eigenschaften der zugrundeliegenden
Materialien repräsentieren -- aus gemessenen Verformungen oder
Belastungen eines Testkörpers. In mathematischem Sinne
entspricht dies der Lösung von Identifikationsproblemen, die
eine spezielle Klasse von inversen Problemen bilden.
Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach
dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick
von Optimierungs- und Regularisierungsverfahren zur stabilen
Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt
3 betrachten wir die Identifikation von skalaren und stückweise
konstanten Parametern in linearen elliptischen
Differentialgleichungen. Hierbei werden zwei Testprobleme
erörtert, die Identifikation von Diffusions- und
Reaktionsparameter in einer allgemeinen elliptischen
Differentialgleichung und die Identifikation der
Lame-Konstanten in einem Modell der linearisierten Elastizität.
Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden
erläutert. Insbesondere betrachten wir hier Newton-artige
Algorithmen, Gradientenmethoden, Multi-Parameter
Regularisierung and den evolutionären Algorithmus CMAES.
Abschließend werden Ergebnisse einer numerischen Studie
präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die
Identifikation von verteilten Parametern in hyperelastischen
Materialmodellen. Das nichtlineare Elastizitätsproblem wird
detailiert erläutert und verschiedene Materialmodelle werden
diskutiert (linear elastisches St.-Venant-Kirchhoff Material
und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung
Materialien. Zur Lösung des resultierenden
Parameteridentifikationsproblems werden Lösungsansätze aus der
optimalen Steuerung in Form eines Newton-Lagrange SQP
Algorithmus verwendet. Die Resultate einer numerischen Studie
werden präsentiert, basierend auf einem zweidimensionales
Testproblem mit einer sogenannten Cook-Mebran. Abschließend
wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung
von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification
problems arising in the context of structural mechanics. At
this, we consider the identification of material parameters -
which typically represent the properties of an underlying
material - from given measured displacements and forces of a
loaded test body. In mathematical terms such problems denote
identification problems as a special case of general inverse
problems.
The dissertation is organized as follows. After the
introductive section 1, section 2 is devoted to a survey of
optimization and regularization methods for the stable solution
of nonlinear inverse problems. In section 3 we consider the
identification of scalar and piecewise constant parameters in
linear elliptic differential equations and examine two test
problems, namely the identification of diffusion and reaction
parameters in a generalized linear elliptic differential
equation of second order and the identification of the Lame
constants in the linearized elasticity model. The underlying
PDE models are introduced and solution approaches are discussed
in detail. At this, we consider Newton-type algorithms,
gradient methods, multi-parameter regularization, and the
evolutionary algorithm CMAES. Consequently, numerical studies
for a two-dimensional test problem are presented. In section 4
we point out the identification of distributed material
parameters in hyperelastic deformation models. The nonlinear
elasticity boundary value problem for large deformations is
introduced. We discuss several material laws for linear elastic
(St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke,
Mooney-Rivlin, and Modified-Fung materials. For the solution of
the corresponding parameter identification problem, we focus on
an optimal control solution approach and introduce a
regularized Newton-Lagrange SQP method. The Newton-Lagrange
algorithm is demonstrated within a numerical study. Therefore,
a simplified two-dimensional Cook membrane test problem is
solved. Additionally, in section 5 the application of adaptive
methods for the solution of parameter identification problems
is discussed briefly.
|
62 |
Elliptic multiple polylogarithms in open string theoryKaderli, André 09 September 2021 (has links)
In dieser Dissertation wird eine Methode zur Berechnung der genus-eins Korrekturen von offenen Strings zu Feldtheorie-Amplituden konstruiert. Hierzu werden Vektoren von Integralen definiert, die ein elliptisches Knizhnik-Zamolodchikov-Bernard (KZB) System auf dem punktierten Torus erfüllen, und die entsprechenden Matrizen aus dem KZB System berechnet. Der elliptische KZB Assoziator erzeugt eine Relation zwischen zwei regulierten Randwerten dieser Vektoren. Die Randwerte enthalten die genus-null und genus-eins Korrekturen. Das führt zu einer Rekursion im Genus und der Anzahl externer Zustände, die einzig algebraische Operationen der bekannten Matrizen aus dem KZB System umfasst. Geometrisch werden zwei externe Zustände der genus-null Weltfläche der offenen Strings zu einer genus-eins Weltfläche zusammengeklebt.
Die Herleitung dieser genus-eins Rekursion und die Berechnung der relevanten Matrizen wird durch eine graphische Methode erleichtert, mit der die Kombinatorik strukturiert werden kann. Sie wurde durch eine erneute Untersuchung der auf Genus null bekannten Rekursion entwickelt, bei welcher der Drinfeld Assoziator Korrekturen offener Strings auf Genus null auf solche mit einem zusätzlichen externen Zustand abbildet. Diese genus-null Rekursion umfasst ebenfalls ausschliesslich Matrixoperationen und basiert auf einem Vektor von Integralen, der eine Knizhnik-Zamolodchikov (KZ) Gleichung erfüllt. Die in der Rekursion gebrauchten Matrizen aus der KZ Gleichung werden als Darstellungen einer Zopfgruppe identifiziert und rekursiv berechnet.
Der elliptische KZB Assoziator ist die Erzeugendenreihe der elliptischen Multiplen Zeta-Werte. Die Konstruktion der genus-eins Rekursion benötigt verschiedene Eigenschaften dieser Werte und ihren definierenden Funktionen, den elliptischen Multiplen Polylogarithmen. So werden Relationen verschiedener Klassen von elliptischen Polylogarithmen und Funktionalrelationen erzeugt durch elliptische Funktionen hergeleitet. / In this thesis, a method to calculate the genus-one, open-string corrections to the field-theory amplitudes is constructed. For this purpose, vectors of integrals satisfying an elliptic Knizhnik-Zamolodchikov-Bernard (KZB) system on the punctured torus are defined and the matrices from the KZB system are calculated. The elliptic KZB associator is used to relate two regularised boundary values of these vectors. The boundary values are shown to contain the open-string corrections at genus zero and genus one. This yields a recursion in the genus and the number of external states, solely involving algebraic operations on the known matrices from the KZB system. Geometrically, two external states of the genus-zero, open-string worldsheet are glued together to form a genus-one, open-string worldsheet.
The derivation of this genus-one recursion and the calculation of the relevant matrices is facilitated by a graphical method to structure the combinatorics involved. It is motivated by the reinvestigation of the recursion in the number of external states known at genus zero, where the Drinfeld associator maps the genus-zero, open-string corrections to the corrections with one more external state. This genus-zero recursion also involves matrix operations only and is based on a vector of integrals satisfying a Knizhnik-Zamolodchikov (KZ) equation. The matrices in the KZ equation and used in the recursion are shown to be braid matrices and a recursive method for their calculation is provided.
The elliptic KZB associator is the generating series of elliptic multiple zeta values. The construction of the genus-one recursion requires various properties of these values and their defining functions, the elliptic multiple polylogarithms. Thus, the third part of this thesis consists of an analysis of elliptic multiple polylogarithms, which in particular leads to relations among different classes of elliptic polylogarithms and functional relations generated by elliptic functions.
|
63 |
The Dependence of the Evolution of Early-Type Galaxies on their Environment / Die Abhängigkeit der Entwicklung von Early-Type Galaxien von ihrer UmgebungFritz, Alexander 17 May 2006 (has links)
No description available.
|
64 |
Exploring the formation histories of galaxies - globular clusters and beyond / Sternentstehungsgeschichten von Galaxien - Kugelsternhaufen und mehrLilly, Thomas 12 July 2007 (has links)
No description available.
|
65 |
A Class of Elliptic Obstacle-Type Quasi-Variational Inequalities: Theory and Solution MethodsBrüggemann, Jo Andrea 24 November 2023 (has links)
Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext.
Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösungen werden durch die Charakterisierung der QVI als eine Fixpunkt Gleichung ermöglicht. Zur Lösung der betrachteten QVI selbst wird im Allgemeinen auf eine sequentielle Minimierungsmethode zurückgegriffen und eine Folge von Minimierungs- oder Variationsproblemen vom Hindernis-Typ betrachtet. In diesem Sinne ist für die numerische Behandlung der QVI die effiziente Lösung der auftretenden sequentiellen Probleme maßgeblich. Bei der Entwicklung geeigneter Lösungsmethoden wird insbesondere den Aspekten gitterunabhängige Verfahren sowie adaptive Diskretisierung des kontinuierlichen Problems mittels Finiter Elemente Rechnung getragen: Nach Anwendung der sequentiellen Minimierungsmethode auf die QVI werden die Hindernisprobleme durch eine Folge von Moreau–Yosida-regularisierten Problemen approximiert und anschliessend mit der nichtglatten (semismooth) Newton Methode und einer Pfadverfolgungsstrategie hinsichtlich des Yosida-Parameters gelöst. Die numerische Lösung erfolgt mittels einer adaptiver Finite Elemente Methode (AFEM), wobei die lokale Gitterverfeinerung auf a posteriori Residuen-basierten Schätzern des Approximierungsfehlers beruht. Numerische Experimente schließen die Arbeit ab. / Quasi-variational inequalities (QVIs) are used to describe complex equilibrium-type phenomena in many models in the natural and social sciences. Despite the abundance of different applications of QVIs—e.g., in biology, continuum mechanics, physics, geology, economics—there is only scarce literature on general theoretical and algorithmic approaches to solve problems involving QVIs particularly in infinite dimensions. This thesis focuses on elliptic obstacle-type QVIs with an additional volume constraint that are motivated by the simplified model of a compliant obstacle-type situation stemming from biomedicine. The first part of the thesis establishes existence of solutions to this type of QVIs under different sets of assumptions upon converting the problem to a fixed point equation. Unless the compliant obstacle map exhibits differentiability properties—in which case the problem can be regularised and solved directly in function space—the QVI can only be solved using a sequential variational or minimisation technique that leads to a sequence of obstacle-type problems. The ensuing parts of the thesis cover the efficient (numerical) solution of the emerging sequential problems where a major focus is on the aspects of mesh-independent performance of the solution method and the adaptive discretisation of the continuous problem based on finite elements. The obstacle-type problems resulting from using the sequential minimisation technique on the QVI are solved resorting to Moreau–Yosida-based approximation along with a semismooth Newton solver and a path-following regime for the sake of mesh-independence, which is subject of the second part. The corresponding discretised problems are solved with an adaptive finite element method (AFEM) that uses a posteriori residual-based error estimation techniques for Moreau–Yosida-based approximations of obstacle-type problems, the latter which are explored in the third part. The thesis concludes with numerical experiments.
|
66 |
Investigation of the biophysical basis for cell organelle morphologyMayer, Jürgen 09 February 2010 (has links) (PDF)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry.
Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
|
67 |
Investigation of the biophysical basis for cell organelle morphologyMayer, Jürgen 12 February 2008 (has links)
It is known that fission yeast Schizosaccharomyces pombe maintains its nuclear envelope during mitosis and it undergoes an interesting shape change during cell division - from a spherical via an ellipsoidal and a peanut-like to a dumb-bell shape. However, the biomechanical system behind this amazing transformation is still not understood. What we know is, that the shape must change due to forces acting on the membrane surrounding the nucleus and the microtubule based mitotic spindle is thought to play a key role. To estimate the locations and directions of the forces, the shape of the nucleus was recorded by confocal light microscopy. But such data is often inhomogeneously labeled with gaps in the boundary, making classical segmentation impractical. In order to accurately determine the shape we developed a global parametric shape description method, based on a Fourier coordinate expansion. The method implicitly assumes a closed and smooth surface. We will calculate the geometrical properties of the 2-dimensional shape and extend it to 3-dimensional properties, assuming rotational symmetry.
Using a mechanical model for the lipid bilayer and the so called Helfrich-Canham free energy we want to calculate the minimum energy shape while respecting system-specific constraints to the surface and the enclosed volume. Comparing it with the observed shape leads to the forces. This provides the needed research tools to study forces based on images.
|
68 |
Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinementPuttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
|
69 |
Systematic Analysis and Comparison of Stress Minimizing Notch Shapes : Obtaining a stress concentration factor of Kt=1 without FEM-CodeCiomber, Isabelle, Jakel, Roland 08 May 2014 (has links) (PDF)
Als Stand der Technik sind einfache, kreisförmige Verrundungen zur Reduktion von Kerbspannungen an Querschnittsübergängen bekannt, für die aus Tabellenwerken / Diagrammen in der Literatur die Formzahl einfach abgelesen werden kann. Die Effizienz der Spannungsreduktion solcher Lösungen ist jedoch sehr begrenzt. Ziel der Arbeit ist es daher, dem Konstrukteur bzw. Berechnungsingenieur ein Verfahren in die Hand zu geben, mit dem er für Standardquerschnittsübergänge und Standardlastfälle "Nicht-Kreiskerben" ohne teure und zeitaufwendige FEM-Analyse einfach durch Nutzung geeigneter Formzahldiagramme auslegen kann. Dabei sind sogar Formzahlen von nahezu eins möglich, d.h., in der "Kerbe" bleibt praktisch nur noch die Nennspannung übrig.
Die Präsentation ist zweitgeteilt: Im ersten Teil werden die Arbeitsmethoden bzw. Softwarefunktionen und verwendeten Softwarewerkzeuge vorgestellt: Dies sind die Programme Creo Parametric als vollparametrisches CAD-Werkzeug und Creo Simulate als p-FEM-Programm der Parametric Technology Coprporation (PTC).
Der zweite Teil der Präsentation beschreibt den Gültigkeitsbereich sowie die untersuchten Kerbgeometrien: Die einfache kreisförmige Verrundung als Stand der Technik, die Zwei-Radien-Kerbe, die Baud-Kurve, die Methode der Zugdreiecke nach Claus Mattheck, die elliptische Kerbe sowie die konische Rundung als generalisierte elliptische Kerbe. Es wird kurz eine Bibliothek vorgestellt, mit der solche Kerben einfach ausgelegt werden können, d.h. Ihre exakte Geometrie festgelegt sowie die zugehörige Formzahl αk bestimmt werden kann. / Circular (one-radius) fillets are known as state-of-the-art for reducing notch stresses at cross section transitions. The stress concentration factor Kt of such geometries can be read out from diagrams/tables given in the literature. However, the efficiency of stress reduction of circular notches is very limited. The goal of the work therefor is to present a method for the designer/analyst how to design non-circular notches/fillets just by using suitable Kt-diagrams without time-consuming and expensive FEM analyses. Kt-numbers of nearly one are possible, that means in the "notch" just the nominal stress appears and no stress concentration takes place.
The presentation has two parts: Part one describes the working methods and software functions as well as software tools: Creo Parametric as fully-parametric CAD program and Creo Simulate as embedded p-FEM-tool from Parametric Technology Corporation (PTC) have been used.
The second part describes the range of validity and the examined notch geometries: The one-radius fillet as state-of-the-art, the two-radii filet, the Baud-curve, the method of tensile triangles from Claus Mattheck, the standard elliptical fillet and the conical round as generalized elliptical fillet. A notch layout library is shortly presented that allows to design such fillets, that means exactly determine the notch geometry and the related stress concentration factor Kt.
|
70 |
Adaptive least-squares finite element method with optimal convergence ratesBringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert.
Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution.
This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
|
Page generated in 0.0678 seconds