341 |
MANIPULATION OF EXCITON DYNAMICS BY INTERFACIAL ENERGY/CHARGE TRANSFER IN TWO-DIMENSIONAL SEMICONDUCTORSDewei Sun (17468739) 29 November 2023 (has links)
<p dir="ltr">In the realm of two-dimensional (2D) materials, monolayer (ML) transition metal dichalcogenides (TMDCs) have gained significant interest due to their direct bandgap transition, high carrier mobility, strong light-matter interaction, and robust spin and valley degrees of freedom, starkly contrasting their bulk counterparts. Owing to their large surface-to-volume ratio, the integration of ML TMDCs with other various 2D semiconductors and microcavities offers opportunities to study fundamental photo-physics processes at the heterointerfaces, paving the way for implementation of next-generation devices.</p><p dir="ltr">Chapter 1 provides a concise introduction to 2D materials, particularly TMDCs, and their fascinating optical and electronic properties. It examines the role of excitons in 2D materials, and the impact of energy transfer (ET) and charge transfer (CT) on exciton’s properties in TMDC through the construction of 2D van der Waals (vdW) heterostructures and coupling with optical microcavities. This chapter also delves into the potential enhancement of TMDCs’ optical properties by integrating 2D hybrid lead halide perovskites and ultra-thin three-dimensional (3D) halide perovskites with TMDCs. Furthermore, it sets the general context for light-matter interaction, another form of ET, considering both weak and strong coupling regimes.</p><p dir="ltr">Chapter 2 outlines the optical techniques employed to gather data for this work. A focus is placed on ultrafast optical techniques like transient absorption spectroscopy, which allow for direct probing and analysis of ET and CT dynamics at the heterointerface.</p><p dir="ltr">Photoinduced interfacial CT plays a critical role in the field of energy conversion involving vdW heterostructures constructed by inorganic nanostructures and organic materials. However, the control of atomic-scale stacking configurations to modulate charge separation at interfaces remains challenging. Chapter 3 aims to illustrate tunability of interfacial charge separation in a Type-II heterojunction between ML-WS<sub>2</sub> and an organic semiconducting molecule by rational design of relative stacking configurations using 2D perovskites as scaffoldings. This chapter investigates how different molecular stacking, face-to-face versus face-to-edge, affects CT at the heterointerface. Our findings reveal that the CT process heavily depends on the relative stacking configurations at the organic-TMDCs heterointerface, with charge separation being notably slowed down for face-to-edge configuration compared to face-to-face configuration. These investigations open new opportunities for designing efficient charge separation processes in energy conversion applications by judiciously engineering interfaces between organic and inorganic semiconductors, using 2D perovskites as scaffolds.</p><p dir="ltr">Though TMDCs’ large surface-to-volume ratios make them excellent platforms for studying interfacial properties, the presence of bulky ligands on the surface of 2D perovskite poses a challenge, impeding direct interfacial coupling in their heterostructures. Chapter 4 details the fabrication of ML-WS<sub>2</sub> and ultra-thin CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> (MAPbX<sub>3</sub>, X=Br, I) heterostructures with tunable energy levels, to study the dynamics of CT and ET at these hybrid interfaces. Notably, heterojunctions of WS<sub>2</sub> with pure MAPbBr<sub>3</sub> and MAPbI<sub>3</sub> were elucidated as Type-I and Type-II respectively, using photoluminescence (PL) and time-resolved photoluminescence (TR-PL) measurements. Transit absorption (TA) spectroscopy investigations unambiguously revealed a rapid ET facilitated by CT in the WS<sub>2</sub>/MAPbBr<sub>3</sub> heterostructure, with a time constant of ~20 ps, and a predominantly CT in the WS<sub>2</sub>/MAPbI<sub>3</sub> heterostructure with a time constant of ~50 femtosecond (fs). The successful interfacing of low-dimensional perovskites with an extensive array of traditional 2D materials such as TMDCs opens up possibilities for novel optoelectronic properties and applications within the field of 2D material systems. Furthermore, the ultrafast and efficient ET and CT processes hold promise for the creation of advanced energy conversion devices.</p><p dir="ltr">In the last chapter, we successfully fabricated a ML-WS<sub>2</sub> in conjunction with a silver (Ag) nanoparticle (NP) array. Our findings affirmed a weak light-matter coupling between ML-WS<sub>2</sub> and the Ag NP array, as evidenced by angle-resolved photoluminescence spectroscopy. Furthermore, an enhancement in the bright exciton emission from ML-WS<sub>2</sub> was observed at reduced temperatures. The analysis of PL enhancement factor at varying temperatures suggested that an upper bound of the enhancement factor for the bright exciton could reach ~51 or even higher at 7 K, given the imperfect uniformity of the electric filed generated around the NPs. This discovery carries significant implications for the manipulation of excitons in TMDCs and expands their potential applications in the field of optoelectronics.</p>
|
342 |
Crystal growth and charge carrier transport in liquid crystals and other novel organic semiconductorsPokhrel, Chandra Prasad 29 September 2009 (has links)
No description available.
|
343 |
CHARGE TRANSPORT IN LIQUID CRYSTALLINE SMECTIC AND DISCOTIC ORGANIC SEMICONDUCTORS: NEW RESULTS AND EXPERIMENTAL METHODOLOGIESPaul, Sanjoy 01 August 2016 (has links)
No description available.
|
344 |
Structure and Dynamics of Microcavity Exciton-Polaritons in Acoustic Square LatticesBuller, Jakov 13 August 2018 (has links)
Exziton-Polaritonen in Mikrokavitäten sind Quasi-Teilchen, die unter bestimmten physikalischen Konditionen kondensieren und damit in einen energetisch gleichen, gemeinsamen makroskopischen Quantenzustand (MQZ) übergehen können. Exziton-Polariton-Kondensate können mithilfe von akustischen Oberflächenwellen moduliert werden, um ihre Eigenschaften zu verändern. Dies ist insbesondere von großer Relevanz für zukünftige Anwendungen.
In dieser Arbeit wurden die Struktur sowie die Dynamik der Exziton-Polariton-Kondensate in den durch die akustischen Oberflächenwellen erzeugten quadratischen Gittern untersucht. Es wurde dazu die Wellenfunktion der Exziton-Polariton-Kondensate im Rahmen der spektroskopischen und zeitaufgelösten Messungen im Orts- und Impulsraum abgebildet. Die MQZ wurden in einer optisch-parametrischen Oszillatorkonfiguration resonant angeregt.
Die spektroskopischen Messungen zeigten, dass Exziton-Polariton-Kondensate in akustischen quadratischen Gittern aus unterschiedlichen MQZ, nämlich aus einem zwei-dimensionalen Gap-Soliton (2D GS) umgeben von mehreren ein-dimensionalen MQZ, und einem inkohärenten Strahlungshintergrund zusammengesetzt sind.
Im Rahmen der zeitaufgelösten Experimente wurde die Dynamik der Wellenfunktion des
2D GS untersucht. Die zeitaufgelösten Ergebnisse zeigten, dass sowohl die Intensität
der von dem 2D GS emittierten Photolumineszenz (PL) als auch die Kohärenzlänge des
2D GS zeitlich oszillieren. Die Intensität der PL und die Kohärenzlänge hängen von
der Anregungsleistung, der Größe des Laserspots sowie von der relativen Position des
akustischen Gitters und dem Laserspot ab.
Im Ausblick dieser Arbeit wurde theoretisch die Anregung von Tamm-Plasmon/Exziton-
Polaritonen (TPEP) sowie deren Modulation mithilfe von akustischen Oberflächenwellen
diskutiert. TPEP entstehen durch die Superposition der in der Grenzschicht zwischen
Mikrokavität und Metall angeregten Tamm-Plasmonen und den in der Mikrokavität erzeugten
Exziton-Polaritonen. / Microcavity (MC) exciton-polaritons can form condensates, i.e. macroscopic quantum states (MQSs), as well under a periodic potential modulation. The modulation by a surface acoustic wave (SAW) provides a powerful tool for the formation of tunable lattices of MQSs in semiconductor MC.
In this work, fundamental aspects of the structure and dynamics of exciton-polariton condensate in acoustic square lattices were investigated by probing its wavefunction in real- and momentum space using spectral- and time-resolved studies. The MQSs were resonantly excited in an optical parametric oscillator configuration.
The tomographic study revealed that the exciton-polariton condensate structure self-organises in a concentric structure, which consists of a single, two-dimensional gap soliton (2D GS) surrounded by one-dimensional MQSs and an incoherent background. 2D GS size tends to saturate with increasing particle density. The experimental results are supported by a theoretical model based on the variational solution of the Gross-Pitaevskii equation.
Time-resolved studies showed the evolution of the 2D GS wavefunction at the acoustic velocity. Interestingly, the photoluminescence (PL) intensity emitted by the 2D GS as well as its coherence length oscillate with time. The PL oscillation amplitude depends on the intensity and the size of the exciting laser spot, and increases considerably for excitation intensities close to the optical threshold power for the formation of the MQS.
In the outlook, the formation of Tamm-Plasmon/Exciton-Polariton (TPEP) hybrid states and their modulation by SAWs was theoretically discussed. Here, the upper DBR is partly replaced by a thin metal layer placed on top of the MC. In this case, TPEP form by the superposition of Tamm plasmons at the metal-semiconductor interface and the exciton-polaritons in the MC.
|
345 |
Elementare optische Anregungen in Molekülen, Hybridsystemen und HalbleiternFriede, Sebastian 08 January 2015 (has links)
Methoden der optischen Spektroskopie gestatten es, über die Licht-Materie-Wechselwirkung Aussagen über verschiedene Materialsysteme zu treffen. Im Zuge dieser Arbeit wurde das Potential von stationären und transienten optischen Methoden– u.a. der Nahfeldmikroskopie– zur qualitativen und quantitativen Analyse prototypischer Materialsysteme genutzt. Die Kombination von aufeinander abgestimmten organischen und anorganischen Materialien führt auf so genannte Hybridsysteme. Die Vielzahl verschiedener Halbleiter- und Molekülsysteme lässt eine Vielzahl möglicher Hybride zu. Diarylethene (DTE) bilden eine Klasse photochromer molekularer Systeme. In der Arbeit wird der Frage nach den fundamentalen optischen Eigenschaften und dem Schaltverhalten des hier vorliegenden prototypischen DTE nachgegangen. Die zweite untersuchte Klasse von Systemen sind Hybride, welche aus dem anorganischen Halbleiter Zinkoxid (ZnO) und einer molekularen Bedeckung bestehen. Bei den Untersuchungen dieser Hybride wurde der Frage nach den optisch induzierten physikalischen Prozessen an bzw. in der Grenzschicht zwischen der molekularen Bedeckung und dem anorganischen Halbleiter nachgegangen. Im Speziellen wurde ein exzitonischer Oberflächenzustand (SX) beobachtet. Die Anwendung zeitaufgelöster Tieftemperaturnahfeldmikroskopie deckt die Transporteigenschaften der SX entlang der Oberfläche auf. Weiterhin wurden prototypische Laserdioden auf der Basis des Halbleiters Galliumnitrid (GaN) untersucht. Der Unterschied zwischen den hier untersuchten GaN-Bauelementen liegt in der Materialzusammensetzung der in die Bauelemente integrierten Wellenleiter. Eine Optimierung der Wellenleiter kann zu einer Steigerung der Effizienz der Bauelemente führen. Die Analyse der Bauelemente erfolgte mit Methoden der Nahfeldmikroskopie. Die Experimente decken Unterschiede in der Struktur der Bauelemente auf und erlauben Messungen der in den Wellenleitern geführten Lasermoden. / Methods of optical spectroscopy allow for the investigation of diverse material systems via the interaction between light and matter. Stationary and transient methods of optical spectroscopy were exploited– particularly near-field scanning optical microscopy– for qualitative and quantitative analyses of prototypical material systems. The combination of organic and inorganic materials which are adapted to each other yields a so-called hybrid system. The wide range of different semiconductor materials and molecular systems available results in a multitude of hybrid systems. Diarylethenes (DTE) form one class of photoswitchable molecular systems. This work focuses on the fundamental optical properties and the photochromic switching behavior of a prototypical DTE species. The second class of investigated prototypical sample systems consists of the inorganic semiconductor zinc oxide (ZnO) covered with molecular monolayers. The studies performed on this sample system focus on optically-induced physical processes localized at the interface between the inorganic semiconductor and the organic adlayer. In particular, a surface-excitonic state (SX) was investigated. The application of time-resolved low-temperature near-field scanning optical microscopy enables the monitoring of lateral SX transport along the organic-inorganic interface. The third prototypical sample class considered consists of two gallium nitride (GaN) diode lasers. The difference between the two investigated prototypical diode lasers is the different material composition of the waveguides integrated within the lasers. An optimization of the waveguide material composition may be used to increase the laser efficiency. Near-field scanning optical microscopy was used to analyze the two different diode lasers. The experiments show the structural differences between the distinct laser architectures and revealed the mode profiles of the waveguides within the diode lasers.
|
346 |
Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic DevicesBandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1.
We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions.
We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
|
347 |
Lichtabsorption und Energietransfer in molekularen AggregatenRoden, Jan 29 June 2011 (has links) (PDF)
Aggregate aus Molekülen, in denen die Moleküle über ihre elektronischen Übergangsdipole miteinander wechselwirken, finden wegen ihrer besonderen optischen und Energietransfer-Eigenschaften vielfach Anwendung in Natur, Technik, Biologie und Medizin. Beispiele sind die wechselwirkenden Farbstoffmoleküle, die in den Lichtsammelkomplexen Photosynthese betreibender Lebewesen Sonnenlicht absorbieren und die Energie als elektronische Anregung hocheffizient zu Reaktionszentren weiterleiten, oder Aggregate aus tausenden von organischen Farbstoffmolekülen in einem flüssigen Lösungsmittel. Die Wechselwirkung der Moleküle (Monomere) führt zu über mehrere Moleküle delokalisierten angeregten elektronischen Zuständen, die die Energietransfer-Dynamik und die Absorptionsspektren der Aggregate prägen.
Die Lichtabsorption und der Energietransfer in molekularen Aggregaten werden oft stark von Vibrationen beeinflusst, sowohl von internen Vibrationsfreiheitsgraden der Monomere als auch von Vibrationen der Umgebung (z. B. das Proteingerüst in Lichtsammelkomplexen oder eine Flüssigkeitsumgebung), an die die elektronische Anregung koppelt.
Da es schwierig ist, diese Vibrationen in die theoretische Beschreibung des Transfers und der Spektren einzubeziehen, ist ihr genauer Einfluss noch nicht gut verstanden. Um dieses Verständnis zu verbessern, entwickeln wir in dieser Arbeit neue Berechnungsmethoden und untersuchen damit die Auswirkungen der Vibrationen.
Zuerst betrachten wir die diskreten internen Vibrationsfreiheitsgrade der Monomere. Dazu haben wir eine effiziente numerische Methode entwickelt, die es uns erlaubt, mehrere Freiheitsgrade pro Monomer explizit einzubeziehen und die volle Schrödinger-Gleichung zu lösen. Mit den Modellrechnungen können wir experimentelle Aggregat-Spektren der Helium-Nanotröpfchen-Isolation-Spektroskopie, mit der man die einzelnen Vibrationslinien der Monomere auflösen kann, zum ersten Mal quantitativ reproduzieren.
In früheren theoretischen Behandlungen wurde oft nur ein einziger Vibrationsfreiheitsgrad pro Monomer berücksichtigt – nun zeigen wir, dass die Einbeziehung möglichst vieler Freiheitsgrade für eine realistische Beschreibung von Aggregat-Spektren wichtig ist.
Um neben den internen Vibrationen auch den Einfluss der Umgebung beschreiben zu können, nutzen wir den Zugang offener Quantensysteme und nehmen an, dass die elektronische Anregung an ein strukturiertes Kontinuum von Vibrationsfreiheitsgraden koppelt. Erstmals wenden wir die sogenannte nicht-markovsche Quanten-Zustands-Diffusion auf die molekularen Aggregate an, wodurch wir mit Hilfe einer Näherung Spektren und Transfer mit einer sehr effizienten stochastischen Schrödinger-Gleichung berechnen können. So
können wir Merkmale gemessener Aggregat-Spektren, wie das schmale J-Band und das breite strukturierte H-Band, in Abhängigkeit der Anzahl der Monomere und der Wechselwirkungsstärke zwischen den Monomeren beschreiben. Auch können wir den Übergang von kohärentem zu inkohärentem Transfer erfassen.
Eine für den Transfer relevante Größe ist die Anzahl der kohärent gekoppelten Monomere im Aggregat. Diese schätzt man häufig aus der Verschmälerung des Aggregat-Spektrums ab. Wir finden jedoch für verschiedene Spektraldichten des Vibrationskontinuums sehr unterschiedliche Verschmälerungen des Aggregat-Spektrums, die wir analytisch erklären. So zeigen wir, dass die bisherige einfache Abschätzung der Anzahl der kohärent gekoppelten Monomere nicht gerechtfertigt ist, da die Verschmälerung stark vom angenommenen Modell abhängt.
|
348 |
Lichtabsorption und Energietransfer in molekularen AggregatenRoden, Jan 10 March 2011 (has links)
Aggregate aus Molekülen, in denen die Moleküle über ihre elektronischen Übergangsdipole miteinander wechselwirken, finden wegen ihrer besonderen optischen und Energietransfer-Eigenschaften vielfach Anwendung in Natur, Technik, Biologie und Medizin. Beispiele sind die wechselwirkenden Farbstoffmoleküle, die in den Lichtsammelkomplexen Photosynthese betreibender Lebewesen Sonnenlicht absorbieren und die Energie als elektronische Anregung hocheffizient zu Reaktionszentren weiterleiten, oder Aggregate aus tausenden von organischen Farbstoffmolekülen in einem flüssigen Lösungsmittel. Die Wechselwirkung der Moleküle (Monomere) führt zu über mehrere Moleküle delokalisierten angeregten elektronischen Zuständen, die die Energietransfer-Dynamik und die Absorptionsspektren der Aggregate prägen.
Die Lichtabsorption und der Energietransfer in molekularen Aggregaten werden oft stark von Vibrationen beeinflusst, sowohl von internen Vibrationsfreiheitsgraden der Monomere als auch von Vibrationen der Umgebung (z. B. das Proteingerüst in Lichtsammelkomplexen oder eine Flüssigkeitsumgebung), an die die elektronische Anregung koppelt.
Da es schwierig ist, diese Vibrationen in die theoretische Beschreibung des Transfers und der Spektren einzubeziehen, ist ihr genauer Einfluss noch nicht gut verstanden. Um dieses Verständnis zu verbessern, entwickeln wir in dieser Arbeit neue Berechnungsmethoden und untersuchen damit die Auswirkungen der Vibrationen.
Zuerst betrachten wir die diskreten internen Vibrationsfreiheitsgrade der Monomere. Dazu haben wir eine effiziente numerische Methode entwickelt, die es uns erlaubt, mehrere Freiheitsgrade pro Monomer explizit einzubeziehen und die volle Schrödinger-Gleichung zu lösen. Mit den Modellrechnungen können wir experimentelle Aggregat-Spektren der Helium-Nanotröpfchen-Isolation-Spektroskopie, mit der man die einzelnen Vibrationslinien der Monomere auflösen kann, zum ersten Mal quantitativ reproduzieren.
In früheren theoretischen Behandlungen wurde oft nur ein einziger Vibrationsfreiheitsgrad pro Monomer berücksichtigt – nun zeigen wir, dass die Einbeziehung möglichst vieler Freiheitsgrade für eine realistische Beschreibung von Aggregat-Spektren wichtig ist.
Um neben den internen Vibrationen auch den Einfluss der Umgebung beschreiben zu können, nutzen wir den Zugang offener Quantensysteme und nehmen an, dass die elektronische Anregung an ein strukturiertes Kontinuum von Vibrationsfreiheitsgraden koppelt. Erstmals wenden wir die sogenannte nicht-markovsche Quanten-Zustands-Diffusion auf die molekularen Aggregate an, wodurch wir mit Hilfe einer Näherung Spektren und Transfer mit einer sehr effizienten stochastischen Schrödinger-Gleichung berechnen können. So
können wir Merkmale gemessener Aggregat-Spektren, wie das schmale J-Band und das breite strukturierte H-Band, in Abhängigkeit der Anzahl der Monomere und der Wechselwirkungsstärke zwischen den Monomeren beschreiben. Auch können wir den Übergang von kohärentem zu inkohärentem Transfer erfassen.
Eine für den Transfer relevante Größe ist die Anzahl der kohärent gekoppelten Monomere im Aggregat. Diese schätzt man häufig aus der Verschmälerung des Aggregat-Spektrums ab. Wir finden jedoch für verschiedene Spektraldichten des Vibrationskontinuums sehr unterschiedliche Verschmälerungen des Aggregat-Spektrums, die wir analytisch erklären. So zeigen wir, dass die bisherige einfache Abschätzung der Anzahl der kohärent gekoppelten Monomere nicht gerechtfertigt ist, da die Verschmälerung stark vom angenommenen Modell abhängt.
|
349 |
Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructuresYong, Chaw Keong January 2012 (has links)
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within the inorganic semiconductors. Inorganic semiconductor nanowires and their blends with semiconducting polymers have been investigated using state-of-the-art ultrafast optical techniques to provide information on the sub-picosecond to nanosecond photoexcitation dynamics in these systems. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising nanowires in hybrid organic photovoltaic devices, revealing the performances to date. The experimental methods used during the thesis are detailed in Chapter 3. Chapter 4 describes the crucial roles of surface passivation on the ultrafast dynamics of exciton formation in gallium arsenide (GaAs) nanowires. By passivating the surface states of nanowires, exciton formation via the bimolecular conversion of electron-hole plasma can observed over few hundred picoseconds, in-contrast to the fast carrier trapping in 10 ps observed in the uncoated nanowires. Chapter 5 presents a novel method to passivate the surface-states of GaAs nanowires using semiconducting polymer. The carrier lifetime in the nanowires can be strongly enhanced when the ionization potential of the overcoated semiconducting polymer is smaller than the work function of the nanowires and the surface native oxide layers of nanowires are removed. Finally, Chapter 6 shows that the carrier cooling in the type-II wurtzite-zincblend InP nanowires is reduced by order-of magnitude during the spatial charge-transfer across the type-II heterojunction. The works decribed in this thesis reveals the crucial role of surface-states and bulk defects on the carrier dynamics of semiconductor nanowires. In-addition, a novel approach to passivate the surface defect states of nanowires using semiconducting polymers was developed.
|
350 |
Role Of Surface And Inter-particle Spacing On Optical Properties Of Single And Hybrid Nanoparticle AssembliesHaridas, M 07 1900 (has links) (PDF)
Optical properties of nanoscopic materials have been intensively perused over last couple of decades due to their tunable optical properties. Recent interests in this field have been mainly focused on the preparation of ordered arrays of nanoscopic materials and study of their optical properties. These interests have been motivated by the usability of such systems for nano photonic devices. Theoretical predictions from such systems reveal complex absorption and emission properties, different from individual ones mainly because of energy transfer between them. These properties can be controlled further by preparing hybrid arrays of nanostructures, including nano crystals of different types. Hybrid arrays with semiconducting quantum dots and metallic nanoparticles are an example of such system. Optical properties of such a system can be tuned by controlling the interaction between excitons and plasmons. This the-sis presents the experimental studies on optical properties of polymer capped polymer nanoparticles, quantum dot arrays and hybrid arrays with semiconducting quantum dot and metal nanoparticles. A brief summary of the experi-mental methods and results have been highlighted below.
First chapter deals with the theoretical aspects of confined nanoscopic materials, especially describing the physics of zero dimensional systems and its optical properties. The discussions are mostly focused on two types of nano materials cadmium selenide (CdSe) quantum dot (QDs) and gold nano particles (Au NPs), used for the experimental study. Variation of energy levels of CdSe QDs and its absorption and emission properties under strong confinement regime has been discussed with respect to effective mass approximation (EMA) model. This is followed by the discussion on optical properties of Au NPs, describing absorption properties, based on Mie theory. Size dependent variation of absorption spectra of Au NPs and the modifications based on different models has been discussed. Second part of the chapter describes the physics of QD arrays and theory of exciton plasmon interactions based on the recent literatures. Energy transfer mechanism between semiconducting QDs and metal nanoparticles has been discussed based on numerical method and dipole approximation. Second chapter deals with the discussion on experimental techniques used for the study. Chapter 2 starts with the discussion on the synthesis method for CdSe QDs and Au NPs with different capping ligands. Preparation of QD ar-rays and hybrid arrays using self assembly technique has been discussed in this chapter. Preparation CdSe QD arrays and hybrid arrays with CdSe QDs and Au NPs using block copolymer (BCP) template and Langmuir Blodgett (LB) technique has been the main focus in the discussion. This is followed by the discussion on optical microscopy techniques, confocal, near field scanning microscopy (NSOM), Brewster angle microscopy and electron microscopy techniques, transmission electron microscopy and scanning electron microscopy.
Studies on variation of band structure of small polymer capped Au NPs, with respect to the size and grafting density of the capping polymer is discussed in chapter 3. Polymer capped Au NPs with sizes 2-5 nm was used for the study. Dielectric constants of Au NPs were extracted from the absorption spectra by fitting the data using modified Mie theory. Dielectric constants of Au NPs were reproduced using an analytical expression, describing the contribution from different transitions in the optical regions. Results indicate systematic variations of the band structure with respect to the particle size and grafting density. The observations have been interpreted in terms of variation of co ordination number and chemical interaction of capping polymer with the surface atoms. Our new method analysis points to the importance of both quantum and surface effects in determining optical and electronic properties of polymer capped gold nanoparticles. Chapter 4 describes the study on morphology of the CdSe QD arrays prepared using different BCP templates and its correlation with optical properties. Spatially resolved spectra from the thin films of QD arrays were collected in near field and the compared with the spectra collected in far field. Spectra collected in near field mode shows sharp features in the emission spectra, possibly indicating the interaction of optical near field with QD excitation. It has been suggested that such fine structure could be induced by coupling between optical near filed and excitons and this coupling seems to be determined by local heterogeneity in QD density and disorder. Variation of exciton life time with respect to QD density and absorption spectra from the QD -BCP system is also described in chapter 4.
Chapter 5 and 6 deals with the experimental studies on exciton -plasmon interaction in hybrid arrays of CdSe QDs and Au NPs. Emission properties hybrid arrays prepared using BCP templates has been the focus of chapter 5. Photoluminescence (PL) and lifetime measurements were performed on hybrid arrays and their variation with respect to the density and dispersion of Au NPs has been described. Optical measurements were performed on two sets of films using two different sizes of CdSe QDs, with the smaller QD emission overlapping with the plasmon resonance of Au NPs, while a red shifted emission peak for larger QDs. PL emission from hybrid arrays with smaller QDs shows en-hancement/quenching with respect to the dispersion of Au NPs, also showing systematic reduction of life time of CdSe QDs with Au NP density. Even though enhancement/quenching of emission properties of hybrid film with large QD shows similar behavior, PL decay measurements from such films shows non monotonic variation of exciton life time with respect to Au NP density. The enhancement/quenching behavior of the PL emission has been explained in terms of two competing mechanism, electromagnetic field enhancement and non radiative energy transfer. However to explain the energy transfer mechanism in hybrid arrays requires more systematic calculations.
Chapter 6 describes the optical properties of highly compact hybrid arrays prepared using LB techniques. Hybrid arrays prepared at the air water inter-face were transferred to a glass substrates. The main focus on chapter 6 is to study the emission properties of highly compact hybrid arrays with respect to the spectral overlap between exciton energy of CdSe QDs and plasmon band of Au NPs with respect to their surface density (inter particle distance). Hybrid arrays were prepared with three types of QDs, with smaller QDs emission peak overlapping with plasmon band of Au NPs and clearly separated exciton and plasmon band for largest QDs. The PL emission from hybrid arrays with smaller QDs shows quenching, compared to strong enhancement in the emission from hybrid films with larger QDs. The disagreement of the observed results with respect to the theoretical calculations based on dipole approximation has been highlighted in the chapter. Chapter 7 includes the summary of the experimental results and the future works to be carried out as a continuation of the work presented in this thesis.
|
Page generated in 0.0824 seconds