• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 21
  • 10
  • 10
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 25
  • 21
  • 18
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A comparative Life Cycle Analysis of new and old designs of crane truck frames : Case study at Vemservice

Khan, Mahmudur Aryan January 2018 (has links)
The main objective of this Bachelor’s thesis is to investigate and deliver the results of environmental impacts of two different designs of crane truck frames. The aim is to investigate if additional new design of crane truck frames, with less energy and transportation during manufacturing of the crane truck, can improve energy efficiency of crane trucks throughout their lifecycle. Case study object for this report is Vemservice in Vemdalen, Sweden. As basis for the report the The Life Cycle Analysis ISO 14040 and ISO 14044 are used in this report in order to evaluate and compare the environmental impacts related to the lifecycle of new and old designs of 92 tonmeter crane truck frames from cradle to grave. The data was mainly collected and calculated by using the SimaPro software 8.0.5 which is based on the Ecoinvent 3 database. This study mainly analyzes environmental impacts such as GWP (Global Warming Potential), CED (Cumulative Energy Demand) and ReCiPe environmental impacts. The results showed that although new design frame has less transportation and energy demand during the manufacturing phase of the crane truck, the overall life cycle of the new design crane truck frame has higher environmental impacts than the existing old design of the crane truck frame. This is due to that the new design frame is 213kg heavier than the old design frame, which the crane truck is carrying during its using period. This study also investigated whether the new design frame, with stronger steel (Ecoupgraded steel) and a reduction of 15% of the total weight of frame, has a lower environmental impact in the life cycle of the EcoUpgraded steel frame compared to the current new design and old design frames life cycle. / <p>2018-06-29</p>
62

Comparative analysis of linear and circular manufacturing system paradigms for a steel-based product. : A case study of a mailbox manufacturing company

ALAGBADA, SAMUEL January 2022 (has links)
The manufacturing industry has exerted a tremendous impact on the natural environment. The aim of this thesis is to evaluate the consequences of shift from linear manufacturing system to circular manufacturing system in order to decouple the environmental burden of production and consumption process in relation to quantity of carbon footprint, cumulative energy demand, natural resource consumption, waste generated and recovered presently. In response to this, life cycle assessment (LCA) is used to quantify and compare the associated environmental impact of the current manufacturing system of both Linear manufacturing system and the circular manufacturing system. The thesis therefore asserts that circular manufacturing system (CMS) is more sustainable compared to linear manufacturing system (LMS) in relation to its reduction capacity of the prevailing environmental indicators most especially global threat of natural resources depletion and climate change confronting biodiversity. The result shown that CMS seems more sustainable compared to LMS in relation to the studied environmental indicators. Further to this, the emerging circular manufacturing system, its transitional shift, challenges, and its relationships with other manufacturing dynamics for consideration are also highlighted and discussed. It was concluded that these prominent challenges are caused by organizational management in relation to leadership and communication (OLC), has the highest impact value. Similarly, the consequential effect was seen on the level of implementation of government policy (GPI) and deployment of state of the art design, knowledge and technology (DTK) for the paradigm shift. So, it is suggested that OLC should be given due consideration.
63

Energy analysis for sustainable mega-cities

Phdungsilp, Aumnad January 2006 (has links)
ABSTRACT Cities throughout Asia have experienced unprecedented economic development over the past decades. In many cases this has contributed to their rapid and uncontrolled growth, which has resulted in a multiplicity of problems, including rapid population increase, enhanced environmental pollution, collapsing traffic systems, dysfunctional waste management, and rapid increases in the consumption of energy, water and other resources. The significant energy use in cities is not very well perceived in Asian countries. Although a number of studies into energy consumption across various sectors have been conducted, most are from the national point of view. Energy demand analysis is not considered important at the level of the city. The thesis is focused on the dynamics of energy utilization in Asian mega-cities, and ultimately aims at providing strategies for maximizing the use of renewable energy in large urban systems. The study aims at providing an in-depth understanding of the complex dynamics of energy utilization in urban mega-centers. An initial general analysis is complemented by a detailed study of the current situation and future outlook for the city of Bangkok, Thailand. An integrated approach applied to the study includes identification of the parameters that affect the utilization of energy in mega-cities and a detailed analysis of energy flows and their various subsystems, including commercial, industrial, residential and that of transportation. The study investigates and evaluates the energy models most commonly used for analyzing and simulating energy utilization. Its purpose is to provide a user-friendly tool suitable for decision-makers in developing an energy model for large cities. In addition, a Multi-Criteria Decision-Making (MCDM) process has been developed to assess whether or not the energy systems meet the sustainability criteria. A metabolic approach has been employed to analyze the energy flow and utilization in selected Asian mega-cities, including Bangkok, Beijing, Shanghai, and Tokyo. The approach is applied to measure the majority of indirect energy flows or the energy embodied in the flows of goods and services involving the residents of those cities. Since the function of cities is to serve the lives of the residents, indirect energy consumption could be regarded as being of equal importance as that of direct energy use. The essence of embodied energy is that an indirect reflection upon behavior following direct energy consumption. It can illustrate how a city relies on the outside, for example other cities, countries, etc. and provides some interesting information that cannot be easily drawn from the direct energy demand. The study reveals that the indirect energy demand is more significant than the direct energy demand in Bangkok, Shanghai, and Tokyo, while direct energy demand is greater than the indirect energy demand in Beijing. This can be explained by the fact that Bangkok, Shanghai, and Tokyo have a greater reliance upon the outside in terms of energy demand. The Long-range Energy Alternative Planning (LEAP) system has been selected to perform Bangkok energy modeling. In a Bangkok case study a range of policy interventions are selected and how these would change the energy development in Bangkok by the year 2025 is examined. Different policies can be grouped by the sectors analyzed. The only supply-side policy considered meets an existing target of having 10% of electricity generated from renewable sources. The study period for the model started in 2005 and ends in 2025, with the year 2000 taken as the base year. The proposed scenarios were evaluated using the MCDM approach to rate their sustainability. Team members found that this method provided a methodology to help decision-makers to systematically identify management objectives and priorities. / QC 20101123
64

Empirical evidence of utility sponsored conservation programs

Shay, Colin Gerald 23 December 2009 (has links)
Utility sponsored conservation programs encourage participants to consume less energy. One of the most popular methods used to achieve this is to offer monetary rebates to purchasers of high-efficiency appliances. The costs of these conservation programs are then passed-on to all customers as increased energy prices. Economic theory predicts that the income and substitution affects should decrease the consumption of non-participants in the programs and may increase the consumption of participants. Recent claims in the literature argue that the standard net benefit tests used to evaluate these programs fail to incorporate the full impact of the income and substitution affects. Relying on these theoretical arguments, new evaluation techniques, referred to as Net Economic Benefits (NEB) tests, are being introduced as solutions to this problem. Using the actual experience of a natural gas utility, this thesis analyzed the need for NEB evaluations. The results show that the price of gas is not a significant factor in determining household gas consumption. Therefore, empirical evidence cannot support the NEB claims. The evidence does show that, on an average annual basis, participants are consuming less than non-participants. / Master of Arts
65

Welfare gains from international trade and renewable energy demand: Evidence from the OECD countries

Lu, Z., Gozgor, Giray, Mahalik, M.K., Padhan, H., Yan, C. 27 September 2023 (has links)
Yes / This paper uses a new measure of international trade, i.e. the international trade potential index, to measure the welfare gains from trade across countries. The measure is based on the import shares of countries in their gross domestic products. It is observed that gains from international trade are low in prosperous economies, but they are larger in poorer economies. Then, the paper investigates the impact of the index of international trade potential on renewable energy consumption in the unbalanced panel dataset of 36 Organisation for Economic Co-operation and Development member countries from 1966 to 2016. The novel evidence is that international trade potential is positively related to renewable energy consumption. It is also found that per capita income, per capita carbon dioxide emissions, and energy prices increase the demand for renewable energy. / The authors acknowledge the financial support from the Philosophy & Social Science Fund of Tianjin City, China (Award #: TJYJ20-012).
66

Heating, ventilating and air-conditioning system energy demand coupling with building loads for office buildings

Korolija, Ivan January 2011 (has links)
The UK building stock accounts for about half of all energy consumed in the UK. A large portion of the energy is consumed by nondomestic buildings. Offices and retail are the most energy intensive typologies within the nondomestic building sector, typically accounting for over 50% of the nondomestic buildings’ total energy consumption. Heating, ventilating and air conditioning (HVAC) systems are the largest energy end use in the nondomestic sector, with energy consumption close to 50% of total energy consumption. Different HVAC systems have different energy requirements when responding to the same building heating and cooling demands. On the other hand, building heating and cooling demands depend on various parameters such as building fabrics, glazing ratio, building form, occupancy pattern, and many others. HVAC system energy requirements and building energy demands can be determined by mathematical modelling. A widely accepted approach among building professionals is to use building energy simulation tools such as EnergyPlus, IES, DOE2, etc. which can analyse in detail building energy consumption. However, preparing and running simulations in such tools is usually very complicated, time consuming and costly. Their complexity has been identified as the biggest obstacle. Adequate alternatives to complex building energy simulation tools are regression models which can provide results in an easier and faster way. This research deals with the development of regression models that enable the selection of HVAC systems for office buildings. In addition, the models are able to predict annual heating, cooling and auxiliary energy requirements of different HVAC systems as a function of office building heating and cooling demands. For the first part of the data set development used for the regression analysis, a data set of office building simulation archetypes was developed. The four most typical built forms (open plan sidelit, cellular sidelit, artificially lit open plan and composite sidelit cellular around artificially lit open plan built form) were coupled with five types of building fabric and three levels of glazing ratio. Furthermore, two measures of reducing solar heat gains were considered as well as implementation of daylight control. Also, building orientation was included in the analysis. In total 3840 different office buildings were then further coupled with five different HVAC systems: variable air volume system; constant air volume system; fan coil system with dedicated air; chilled ceiling system with embedded pipes, dedicated air and radiator heating; and chilled ceiling system with exposed aluminium panels, dedicated air and radiator heating. The total number of models simulated in EnergyPlus, in order to develop the input database for regression analysis, was 23,040. The results clearly indicate that it is possible to form a reliable judgement about each different HVAC system’s heating, cooling and auxiliary energy requirements based only on office building heating and cooling demands. High coefficients of determination of the proposed regression models show that HVAC system requirements can be predicted with high accuracy. The lowest coefficient of determination among cooling regression models was 0.94 in the case of the CAV system. HVAC system heating energy requirement regression models had a coefficient of determination above 0.96. The auxiliary energy requirement models had a coefficient of determination above 0.95, except in the case of chilled ceiling systems where the coefficient of determination was around 0.87. This research demonstrates that simplified regression models can be used to provide design decisions for the office building HVAC systems studied. Such models allow more rapid determination of HVAC systems energy requirements without the need for time-consuming (hence expensive) reconfigurations and runs of the simulation program.
67

Sensitivity analysis and evolutionary optimization for building design

Wang, Mengchao January 2014 (has links)
In order to achieve global carbon reduction targets, buildings must be designed to be energy efficient. Building performance simulation methods, together with sensitivity analysis and evolutionary optimization methods, can be used to generate design solution and performance information that can be used in identifying energy and cost efficient design solutions. Sensitivity analysis is used to identify the design variables that have the greatest impacts on the design objectives and constraints. Multi-objective evolutionary optimization is used to find a Pareto set of design solutions that optimize the conflicting design objectives while satisfying the design constraints; building design being an inherently multi-objective process. For instance, there is commonly a desire to minimise both the building energy demand and capital cost while maintaining thermal comfort. Sensitivity analysis has previously been coupled with a model-based optimization in order to reduce the computational effort of running a robust optimization and in order to provide an insight into the solution sensitivities in the neighbourhood of each optimum solution. However, there has been little research conducted to explore the extent to which the solutions found from a building design optimization can be used for a global or local sensitivity analysis, or the extent to which the local sensitivities differ from the global sensitivities. It has also been common for the sensitivity analysis to be conducted using continuous variables, whereas building optimization problems are more typically formulated using a mixture of discretized-continuous variables (with physical meaning) and categorical variables (without physical meaning). This thesis investigates three main questions; the form of global sensitivity analysis most appropriate for use with problems having mixed discretised-continuous and categorical variables; the extent to which samples taken from an optimization run can be used in a global sensitivity analysis, the optimization process causing these solutions to be biased; and the extent to which global and local sensitivities are different. The experiments conducted in this research are based on the mid-floor of a commercial office building having 5 zones, and which is located in Birmingham, UK. The optimization and sensitivity analysis problems are formulated with 16 design variables, including orientation, heating and cooling setpoints, window-to-wall ratios, start and stop time, and construction types. The design objectives are the minimisation of both energy demand and capital cost, with solution infeasibility being a function of occupant thermal comfort. It is concluded that a robust global sensitivity analysis can be achieved using stepwise regression with the use of bidirectional elimination, rank transformation of the variables and BIC (Bayesian information criterion). It is concluded that, when the optimization is based on a genetic algorithm, that solutions taken from the start of the optimization process can be reliably used in a global sensitivity analysis, and therefore, there is no need to generate a separate set of random samples for use in the sensitivity analysis. The extent to which the convergence of the variables during the optimization can be used as a proxy for the variable sensitivities has also been investigated. It is concluded that it is not possible to identify the relative importance of variables through the optimization, even though the most important variable exhibited fast and stable convergence. Finally, it is concluded that differences exist in the variable rankings resulting from the global and local sensitivity methods, although the top-ranked solutions from each approach tend to be the same. It also concluded that the sensitivity of the objectives and constraints to all variables is obtainable through a local sensitivity analysis, but that a global sensitivity analysis is only likely to identify the most important variables. The repeatability of these conclusions has been investigated and confirmed by applying the methods to the example design problem with the building being located in four different climates (Birmingham, UK; San Francisco, US; and Chicago, US).
68

Utvärdering av energiprojektering för Hedlunda passivhusförskola : Assessment of the projected energy demand for a passive house preschool at Hedlunda

Risberg, Ylva January 2017 (has links)
På Hedlunda i Umeå finns Hedlunda förskola; en byggnad som innehåller förskoleverksamhet, ett storkök och en matsal. Byggnaden uppfördes 2014 och började nyttjas samma år. Byggnaden är projekterad av Sweco för att klara krav gällande allt från specialpedagogik till energi och miljö. Den är även certifierad enligt en internationell passivhusstandard. Syftet med examensarbetet är att granska om förskolan håller de energikrav den projekterats för, samt att jämföra byggnadens projekterade energianvändning med den i praktiken uppmätta. Det sistnämnda gjordes även för att utvärdera precisionen hos den projekterade energianvändningen. Energibehovet ställdes även i proportion till de gränsvärden för energikrav som används av andra energicertifieringar. Byggnaden simulerades i programmet IDA ICE, och de mätvärden som samlades in bearbetades i Microsoft Excel. Programmet PHPP användes även för att granska om förskolan uppfyllde de internationella passivhuskraven. Byggnaden klarar varken kravet för årlig energianvändning eller kravet för specifikt primärenergibehov. Båda dessa är krav inom den internationella passivhusstandarden. Det föregående överskrids med 14 %, och det senare med 4 %. Byggnaden klarar energikravet för den svenska passivhuscertifieringen med god marginal. Värdet på byggnadens specifika energianvändning skilde sig knappt alls mellan projekteringen och det uppmätta värdet. Tittar man dock på enskilda faktorer så skiljer sig de projekterade värdena av el och uppvärmning sig mot de uppmätta med större differenser. Störst differens återfinns i faktorn verksamhetsel som överskattades med 60 % i projekteringen. Byggnadens specifika energianvändning uppgick till ca 43 kWh /m2 år  vilket är lägre kraven de vanligaste energistandardena ställer, vilket innebär att byggnaden är osedvanligt energieffektiv. Om alla lokaler som fick bygglov i Sverige 2015 hade byggts med samma energiprestanda som denna byggnad så hade det gått åt 392 GWh /år , medan om de istället byggts enligt BBRs standard så hade energiåtgången blivit 1098 GWh /år  (exklusive verksamhetsel). Även om olika lokaler har olika behov och krav så ger det en fingervisning av besparingspotentialen. Syftet med byggnaden var att det skulle bli en förebild för framtida energisnåla projekt, vilket det också blev när Vegaskolan i Vännäs byggdes efter samma koncept. På det hela taget är Hedlunda förskola en byggnad med hög energiprestanda. / At Hedlunda in Umeå, there’s a building complex containing a combined preschool, canteen and catering kitchen. It was built in 2014 and the preschool started up the same year. Sweco projected the building to satisfy the requisites required for the international passive house certification. The building was also supposed to meet specific requirements for specialized pedagogy, and requirements for non-toxic building materials in preschools, amongst others. In this master thesis the building’s energy usage was studied to see if the building met the requested requirements, and how close the estimated energy demand was to the actual demand. The purchased energy was also compared to energy requirements used by other certification systems used in Sweden today. The building meets the international passive house requirement for the annual heating demand, but breaches the requirement for primary energy value by 4 %. The Swedish passive house requirement is met with a significant margin. The purchased energy per square meter was 43 kWh /m2 year , which differed only marginally from the projected value of 41 kWh /m2 year . It may seem as if it was a very good estimation of the purchased energy, but when the factors are studied individually there are differences among them that go up to 60 %. The purchased energy per square meter was lower than all of the other requirements in other energy certification systems which proves that this is a highly efficient building. The building was created with the main purpose of serving as a model for energy efficient buildings, and it has served its purpose since Vegaskolan in Vännäs was built within the same concept. All in all, Hedlunda preschool is a building with a very good energy performance. If all public buildings who gained building permit in 2015 in Sweden had been built with the same energy efficiency as Hedlunda preschool, then the total energy demand would be 392 GWh /year , whereas if they were built as the BBR-standard the corresponding energy demand would be 1098 GWh /year . This is just a rough estimation to give a hint of the amount of energy that can be saved.
69

Investigation of energy demand modeling and management for local communities : investigation of the electricity demand modeling and management including consumption behaviour, dynamic tariffs, and use of renewable energy

Ihbal, Abdel-Baset Mostafa Imbarek January 2012 (has links)
Various forecasting tools, based on historical data, exist for planners of national networks that are very effective in planning national interventions to ensure energy security, and meet carbon obligations over the long term. However, at a local community level, where energy demand patterns may significantly differ from the national picture, planners would be unable to justify local and more appropriate intervention due to the lack of appropriate planning tools. In this research, a new methodology is presented that initially creates a virtual community of households in a small community based on a survey of a similar community, and then predicts the energy behaviour of each household, and hence of the community. It is based on a combination of the statistical data, and a questionnaire survey. The methodology therefore enables realistic predictions and can help local planners decide on measures such as embedding renewable energy and demand management. Using the methodology developed, a study has been carried out in order to understand the patterns of electricity consumption within UK households. The methodology developed in this study has been used to investigate the incentives currently available to consumers to see if it would be possible to shift some of the load from peak hours. Furthermore, the possibility of using renewable energy (RE) at community level is also studied and the results presented. Real time pricing information was identified as a barrier to understanding the effectiveness of various incentives and interventions. A new pricing criteria has therefore been developed to help developers and planners of local communities to understand the cost of intervention. Conclusions have been drawn from the work. Finally, suggestions for future work have been presented.
70

Avaliação do ciclo de vida da produção de biogás via estação de tratamento de esgoto e uso em célula a combustível de óxido sólido / Life cycle assessment of biogas produced in a wastewater treatment plant (WWTP) and its use in a solid oxide fuel cell (SOFC)

Costa, Luzia Bouzan Oliveira 27 April 2012 (has links)
A busca pelo uso de energia renovável, bem como a mitigação dos impactos antropogênicos, desempenha importante papel no desenvolvimento da sociedade contemporânea. O uso de energia de origem renovável é uma possível solução para os problemas relacionados aos impactos ambientais, em especial, às alterações climáticas. Uma importante fonte de energia renovável é a biomassa oriunda de resíduos orgânicos que, após a digestão anaeróbia, resulta em um gás rico em metano, conhecido como biogás. Sob o ponto de vista de qualidade ambiental, o aproveitamento energético dos resíduos produzidos a partir do tratamento das águas residuárias domésticas pode minimizar os impactos ambientais à medida que permite a diminuição da carga orgânica descartada na água e no solo. Adicionalmente, também é possível mitigar os efeitos negativos de emissões de metano na atmosfera quando o biogás é utilizado na produção de energia por meio das células a combustível (CaC) do tipo óxido sólido (SOFC). Neste sentido, o presente trabalho objetivou avaliar o ciclo de vida da ETE, da unidade geradora de biogás, sua purificação e uso em CaCs, identificando o potencial de mitigação dos gases do efeito estufa e de aproveitamento energético do biogás. Dentre os principais resultados obtidos, a etapa construtiva, é a principal contribuinte da demanda acumulada de energia, participando com 55% da CED, enquanto a etapa de tratamento do esgoto, fase líquida, destaca-se na produção de emissões atmosféricas, cerca de 23.500 Kg CO2 eq por dia. O potencial de emissões dos gases de efeito estufa podem ser evitados, durante todo o ciclo, em cerca de 3.000 kg CO2 eq por dia. A energia total que pode ser aproveitada com o biogás gerado na ETE e usado em CaC, do tipo SOFC, é de cerca de 14.000 kWh/dia, o que pode suprir em 100% a demanda de eletricidade da fase de tratamento. Os resultados apresentados lançam um desafio e geram oportunidades para pesquisadores e planejadores de sistemas energéticos desenvolverem estratégias ambientalmente saudáveis para a utilização dos recursos renováveis. / The search for renewable energy use and mitigation of anthropogenic impacts play an important role in the development of contemporary society. The use of energy from renewable sources is a possible solution to the problems related to environmental impacts, in particular, climate change. An important renewable energy source is biomass deriving from organic waste, after the anaerobic digestion, resulting in a gas rich in methane, known as biogas. From the point of view environmental quality, energy recovery of waste generated from the treatment of domestic wastewater can minimize environmental impacts as it allows the reduction of organic load dropped in water and soil. Additionally, it is also possible to mitigate the negative effects of methane emissions in the atmosphere when the biogas is used in the production of energy through solid oxide fuel cells (SOFC). In this sense, this study aimed at assessing the life cycle of a Wastewater Treatment Plant (WWTP), the biogas-generating unit, its purification and fuel cells use by identifying the potential mitigation of greenhouse gases and energy use of biogas. Among the main results obtained, the constructive phase is the main contributor to the cumulative energy demand, accounting for 55% of the CED, while in the step of sewage treating its particularly important the production of atmospheric emissions, about 23,500 kg CO2eq per day. The potential for emissions of greenhouse gases can be avoided throughout the cycle, at around 3,000 kg CO2eq per day. The total energy that can be produced with the biogas generated in WWTP and burned in the SOFC is approximately 14,000 kWh/day, which can provide 100% of the power demand of the treatment phase. The results presented launch challenges and generate opportunities for researchers and energy systems planners to develop strategies for environmentally healthy use of renewable resources.

Page generated in 0.0615 seconds