• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 24
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 68
  • 36
  • 34
  • 27
  • 27
  • 26
  • 24
  • 21
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Registration and Localization of Unknown Moving Objects in Markerless Monocular SLAM

Blake Austin Troutman (15305962) 18 May 2023 (has links)
<p>Simultaneous localization and mapping (SLAM) is a general device localization technique that uses realtime sensor measurements to develop a virtualization of the sensor's environment while also using this growing virtualization to determine the position and orientation of the sensor. This is useful for augmented reality (AR), in which a user looks through a head-mounted display (HMD) or viewfinder to see virtual components integrated into the real world. Visual SLAM (i.e., SLAM in which the sensor is an optical camera) is used in AR to determine the exact device/headset movement so that the virtual components can be accurately redrawn to the screen, matching the perceived motion of the world around the user as the user moves the device/headset. However, many potential AR applications may need access to more than device localization data in order to be useful; they may need to leverage environment data as well. Additionally, most SLAM solutions make the naive assumption that the environment surrounding the system is completely static (non-moving). Given these circumstances, it is clear that AR may benefit substantially from utilizing a SLAM solution that detects objects that move in the scene and ultimately provides localization data for each of these objects. This problem is known as the dynamic SLAM problem. Current attempts to address the dynamic SLAM problem often use machine learning to develop models that identify the parts of the camera image that belong to one of many classes of potentially-moving objects. The limitation with these approaches is that it is impractical to train models to identify every possible object that moves; additionally, some potentially-moving objects may be static in the scene, which these approaches often do not account for. Some other attempts to address the dynamic SLAM problem also localize the moving objects they detect, but these systems almost always rely on depth sensors or stereo camera configurations, which have significant limitations in real-world use cases. This dissertation presents a novel approach for registering and localizing unknown moving objects in the context of markerless, monocular, keyframe-based SLAM with no required prior information about object structure, appearance, or existence. This work also details a novel deep learning solution for determining SLAM map initialization suitability in structure-from-motion-based initialization approaches. This dissertation goes on to validate these approaches by implementing them in a markerless, monocular SLAM system called LUMO-SLAM, which is built from the ground up to demonstrate this approach to unknown moving object registration and localization. Results are collected for the LUMO-SLAM system, which address the accuracy of its camera localization estimates, the accuracy of its moving object localization estimates, and the consistency with which it registers moving objects in the scene. These results show that this solution to the dynamic SLAM problem, though it does not act as a practical solution for all use cases, has an ability to accurately register and localize unknown moving objects in such a way that makes it useful for some applications of AR without thwarting the system's ability to also perform accurate camera localization.</p>
132

Vision-based navigation and mapping for flight in GPS-denied environments

Wu, Allen David 15 November 2010 (has links)
Traditionally, the task of determining aircraft position and attitude for automatic control has been handled by the combination of an inertial measurement unit (IMU) with a Global Positioning System (GPS) receiver. In this configuration, accelerations and angular rates from the IMU can be integrated forward in time, and position updates from the GPS can be used to bound the errors that result from this integration. However, reliance on the reception of GPS signals places artificial constraints on aircraft such as small unmanned aerial vehicles (UAVs) that are otherwise physically capable of operation in indoor, cluttered, or adversarial environments. Therefore, this work investigates methods for incorporating a monocular vision sensor into a standard avionics suite. Vision sensors possess the potential to extract information about the surrounding environment and determine the locations of features or points of interest. Having mapped out landmarks in an unknown environment, subsequent observations by the vision sensor can in turn be used to resolve aircraft position and orientation while continuing to map out new features. An extended Kalman filter framework for performing the tasks of vision-based mapping and navigation is presented. Feature points are detected in each image using a Harris corner detector, and these feature measurements are corresponded from frame to frame using a statistical Z-test. When GPS is available, sequential observations of a single landmark point allow the point's location in inertial space to be estimated. When GPS is not available, landmarks that have been sufficiently triangulated can be used for estimating vehicle position and attitude. Simulation and real-time flight test results for vision-based mapping and navigation are presented to demonstrate feasibility in real-time applications. These methods are then integrated into a practical framework for flight in GPS-denied environments and verified through the autonomous flight of a UAV during a loss-of-GPS scenario. The methodology is also extended to the application of vehicles equipped with stereo vision systems. This framework enables aircraft capable of hovering in place to maintain a bounded pose estimate indefinitely without drift during a GPS outage.
133

Pokročilé metody snímání a hodnocení kvality 3D videa / Advanced Methods for 3D Video Capturing and Evaluation

Kaller, Ondřej January 2018 (has links)
Disertační práce se zabývá metodami snímání a hodnocení kvality 3D obrazů a videí. Po krátkém shrnutí fyziologie prostorového vnímání, obsahuje práce stav poznání v oblastech problému adaptivní paralaxy a konfigurace kamer pro snímání klasického stereopáru. Taktéž shrnuje dnešní možnosti odhadu hloubkové mapy. Zmíněny jsou aktivní i pasivní metody, detailněji je vysvětleno profilometrické skenování. Byly změřeny některé technické parametry dvou technologií současných 3D zobrazovačů, a to polarizačně-oddělujících a využívajících časový multiplex, například přeslechy mezi levým a pravým snímkem. Jádro práce tvoří nová metoda pro vytváření hloubkové mapy při snímání 3D scény, kterážto byla autorem navržena a testována. Inovativnost tohoto přístupu spočívá v chytré kombinaci současných aktivních a pasivních metod snímání hloubky scény, která vtipně využívá výhod obou metod. Nakonec jsou prezentovány výsledky subjektivních testů kvality 3D videa. Největší přínos zde má navržená metrika modelující výsledky subjektivních testů kvality 3D videa.
134

3D Rekonstrukce historických míst z obrázků na Flickru / 3D Reconstruction of Historic Landmarks from Flickr Pictures

Šimetka, Vojtěch January 2015 (has links)
Tato práce popisuje problematiku návrhu a vývoje aplikace pro rekonstrukci 3D modelů z 2D obrazových dat, označované jako bundle adjustment. Práce analyzuje proces 3D rekonstrukce a důkladně popisuje jednotlivé kroky. Prvním z kroků je automatizované získání obrazové sady z internetu. Je představena sada skriptů pro hromadné stahování obrázků ze služeb Flickr a Google Images a shrnuty požadavky na tyto obrázky pro co nejlepší 3D rekonstrukci. Práce dále popisuje různé detektory, extraktory a párovací algoritmy klíčových bodů v obraze s cílem najít nejvhodnější kombinaci pro rekonstrukci budov. Poté je vysvětlen proces rekonstrukce 3D struktury, její optimalizace a jak je tato problematika realizovaná v našem programu. Závěr práce testuje výsledky získané z implementovaného programu pro několik různých datových sad a porovnává je s výsledky ostatních podobných programů, představených v úvodu práce.
135

Lokální navigace autonomního mobilního robota / Local Navigation of an Autonomous Mobile Robot

Herman, David January 2010 (has links)
This paper deals with the topic of design of a navigation system for an autonomous mobile robot in a park-like environment. Precisely, designing methods for road detection using available sensoric system, designing a mathematical model for fusion of these data, and suggesting a representation of an environment suitable for planning and local navigation.
136

Segmentation and Depth Estimation of Urban Road Using Monocular Camera and Convolutional Neural Networks / Segmentering och djupskatting av stadsväg med monokulär kamera

Djikic, Addi January 2018 (has links)
Deep learning for safe autonomous transport is rapidly emerging. Fast and robust perception for autonomous vehicles will be crucial for future navigation in urban areas with high traffic and human interplay. Previous work focuses on extracting full image depth maps, or finding specific road features such as lanes. However, in urban environments lanes are not always present, and sensors such as LiDAR with 3D point clouds provide a quite sparse depth perception of road with demanding algorithmic approaches. In this thesis we derive a novel convolutional neural network that we call AutoNet. It is designed as an encoder-decoder network for pixel-wise depth estimation of an urban drivable free-space road, using only a monocular camera, and handled as a supervised regression problem. AutoNet is also constructed as a classification network to solely classify and segment the drivable free-space in real- time with monocular vision, handled as a supervised classification problem, which shows to be a simpler and more robust solution than the regression approach. We also implement the state of the art neural network ENet for comparison, which is designed for fast real-time semantic segmentation and fast inference speed. The evaluation shows that AutoNet outperforms ENet for every performance metrics, but shows to be slower in terms of frame rate. However, optimization techniques are proposed for future work, on how to advance the frame rate of the network while still maintaining the robustness and performance. All the training and evaluation is done on the Cityscapes dataset. New ground truth labels for road depth perception are created for training with a novel approach of fusing pre-computed depth maps with semantic labels. Data collection with a Scania vehicle is conducted, mounted with a monocular camera to test the final derived models. The proposed AutoNet shows promising state of the art performance in regards to road depth estimation as well as road classification. / Deep learning för säkra autonoma transportsystem framträder mer och mer inom forskning och utveckling. Snabb och robust uppfattning om miljön för autonoma fordon kommer att vara avgörande för framtida navigering inom stadsområden med stor trafiksampel. I denna avhandling härleder vi en ny form av ett neuralt nätverk som vi kallar AutoNet. Där nätverket är designat som en autoencoder för pixelvis djupskattning av den fria körbara vägytan för stadsområden, där nätverket endast använder sig av en monokulär kamera och dess bilder. Det föreslagna nätverket för djupskattning hanteras som ett regressions problem. AutoNet är även konstruerad som ett klassificeringsnätverk som endast ska klassificera och segmentera den körbara vägytan i realtid med monokulärt seende. Där detta är hanterat som ett övervakande klassificerings problem, som även visar sig vara en mer simpel och mer robust lösning för att hitta vägyta i stadsområden. Vi implementerar även ett av de främsta neurala nätverken ENet för jämförelse. ENet är utformat för snabb semantisk segmentering i realtid, med hög prediktions- hastighet. Evalueringen av nätverken visar att AutoNet utklassar ENet i varje prestandamätning för noggrannhet, men visar sig vara långsammare med avseende på antal bilder per sekund. Olika optimeringslösningar föreslås för framtida arbete, för hur man ökar nätverk-modelens bildhastighet samtidigt som man behåller robustheten.All träning och utvärdering görs på Cityscapes dataset. Ny data för träning samt evaluering för djupskattningen för väg skapas med ett nytt tillvägagångssätt, genom att kombinera förberäknade djupkartor med semantiska etiketter för väg. Datainsamling med ett Scania-fordon utförs även, monterad med en monoculär kamera för att testa den slutgiltiga härleda modellen. Det föreslagna nätverket AutoNet visar sig vara en lovande topp-presterande modell i fråga om djupuppskattning för väg samt vägklassificering för stadsområden.
137

Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms

Vestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.

Page generated in 0.0448 seconds